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Abstract

The opioid overdose epidemic represents a serious public
health crisis, with fatality rates rising considerably over the
past several years. To help address the abuse of prescription
opioids, state governments collect data on dispensed prescrip-
tions, yet the use of these data is typically limited to man-
ual searches. In this paper, we propose a novel graph-based
framework for detecting anomalous opioid prescribing pat-
terns in state Prescription Drug Monitoring Program (PDMP)
data, which could aid governments in deterring opioid diver-
sion and abuse. Specifically, we seek to identify connected
networks of opioid prescribers and dispensers who engage in
high-risk and possibly illicit activity. We develop and apply a
novel extension of the Non-Parametric Heterogeneous Graph
Scan (NPHGS) to two years of de-identified PDMP data from
the state of Kansas, and find that NPHGS identifies subgraphs
that are significantly more anomalous than those detected by
other graph-based methods. NPHGS also reveals clusters of
potentially illicit activity, which may assist law enforcement
and regulatory agencies. Our paper is the first to demonstrate
how prescription data can systematically identify anomalous
opioid prescribers and dispensers, illustrating the efficacy of
a network-based approach. Additionally, our technical exten-
sions to NPHGS offer both improved flexibility and graph
density reduction, enabling the framework to be replicated
across jurisdictions and extended to other domains.

Introduction
Misuse and abuse of opioids represents a widespread public
health crisis in the United States. Between 2019 and 2020,
deaths from opioid overdoses increased by nearly 40%, and
opioid overdoses now account for 75% of all fatal drug over-
doses (National Institutes of Health 2022). While the ma-
jority of opioid overdoses involve illicit substances, such
as fentanyl and heroin, prescription opioids contribute to
this crisis in several ways. Like illicit opioids, prescription
opioids contain highly addictive properties that can lead to
abuse. They are often diverted from the healthcare system
to be shared or sold illegally and consumed in high-risk vol-
umes. In 2020, prescription opioids accounted for 24% of all
fatal opioid-related overdoses (Centers for Disease Control
and Prevention 2021). In addition, prescription opioids com-
monly serve as a gateway to illicit opioids; in a nationally
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representative survey of heroin users, 80% of respondents
reported using prescription opioids prior to heroin (Lanke-
nau et al. 2012).

To better monitor the prescribing and dispensing of opi-
oids, states have created electronic databases known as pre-
scription drug monitoring programs (PDMPs), which col-
lect data on dispensed prescriptions of controlled substances
statewide. By providing prescribers and dispensers with full
visibility into their patient’s prescription history, PDMPs are
intended to help reduce or prevent “doctor shopping” and
“pharmacy shopping,” behaviors in which patients request
prescriptions from multiple prescribers or dispensaries si-
multaneously. As of 2022, all 50 states operate PDMPs, and
most licensed clinicians are required to check patient records
in the PDMP before prescribing or dispensing controlled
substances (PDMP Training and Technical Assistance Cen-
ter 2022).

Over the last decade, PDMP data has also been used to
evaluate effects on clinical decision-making, identify public
health trends, and help plan for community-level interven-
tions (Substance Abuse and Mental Health Services Admin-
istration 2017; Schell et al. 2022). However, the potential of
this rich data source for detecting high-risk and potentially
illicit behavior among opioid prescribers and dispensers re-
mains largely unexamined. Because clinicians are largely re-
sponsible for determining the recipients of legally prescribed
opioids, down to the specific drug, duration, and dosage, and
are afforded wide discretion while doing so, the individual
behaviors of prescribers and dispensers can significantly af-
fect patients’ exposure to and supply of opioids. In some
cases, most prominently illustrated by Purdue Pharma’s tar-
geted marketing of OxyContin to physicians and the subse-
quent lawsuits and settlement, unsafe prescribing can lead to
or exacerbate incidents of opioid abuse and addiction. Fur-
thermore, given their essentially unfettered access to highly
addictive and in-demand substances, some clinicians have
participated in illicit monetary schemes to divert prescrip-
tion opioids to illegal channels, a process known as drug
diversion. By increasing the supply of opioids sold on the
“black market,” drug diversion further increases the risk
of adverse opioid-related public health outcomes. For these
reasons, we believe it is imperative for state governments to
develop systems that proactively monitor opioid prescribers
and dispensers for unsafe and potentially illicit prescribing

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

14470



behaviors. With improved monitoring systems, states may
be able to more efficiently detect the most pressing high-risk
behavior by opioid prescribers and dispensers, which could
ultimately reduce opioid addiction and abuse.

To the extent that this topic has been explored in the
ML field, it has generally been represented as a point-based
anomaly detection problem: researchers seek to identify
pharmacies and patients with individually anomalous opioid
prescriptions. However, this approach fails to consider sev-
eral key dynamics of illicit behavior; namely that individu-
als are more likely to commit crime if they are surrounded
by others who do so, that individuals often commit crime in
pairs or groups, and that illicit actors may not appear sus-
picious unless they are linked together (Akoglu, Tong, and
Koutra 2015). In the context of prescription opioids, both
the prescriber (physician or nurse practitioner) and dispenser
(pharmacist or pharmacy technician) must sign off in order
for patients to access these substances, making this domain
an ideal candidate for a network-based approach. From the
perspective of state regulatory and law enforcement agen-
cies, which operate with a strong inclination to take on cases
with the greatest potential impact, a network-based approach
is a more efficient and pragmatic use of public resources. In-
deed, many governments have already demonstrated a moti-
vation to investigate and prosecute networks of illicit opioid
activity (New York State Attorney General 2018; Depart-
ment of Justice 2019). Therefore, rather than detect individ-
ual actors, this paper seeks to detect connected networks of
opioid prescribers and dispensers engaging in high-risk and
potentially illicit behavior. We believe that this approach will
not only yield more prescribers and dispensers of interest,
but that it is a more effective and impactful strategy for pub-
lic agencies seeking to identify and disrupt these networks.

For all of its potential impact, detecting connected net-
works of anomalous opioid prescribing poses many chal-
lenges. Substantial variation exists in the prescription data
among patients, pharmacies, and prescribers; factors such as
location, patient medical condition, medical specialty of the
prescriber, and size and organizational structure of the phar-
macy all contribute. Without additional data sources to pro-
vide more context, such as patient electronic medical records
or a clinician’s profile, it is often difficult to distinguish be-
tween medically necessary and unnecessary prescriptions.
Additionally, the sheer volume of prescription data for any
state presents a computational challenge, especially when
transforming data into directed and attributed graphs.

To address these challenges, we extend the Non-
Parametric Heterogeneous Graph Scan (NPHGS), an algo-
rithm originally developed for event detection (Chen and
Neill 2014). Consistent with Chen and Neill’s approach, we
model the prescription data as a heterogeneous graph. Each
graph node represents either a prescriber or dispenser, con-
tains ten distinct “red flag” attributes, and includes edges to
nodes of the opposite type based on the volume of prescrip-
tions between the two providers. We then generate empirical
p-values to rank the anomalousness of each node and use a
nonparametric scan statistic to identify the most anomalous
connected subgraphs of opioid prescribers and dispensers in
the data. However, we extend Chen and Neill’s original work

in two crucial ways: 1) we integrate high-performing point-
based anomaly detection algorithms into the process of rank-
ing each node, and 2) we reduce the graph’s density in or-
der to find more meaningful patterns in the data. We subse-
quently describe the detected clusters, both in aggregate as
well as through two in-depth case studies that visually and
qualitatively illustrate the utility of this approach.

The main contributions of our paper are as follows:

• Novel application of PDMP data to improve opioid-
related public health outcomes. To our knowledge, this
is the first work to address opioid abuse and addiction
by focusing on anomalous patterns among both opioid
prescribers and dispensers in prescription drug data.

• Novel representation and analysis of PDMP data as
a heterogeneous graph. To our knowledge, this is the
first work that takes a network-based approach to ad-
dressing opioid abuse and addiction by transforming pre-
scription drug data into a heterogeneous, directed and at-
tributed graph, which enables the use of nonparametric
scan statistics for scalable anomaly detection.

• Flexible and modular integration of anomaly detec-
tion into NPHGS. We extend Chen and Neill’s original
work by incorporating a flexible mechanism to gener-
ate the first stage of empirical p-values for nodes in the
graph. Rather than use a single method to generate empir-
ical p-values, we test a variety of distinct anomaly detec-
tion methods, and demonstrate improved detection per-
formance as compared to the original NPHGS approach.

• Generating sparser graphs with more meaningful
connections. We implement a threshold for directed
edges among nodes in the graph, based on a parameter
of the nonparametric scan. This reduces the density of
the graph by eliminating weaker connections, enabling
NPHGS to detect more meaningful relationships in the
data.

• Comprehensive evaluation of proposed techniques.
We compare our technique to three competing meth-
ods, including two well-known graph-based anomaly de-
tection algorithms. Our results show that our proposed
technique produces clusters that are significantly more
anomalous than those generated by existing methods.

• Development of case studies from select subgraphs.
We generate case studies that visually and qualitatively
illustrate the utility of our approach, and serve as a model
for how our findings could be effectively presented to and
within state regulatory and law enforcement agencies.

Related Work
While anomaly detection methods have uncovered illicit be-
havior across a wide range of problem domains, includ-
ing money laundering, identity theft, and cyberattacks, only
one published study has applied these techniques to detect-
ing anomalous patterns of opioid prescriptions. Hu et al.
(2015) proposed a framework to identify anomalous behav-
ior among 8,000 Australian patients who were dispensed
fentanyl patches, and created three probabilistic models to
rank patients’ degree of anomalousness based on variables
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including age, gender, number of prescribers, and days be-
tween prescriptions. An unpublished paper by Bertsimas,
Fazel-Zarandi, and Ivanhoe (2020) proposed supervised, un-
supervised, and semi-supervised methods for detecting sus-
picious patterns of oxycodone and hydrocodone shipments
to pharmacies across the U.S. However, neither of these pa-
pers examine the problem from a network perspective.

Chen and Neill (2014) originally proposed the Non-
Parametric Heterogeneous Graph Scan (NPHGS), a non-
parametric graph-based algorithm which we extend and ap-
ply here, for detecting events on social media. They found
that NPHGS could accurately forecast civil unrest events
and achieve early detection of rare disease outbreaks, sub-
stantially outperforming competing methods in both cases,
but did not consider applications to the opioid crisis.

Data
Our dataset consists of ∼15 million prescriptions for con-
trolled substances dispensed in the state of Kansas between
2014-2015. The data was provided by the Kansas Board
of Pharmacy, which oversees K-TRACS, the state’s pre-
scription drug monitoring program first established by law
in 2008. K-TRACS became operational in 2011, and re-
quires all Kansas-based pharmacies to report their dispens-
ing of controlled substances (Kansas State Board of Phar-
macy 2020).

Each record contains detailed information about the pre-
scription itself, including the dates it was written and filled,
the number of days’ supply, the brand and generic names
of the drug as well as its National Drug Code (NDC) num-
ber, the form of the drug (e.g., tablet, vial), the quantity
of units dispensed, the dosage (quantified in morphine mil-
ligram equivalent units, or MME, per day), and the method
of payment (e.g., cash, insurance, Medicaid). The record ad-
ditionally indicates if the drug was categorized as an opi-
oid, benzodiazepine, muscle relaxant, or stimulant, if it had
short- or long-acting effects, and if the prescription was new
or a refill. Each record also includes anonymized identifiers
for each patient, prescriber, and dispenser, which allowed us
to aggregate prescriptions for a given individual or group of
individuals. Additionally, zip code, city, and state are listed
for each patient, prescriber, and dispenser in the data.

Methods
We developed a novel extension of NPHGS to discover
subgraphs of opioid prescribers and dispensers that were
anomalous along multiple dimensions, as described below.

Data Preprocessing
To more accurately capture temporal trends, we split the
two years of data provided by K-TRACS into eight quar-
ters. We excluded prescriptions for which neither the patient
nor dispenser was located in Kansas. For patients with miss-
ing geographical information, we assumed that they resided
in the state of Kansas. We used the centroid of each zip
code to calculate the approximate distances between pa-
tients, providers, and dispensers, since this was the most
precise location information contained in the data. Due to

Aggregation
Level Node Attribute

Patient Average # of prescribers
Patient Average # of dispensers
Patient 90-day MME patient average
Patient 90-day MME patient maximum
Patient % patients w/ opioid + benzodiazepine
Patient # of prescribers 200+ miles away

Prescription % of prescriptions paid in cash
Prescription % of opioid prescriptions paid in cash
Prescription % of opioid prescriptions
Prescription % of opioid prescriptions >90 MME/day

Table 1: Attributes of prescriber and dispenser nodes.

its antagonist properties, we did not consider buprenorphine
as an opioid, but simply treated it as a non-opioid prescrip-
tion. We also created 90-day MME trajectories for each pa-
tient. MME trajectories were calculated by aggregating all
prescriptions for each patient across the 90-day period, then
calculating the total MME—potentially including multiple,
overlapping prescriptions-–they were prescribed each day.
These trajectories enabled us to create two new features for
each patient: the maximum MME found in their trajectory
within the 90 days, and the average MME they were pre-
scribed per day.

Data Representation

We modeled the data from each quarter as a heterogeneous
graph with both prescriber and dispenser nodes. As indicated
in Table 1, each node contained a variety of prescription- and
patient-level attributes, for a total of ten attributes per node.
The attributes were partially based on the “red-flag” pat-
terns of opioid misuse, abuse, and diversion that have been
widely identified in public health literature. For example,
paying for prescriptions with cash, visiting prescribers far
from the patient’s home, and obtaining prescriptions from
multiple prescribers and dispensers are all frequently cited
suspicious behaviors (Cepeda et al. 2013). Two additional
attributes, the 90-day MME maximum and average per pa-
tient, are grounded in the fact that higher opioid dosages
are associated with more high-risk and illicit activity (Dow-
ell, Haegerich, and Chou 2016). Other attributes were cre-
ated because they represented a direct contradiction of estab-
lished medical guidance. For instance, the Centers for Dis-
ease Control (CDC) strongly advises medical professionals
against prescribing opioids above 90 MME or prescribing
a patient opioids and benzodiazepines concurrently (Fuiden
2017).

Nodes were connected to each other through directed
edges. Edges only connected two nodes of different types
(e.g., one prescriber and one dispenser), and contained one
attribute: the number of prescriptions shared by both nodes,
relative to all prescriptions associated with each node indi-
vidually. To be included as an edge, this proportion needed
to reach a given threshold, which will be discussed below.
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NPHGS Background
NPHGS models a heterogeneous graph as a “sensor net-
work,” in which each entity senses its local “neighborhood”
and reports an empirical p-value measuring its degree of
anomalousness (Chen and Neill 2014). Mathematically, for
every node in the graph, this entails a two-stage empirical
calibration process. First, each attribute d for each node v is
assigned an empirical p-value, defined as:

pd(v) =
1

T

∑
t=1...T

1{fd(v(t)) ≥ fd(v)},

where fd(v) refers to the d-th component of the feature vec-
tor f(v), and {v(t)}t=1...T is the reference set for node v.
Here the reference set includes all other nodes of the same
type (prescriber or dispenser). Thus pd(v) can be interpreted
as the proportion of observations in the reference distribu-
tion that meet or exceed the value of attribute d for node v.

In the second stage, NPHGS identifies the minimum p-
value for each node, and re-calibrates these values as fol-
lows:

p(v) =
1

T

∑
t=1...T

1

{
min
d

pd(v
(t)) ≤ min

d
pd(v)

}
.

For a given node v, p(v) can be interpreted as the pro-
portion of nodes in the reference distribution with lowest p-
values at least as significant as its lowest p-value.

As Chen and Neill note, this two-stage empirical cal-
ibration process offers several benefits for heterogeneous
graphs: it calibrates all node types so that each p(v) is uni-
formly distributed on [0,1] under the null hypothesis that
node v and its reference set are exchangeable, allows for the
consideration of multiple attributes for a single node, and
accounts for correlations between the first-stage empirical
values and the overall empirical p-value of the node through
the second step of the calibration process.

Once the node-level p-values are obtained, NPHGS uses
a nonparametric scan statistic to identify subgraphs with a
surprisingly high concentration of low p-values. The general
form of this nonparametric scan statistic is defined as:

F (S) = max
α

Fα(S) = max
α

ϕ(α,Nα(S), N(S)),

where S ⊆ V refers to a subgraph of connected nodes,
Nα(S) is the number of p-values in S that are significant
at level α, and N(S) is the total number of p-values in S.
The score F (S) is maximized over all connected subgraphs
S using a greedy subgraph expansion search. Rather than
using a fixed significance level, α is optimized between 0
and some constant αmax < 1, giving NPHGS high detec-
tion power for signals consisting of either a small number of
extremely significant p-values or a larger number of moder-
ately significant p-values. Chen and Neill use αmax = 0.15.

The function ϕ compares the observed number of p-values
Nα(S) that are significant at level α to the expected number
of p-values αN(S) that are significant at level α, given the
null hypothesis that p-values are uniformly distributed over
[0,1]. The nonparametric scan statistic used by NPHGS is
the Berk-Jones statistic (Berk and Jones 1979), defined as

ϕBJ(α,Nα, N) = N ×KL

(
Nα

N
,α

)
,

where KL refers to the Kullback-Liebler divergence be-
tween the expected and observed numbers of p-values less
than α,

KL(a, b) = a log
a

b
+ (1− a) log

1− a

1− b
.

The Berk-Jones statistic can be interpreted as the log-
likelihood ratio statistic for testing if the empirical p-values
in the subgraph follow a uniform distribution.

NPHGS Extensions
In this paper, we propose two novel extensions to the
NPHGS framework, with the goal of improving the
method’s effectiveness, flexibility, and computational effi-
ciency. First, instead of setting a single value for αmax, we
maximize F (S) over four different αmax thresholds: 0.01,
0.05, 0.10, and 0.15. As in Chen and Neill (2014), for each
αmax value, the significance level α is determined by max-
imizing Fα(S) over all α values between 0 and αmax. Note
that a different graph is created for each distinct αmax value;
otherwise, this modification would be unnecessary, since
it would be equivalent to running NPHGS for the single
largest αmax value. This extension allows for greater flex-
ibility when searching for the most surprising concentration
of low (significant) observed p-values among a set of con-
nected nodes.

For a given αmax ∈ {0.01, 0.05, 0.1, 0.15}, we use the
αmax value as the minimum threshold proportion for cre-
ating a directed edge between nodes. For example, with
αmax set to 0.05, an edge from a prescriber to a dispenser
would be included only if 5% or more of the prescriber’s
total prescriptions went to that dispensary. Thus the larger
the value of αmax, the higher the proportion of prescriptions
needed to surpass the minimum threshold, which results in
sparser graphs. This extension reduces the density of the
graph by eliminating weaker connections, so that NPHGS
identifies more meaningful patterns in the data. In partic-
ular, Wang, Neill, and Chen (2022) show that, for highly
connected graph structures and large values of the signifi-
cance threshold α, the nonparametric scan may incorrectly
find a large, high-scoring connected subgraph that includes
almost all of the significant nodes in the graph even under
the null hypothesis H0 that all nodes’ empirical p-values
are uniformly distributed on [0,1]. This reduces both detec-
tion power and precision unless the scan is recalibrated us-
ing a computationally intensive approach. However, apply-
ing recent results in percolation theory (Krivelevich 2016),
we show in the Technical Appendix that using αmax as the
threshold for including an edge guarantees that the graph is
sufficiently sparse so that this undesirable result does not oc-
cur. Additional theoretical and empirical justification for the
use of αmax is provided as well.

Our second novel extension introduces a flexible mecha-
nism to generate the empirical p-values p(v) for each node in
the graph. Instead of relying upon a single, fixed method to
compute the anomalousness of each node, we recognize that
the most appropriate method may differ based on the unique
characteristics of the dataset and problem domain. We there-
fore separate the method that evaluates each node’s degree
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of anomalousness from the process of generating empirical
p-values. In practice, this separation enables a user to rank
nodes using different anomaly detection techniques, gener-
ating different respective sets of empirical p-values, and then
choose an appropriate method.

In this paper, we test six different methods to generate
empirical p-values for each node. The first method (“first
min”) follows the original NPHGS framework, in which
an empirical p-value is calculated for every attribute of the
node, and the minimum attribute p-value is selected and re-
calibrated. The second and third methods we test (“second
min” and “third min”) follow the same two-stage calibration
process, but with one modification: instead of selecting the
node’s attribute with the lowest p-value in the first stage,
the second- or third-lowest attribute p-value, respectively,
is selected and re-calibrated. We hypothesize that using the
second- or third-lowest p-value may yield a subgraph with
nodes that are anomalous across multiple attributes, rather
than just one. For the remaining three methods, we use a sep-
arate, point-based anomaly detection algorithm in the first
stage to generate outlier scores for each node. Based on the
outlier score o(v), with lower scores reflecting more anoma-
lous nodes, we generate empirical p-values for each node by
re-calibrating the outlier scores:

p(v) =
1

T

∑
t=1...T

1{o(v(t)) ≤ o(v)}.

We selected three well-known anomaly detection algo-
rithms to generate outlier scores in the first stage: Local
Outlier Factor (LOF) (Breunig et al. 2000), One-Class Sup-
port Vector Machines (OCSVM) (Schölkopf et al. 1999),
and Isolation Forests (IF) (Liu, Ting, and Zhou 2008). These
were implemented using the open-source sklearn package.

For each of the six methods, we selected the top five pre-
scribers and five dispensers with the lowest node-level p-
values as seed nodes. Starting with these nodes, we imple-
mented NPHGS over the four αmax values for each quarter.

Experiments
To evaluate the six methods used to generate empirical p-
values for NPGHS, and to compare NPHGS to competing
methods in the literature, we implemented five-fold cross
validation on the data. For each split, the training set (com-
prising 80% of the data) was used to implement NPHGS and
competing methods, and to generate the resulting anomalous
clusters. The testing set (comprising 20% of the data) was
used to identify patients that were associated with the pre-
scribers and dispensers from the detected clusters. The pa-
tients identified from all five testing sets were combined, and
the resulting patient populations were compared for each of
the six node-level p-value selection methods, the three com-
peting methods described below, and the “baseline” popula-
tion of all patients contained in the data for that quarter.

Competing Methods
To evaluate the performance of NPHGS relative to other
methods, we applied three different graph-based anomaly
detection algorithms to the data: 1) the SUBDUE algorithm,

2) spectral clustering, and 3) ranked pairs of prescribers and
dispensers. For each method, we implemented the same five-
fold cross-validation approach as discussed above, and com-
pared the resulting patient populations identified in the test-
ing data. The methodology and our specific implementation
of each algorithm is discussed briefly below.

The SUBDUE algorithm uses the minimum description
length (MDL) principle to identify patterns that minimize
the description length of a directed graph (Eberle and Holder
2007). SUBDUE is a well-known method for graph-based
anomaly detection, having been successfully applied to
many problem domains including counter-terrorism, net-
work communications, earthquakes, aviation safety, and
biomedicine (Holder 2021). We implemented SUBDUE on
our data by executing its publicly available source code. Due
to computational challenges with the algorithm, it was nec-
essary to reduce the number of edges in our graph prior to
implementation. We converted the directed graph to an undi-
rected graph, and only added edges between nodes if they
represented more than 1% of each node’s total prescriptions.

Spectral clustering is a popular clustering method that is
found in the scikit-learn library and can be applied to graph-
based anomaly detection problems. The method requires
users to specify the number of clusters, which we set to 100
after testing a range of values. Similar to NPHGS, we cal-
culated scores for each cluster using the Berk-Jones statistic
and an αmax value of 0.01. The top-scoring clusters were
iteratively selected based on a threshold that matched the
number of patients selected in the testing data for NPHGS
for that quarter and fold, so that similar numbers of patients
could be compared.

In our third comparison algorithm, we simply paired sets
of prescribers and dispensers that were associated with at
least nine prescriptions each (roughly one prescription per
week) and determined the average MME per patient for the
pair’s shared prescriptions. The prescriber-dispenser pairs
were then ranked in descending order, and a threshold was
chosen as for spectral clustering above.

Results
As shown in Table 2, the original NPHGS method–using
the first minimum p-value–is outperformed by at least one
other method in every single attribute. In a few categories,
such as average and maximum patient MME, it ranks only
above LOF. In contrast, NPHGS using Isolation Forests sig-
nificantly outperforms the other variants, identifying clusters
with the most anomalous values for 7 attributes. We there-
fore opted to use Isolation Forests as the first stage before
generating node-level p-values, both for comparing the per-
formance of NPHGS to other graph-based methods, and for
implementing NPHGS on the full data for our case studies.

Table 3 compares NPHGS to the three competing meth-
ods. We observe that NPHGS identifies clusters with more
anomalous values for all attributes used to compare the pa-
tient populations (using the held-out test sets). For some
metrics, including the MME patient average and maximum,
the percentage of prescriptions paid for in cash, and the per-
centage of patients with concurrent opioid and benzo pre-
scriptions, the discovered clusters for NPHGS have values
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p-value 1st 2nd 3rd OC
method min min min LOF SVM IF

# prescribers 1.65 1.60 1.73 1.54 1.81 1.84
# dispensers 1.44 1.42 1.47 1.40 1.46 1.51
MME avg 56 71 85 39 76 91
MME max 159 202 234 132 228 255

% opi. benzo 0.27 0.27 0.37 0.19 0.38 0.41
% Rx cash 0.47 0.54 0.35 0.18 0.35 0.39
% opi. cash 0.39 0.46 0.33 0.18 0.33 0.37
% opi. Rx 0.62 0.55 0.65 0.64 0.65 0.65

% 90+ MME 0.29 0.35 0.37 0.24 0.35 0.39

Table 2: Comparison of detected subgraphs (patient popula-
tions) among p-value selection methods for NPHGS.

detection base SUB- Spec. Paired
method line NPHGS DUE Clust. MME

# prescribers 1.27 1.87 1.41 1.54 1.53
# dispensers 1.14 1.51 1.32 1.30 1.32
MME avg 19 94 21 26 49
MME max 68 261 72 89 134

% opi. benzo 0.11 0.43 0.14 0.16 0.23
% Rx cash 0.09 0.41 0.22 0.10 0.07
% opi. cash 0.10 0.39 0.26 0.10 0.07
% opi. Rx 0.52 0.66 0.57 0.56 0.62

% 90+ MME 0.14 0.39 0.09 0.17 0.25

Table 3: Comparison of detected subgraphs (patient popula-
tions) between NPHGS and competing methods.

that exceed the competing methods by double or more. It is
particularly notable that NPHGS outperforms SUBDUE, a
well-known method for graph-based anomaly detection that
has been successfully applied to multiple problem domains.

Case Studies
Following our evaluation study, we implemented NPHGS
(with Isolation Forests) on the full dataset for each of the
eight quarters of data. Of the 80 seed nodes (10 seed nodes
per quarter), 41 expanded to include one or more neighbors.
Of the clusters that expanded, there were 30 unique combi-
nations of nodes; several clusters appeared more than once
throughout the eight quarters of data. The clusters consisted
of 82 distinct nodes, with 64 nodes belonging to prescribers
and 18 nodes belonging to dispensers. 49 of the 82 nodes
(60%) appeared in more than one cluster. The clusters had
an average edge density of 0.82. We will discuss two of the
detected clusters in detail as case studies below.

The cluster corresponding to Case Study A first appeared
in the third quarter of 2014, and consists of four prescribers
and two dispensers. The prescribers and dispensers in this
cluster share a total of 498 prescriptions and 101 patients.
In the visualization of this cluster, shown in Figure 1, the
black and white circles indicate prescriber and dispenser
nodes respectively. For this visualization, nodes are con-
nected by edges if the providers have at least one patient in
common, with numbers on each edge representing the num-
ber of shared patients.

As shown in Table 4, the four prescribers individually
demonstrate extremely high-risk prescribing behavior, with

Figure 1: Visualization of prescribers (black nodes) and dis-
pensers (white nodes) for Case Study A.

Max MME Avg MME % Rx % Rx
per patient per patient cash opioid

Baseline 68 19 9% 51%
Node P1 323 86 65% 65%
Node P2 390 103 21% 77%
Node P3 210 76 96% 80%
Node P4 151 61 94% 73%

Table 4: Notable attributes of the four prescriber nodes for
the detected cluster in Case Study A, for prescriptions filled
at the two dispensaries shown in Figure 1.

MME dosages that are 2-4x the average, and up to 10x
more prescriptions paid for in cash than the general pop-
ulation. The two dispensers show similar patterns of indi-
vidually high-risk behavior, as they both filled prescriptions
with roughly double the typical MME dosage and had 99%
of prescriptions paid for in cash. Additionally, the two dis-
pensers are not located near the four prescribers, three of
whom share a zip code; they are not even located in the state
of Kansas. One of the dispensaries is based in Boulder, Col-
orado; the other is in suburban New Jersey.

Because the providers in this cluster are prescribing and
dispensing high dosages of opioids, we must also consider
the possibility that they are providing inpatient or oncology
care rather than engaging in high-risk prescribing behaviors.
For this cluster, however, the possibility is extremely un-
likely. Prescribers and dispensers that provide inpatient care
generally share the same identifier (associated with the given
hospital), and all six providers in this cluster have distinct
identifiers; we can also assume that prescribers providing in-
patient care would not order prescriptions out of state. Fur-
ther, we can assume that none of the prescribers specialize in
oncology or hospice treatment, as they all prescribe a wide
range of controlled substances, including benzodiazepines
(e.g., Valium, Xanax), sleep medication, and amphetamines.

While the behavior of each provider in the cluster can
be considered individually anomalous, a closer examina-
tion uncovers strong connections between the six providers.
100% of all Kansas prescriptions filled by the cluster’s two
dispensaries come from the four prescribers in the cluster.
Likewise, the four prescribers direct 19%, 50%, 95%, and
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Figure 2: Visualization of prescribers (black nodes) and dis-
pensers (white nodes) for Case Study B.

96% of prescriptions toward the cluster’s dispensaries, re-
spectively. The prescribers also demonstrate potential coor-
dination in terms of their choice of dispenser. During the
first two months of the quarter (July and August), all four
prescribers sent their prescriptions to only one of the dis-
pensaries, Pharmacy A. However, on September 3, 2014,
prescriptions from all four prescribers suddenly started to
be filled at the other dispensary in the cluster, Pharmacy B.

Given the individually anomalous behavior of each
provider, the strong connections between them, and the com-
bined impact of their behavior (498 prescriptions dispensed
in three months), this cluster would be of strong interest
to state law enforcement and regulatory agencies. Yet with-
out a network-based approach, the providers in this cluster
would not necessarily be detected. Currently, the most com-
mon approach taken by state agencies to detect potentially
illicit behavior is to pick a specific suspicious behavior and
investigate the top handful of offenders. In this case, if state
agencies were to examine the top prescribers for the ten “red
flag” attributes examined in this work, none of the four pre-
scribers would show up in the top 10. For eight of the ten
attributes, none of the four prescribers would even show up
in the top 100. However, if the prescriptions of the four pre-
scribers in this cluster were combined and examined as a
single entity, that entity would score in the 95th percentile or
higher for seven of the ten “red flag” attributes. This demon-
strates the power of the network-based approach to identify
patterns of anomalous prescribing behavior that may not be
obvious from any single prescriber.

This cluster only appears once in the dataset, but the pat-
tern reappears in the 2nd, 3rd, and 4th quarters of 2015.
Although the prescriber and dispenser nodes have different
identifiers in these clusters, they share 70-74% of the same
patients, and are located in the same zip codes as the original
cluster. It is a strength of NPHGS that it is able to identify
highly anomalous connected networks even when the indi-
vidual actors may have attempted to create new identities.

Case Study B, shown in Figure 2, consists of three pre-
scribers and one dispensary, and appeared in the first quarter
of 2015. The prescribers and dispensers in this cluster share
a total of 2,063 prescriptions and 363 patients. The cluster
has a density of 1, indicating that all nodes have at least one
patient in common. Both the prescribers and dispenser ex-
hibit individually high-risk behavior. Specifically, as shown

Max MME Avg MME % Rx opioid
per patient per patient cash + benzo

Baseline 68 19 9% 11%
Node P1 221 34 100% 63%
Node P2 170 30 100% 25%
Node P3 138 62 100% 55%

Table 5: Notable attributes of the three prescriber nodes for
the detected cluster in Case Study B, for prescriptions filled
at the dispensary shown in Figure 2.

in Table 5, 100% of prescriptions in the cluster were paid
for in cash (compared to 9% overall), and the percentage of
patients with concurrent opioid and benzo prescriptions was
2-6x higher than that of the general population. The MME
patient maximum for both the prescribers and the dispenser
was also more than double that of the general population.
Additionally, the prescribers and dispenser were highly in-
terconnected: 80% of all prescriptions filled by the dispenser
were filled by prescribers in the cluster, and the prescribers
sent 90% of their collective prescriptions to the dispensary.

Discussion
This project presented a novel approach to an under-
explored question in the prescription drug literature: how to
identify high-risk and potentially illicit patterns of behavior
among opioid prescribers and dispensers. Rather than iden-
tifying individually anomalous providers, we modeled the
prescription data as a directed graph consisting of both pre-
scriber and dispenser nodes, and used a non-parametric scan
statistic to detect connected networks of opioid prescribers
and dispensers engaging in high-risk patterns of behavior. To
our knowledge, this is the first work to approach the prob-
lem of monitoring prescribers and dispensers from a hetero-
geneous graph perspective. We showed that NPHGS signif-
icantly outperformed competing graph-based methods, in-
cluding a well-known anomaly detection algorithm that has
been successfully applied to many domains. As case studies
for the potential utility of the method, we described two clus-
ters generated by NPHGS, providing both qualitative con-
text and quantitative data about each cluster.

Methodologically, the project extended NPHGS in two
important ways: a method to integrate anomaly detection
algorithms into the two-stage empirical p-value calibration
process, which generated more effective node-level p-value
scores, and a method to reduce the density of the graphs
by instituting a minimum threshold for inclusion of graph
edges. Reducing the density of the graph enabled NPHGS to
find more meaningful patterns in the data during the iterative
graph expansion. These two extensions create opportunities
for more flexibility and customization when implementing
NPHGS on different types and volumes of data.

Our future work will apply this approach to more states’
data, to ensure that the results from Kansas are generalizable
to other states. We also plan to develop an open-source tool
that could simplify implementation and accelerate adoption
of NPHGS for public health and regulatory agencies.
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