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Abstract

Making fair decisions is crucial to ethically implementing
machine learning algorithms in social settings. In this work,
we consider the celebrated definition of counterfactual fair-
ness. We begin by showing that an algorithm which satis-
fies counterfactual fairness also satisfies demographic par-
ity, a far simpler fairness constraint. Similarly, we show that
all algorithms satisfying demographic parity can be trivially
modified to satisfy counterfactual fairness. Together, our re-
sults indicate that counterfactual fairness is basically equiva-
lent to demographic parity, which has important implications
for the growing body of work on counterfactual fairness. We
validate our theoretical findings empirically, analyzing three
existing algorithms for counterfactual fairness against three
simple benchmarks. We find that two simple benchmark algo-
rithms outperform all three existing algorithms—in terms of
fairness, accuracy, and efficiency—on several data sets. Our
analysis leads us to formalize a concrete fairness goal: to pre-
serve the order of individuals within protected groups. We
believe transparent ordering of individuals within protected
groups makes fair algorithms more trustworthy. By design,
the two simple benchmark algorithms satisfy this goal while
the existing algorithms for counterfactual fairness do not.

Introduction
A pressing challenge in the deployment of algorithms in so-
cial settings is the risk of “unfair” decisions with respect
to protected attributes like race, gender, religion, sexual-
orientation, or age. In this work, we consider the supervised
learning problem of predicting outcomes from labelled ob-
servations where the existing outcomes are already biased.
The observations consist of protected attributes and other
remaining attributes like test scores, grade point averages,
credit scores, health risks, and more context dependent vari-
ables. The goal is to “fairly” predict outcomes like student
success, credit worthiness, and health care needs.

One approach is to ignore the protected attributes and
train algorithms only on the remaining attributes i.e. “fair-
ness through blindness” (Dwork et al. 2012). However, there
could be variables like height or zip code which are prox-
ies for protected attributes (Pedreshi, Ruggieri, and Turini

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

†Authors contributed equally.

Undergraduate 
GPA

LSAT ScoreLaw School 
GPA

Knowledge

Race Gender

Figure 1: A causal model in a law school context. Directed
edges between a source and a target denote a causal relation-
ship in the sense that changing the value of the source (prob-
abilistically) changes the value of the target. In this con-
text, counterfactual fairness tries to make decisions based
on knowledge (which cannot directly be measured) without
biases from race or gender.

2008; Corbett-Davies and Goel 2018). Even in the absence
of these proxy variables, seemingly reasonable remaining
predictive attributes like study time or prior health care can
still depend on protected attributes. A natural consequen-
tialist approach in the face of concerns over group equity is
demographic parity, which ensures an identical distribution
over the outcomes for each protected group. However, de-
mographic parity has been critiqued because it can allow for
blatantly unfair choices to individuals (Dwork et al. 2012;
Corbett-Davies and Goel 2018).

Counterfactual fairness offers a solution by advocating
for a causal perspective, which provides statistical tools to
help us minimize the direct effects of protected attributes
on decisions (Kusner et al. 2017; Nilforoshan et al. 2022),
and comports with a Rawlsian perspective of moral philos-
ophy (Rawls 2004). It follows a surge of papers over the
past decade that borrow intuition from moral philosophy to
formally define what makes an algorithm fair (Dwork et al.
2012; Feldman et al. 2015; Hardt, Price, and Srebro 2016;
Mitchell et al. 2021). Drawing from (Pearl et al. 2000)’s
work on causal models, (Kusner et al. 2017) imagine a coun-
terfactual world where only the protected attributes of obser-
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vations are changed. Then, an algorithm is counterfactually
fair if it makes the same predictions for a hypothetical coun-
terfactual version of an observation as it would for the real
version of the observation. This individual notion of fair-
ness promises to avoid the pitfalls of the group based fair-
ness measures we described earlier, though the relationship
between causality, counterfactuals and moral philosophy is
complicated (Kasirzadeh and Smart 2021).

Preliminaries and Notation
We follow notation laid out by (Kusner et al. 2017) for our
formal analysis. The variables are partitioned into A (the set
of protected attributes), U (the set of latent attributes), X
(the set of remaining variables), and Y (the outcomes).

Figure 2 shows a general causal model. Each variable is
generated (probabilistically) from a governing distribution.
The parameters of a variable’s distribution are fixed or de-
rived from the incoming edges in the causal model (or both).
For example, we may have a ∼ Binom(.3, 1), u ∼ N (0, 1),
and x ∼ Pois(au).

Figure 2: A general causal model consists of a directed
acyclic graph and governing equations for the (probabilis-
tic) generation of each variable.

A counterfactually fair algorithm uses U to predict Y
since every other attribute is influenced by the protected at-
tributes A. However, U cannot be measured directly. The
solution of counterfactual fairness is to model the joint dis-
tribution of each attribute in X induced by the values of A
and U . Then U is estimated by the posterior distribution on
instances of A and X .

Building a causal model requires domain expert knowl-
edge to establish both the direction of relationships between
attributes and the family of distributions (e.g., normal, Pois-
son, binomial, etc.) that generates the distribution of each
variable. Once a causal model is determined, it is compu-
tationally intensive to learn the parameters of each distribu-
tion and then to estimate the posterior distribution of each
attribute in U .

Fairness Definitions
In this section, we formalize the definitions of demographic
parity and counterfactual fairness. We use capital letters A,
X , U , and Y to refer to sets of random variables, and we
use lowercase letters a, x, u, and y to refer to realizations of
these random variables. Consider a predictor Ŷ : A × U ×
X → Y . If a predictor Ŷ does not use a particular set of
random variables then we omit that set. We use ŶA←a(u)
for some protected group a ∈ A to denote the prediction on
u where attributes in A are set to a.

Definition 1 (Demographic Parity (Calders, Kamiran, and
Pechenizkiy 2009; Zliobaite 2015; Zafar et al. 2015)). Given
a predictor Ŷ : X×A→ Y , we say Ŷ satisfies demographic
parity if, for all instances of protected attributes a and a′,

Pr(Ŷ (x, a) = y|A = a) = Pr(Ŷ (x, a′) = y|A = a′)

where the probability is taken over the conditional distribu-
tion of X and the possible randomness of Ŷ .
Definition 2 (Counterfactual Fairness (Kusner et al. 2017)).
Let A, U , X , and Y be sets of random variables in a given
causal model with specified distributions for each attribute.
Consider any protected group a′ ∈ A and any outcome y ∈
Y . Then a predictor Ŷ : U×A→ Y is counterfactually fair
if for all observations x ∈ X and a ∈ A,

Pr(ŶA←a(u) = y|X = x,A = a)

= Pr(ŶA←a′(u) = y|X = x,A = a)

where the probability is with respect to the posterior distri-
bution of u induced by fixed observations x and a.

Definition 2 states that it must be the case that the final
prediction of a counterfactually fair predictor ŶA←a(u) is
distributed like ŶA←a′(u) when a ̸= a′ and where the dis-
tribution of u is induced by observations of X and A.

Now we have established the two primary definitions
of fairness that we consider in our work. However, it is
worth noting that difficulties in defining algorithmic fair-
ness have led to many competing approaches. Furthermore,
formal results have demonstrated the incompatibility of ap-
plying some fairness definitions in conjunction with oth-
ers, which hints at irreconcilable philosophical groundings
and a need for formalizations for different policy settings
(Kleinberg, Mullainathan, and Raghavan 2016; Choulde-
chova 2016; Corbett-Davies and Goel 2018).
Our Contributions
Our work starts with a simple observation on the distribu-
tion of latent variables: by their definition, latent variables
must be independent of protected attributes for the model
to be counterfactually fair. A careful look at this statement
suggests a connection to demographic parity, which requires
that predictions must be independent of protected attributes.
A natural question is then:
Do algorithms that satisfy demographic parity also satisfy

counterfactual fairness?
But for an algorithm to even satisfy the definition of coun-
terfactual fairness, we need a causal model, latent variables,
and a way of estimating latent variables. Our first result an-
swers the question in the affirmative if we trivially construct
the necessary counterfactual fairness machinery.

The next natural question is whether the converse holds:
Do algorithms that satisfy counterfactual fairness also

satisfy demographic parity?
We answer this question in the affirmative, as well.1 To-

1After posting an early draft of this work, we were made aware
of a paper released several months before which independently
shows counterfactual fairness implies demographic parity (see sec-
tion 5.3 of (Fawkes, Evans, and Sejdinovic 2022)). We believe this
contemporary interest points to the importance of our work.
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gether, the two results suggest that counterfactual fairness
is basically demographic parity. This relationship is impor-
tant for the fairness community since counterfactual fair-
ness is often celebrated as a novel tool for fair decisions
while demographic parity is considered simple and flawed.
For example, in (Caton and Haas 2020), they note that
demographic parity is flawed because it does not account
for potential differences between groups, but do not men-
tion limitations of counterfactual fairness. Other influential
work takes a similar position (Gajane and Pechenizkiy 2017;
Corbett-Davies and Goel 2018; Coston et al. 2020).

We also analyze three existing algorithms for counterfac-
tual fairness in comparison to three benchmark algorithms.
The data set is based on the running law school example
and we corroborate our findings on two additional data sets
and causal models. Our analysis uses a relaxation of coun-
terfactual fairness and Kruskal-Wallis H tests (as one-sided
tests for independence). We find that two simple benchmark
algorithms outperform the existing algorithms in terms of
satisfying the requirements of counterfactual fairness, com-
putational efficiency, and accuracy.

We also introduce a notion of preserving group ordering.
Put simply, it requires that an individual who performs bet-
ter than another individual in the same protected group un-
der unfair labels must also perform better than that individ-
ual under fair labels. We believe that this definition is im-
portant for transparency and consistency, laying the founda-
tions for trust in fair algorithms. Why? Because inexplicable
decisions in purportedly “fair” decision making processes
can mask unforeseen technical bias (Abdollahi and Nasraoui
2018; Bhatt et al. 2020). Interestingly, we show that preserv-
ing group ordering can be mutually exclusive with counter-
factual fairness for certain causal models. Empirically, we
find the existing algorithms for counterfactual fairness have
remarkably unstable orderings while the simple benchmark
algorithms are consistent by design.

Outline We first show that all counterfactually fair predic-
tors satisfy demographic parity and all predictors satisfying
demographic parity can be trivially modified to satisfy coun-
terfactual fairness. We subsequently analyze six algorithms
(including those presented in (Kusner et al. 2017)) in the
context of the following two questions: (1) How do these al-
gorithms satisfy three special fairness constraints (counter-
factual fairness, demographic parity, and the independence
required for latent variables) while still maintaining reason-
ably accurate predictions? (2) How do these algorithms com-
pare on the predictions they make at the individual level?

We corroborate our empirical results on additional data
sets in the context of healthcare and loans. All our code and
results are available on a publicly accessible repository.2

Related Work
Since its introduction, counterfactual fairness has been
highly influential. Many recent works on equity in statistics
and machine learning directly use or modify only slightly
Definition 2 to enable training classifiers and other decision

2github.com/lurosenb/simplifying counterfactual fairness

making algorithms (Zhang and Bareinboim 2018; Chiappa
2019; Wu, Zhang, and Wu 2019; Coston et al. 2020; Black,
Yeom, and Fredrikson 2020; Mhasawade and Chunara 2021;
Chikahara et al. 2021; von Kügelgen et al. 2022). (Zhang
and Bareinboim 2018) create a procedure for identifying dis-
crimination and applying causal explanations, and then use
counterfactuals to design repairs while offering evaluations
of this system on a host of examples. (Wu, Zhang, and Wu
2019) and (Chiappa 2019) expand theoretical groundings for
counterfactual fairness, with the former improving on the
latent attribute identifiability by offering bounds and tech-
niques. Prior work also expands counterfactual fairness to
deal with between-group rankings (Yang, Loftus, and Stoy-
anovich 2020). Furthermore, task specific variations and im-
plementations of Definition 2 also exist for the medical do-
main (Pfohl et al. 2019), variational autoencoders in com-
puter vision (Kim et al. 2021), generative-adversarial net-
works (Xu et al. 2019), and even natural language process-
ing (Sarı, Hasegawa-Johnson, and Yoo 2021).

There are several existing concerns about counterfactual
fairness. Recent work by (Nilforoshan et al. 2022) present a
result that unites many causal notions of fairness, and further
cautions that a gap exists between the effects of these pop-
ular approaches on fairness and their consequences, high-
lighting both practical and mathematical limitations. With
particular relevance to our work, they show that when a pre-
dictor satisfying demographic parity and a causal model are
specified, the predictor does not necessarily satisfy coun-
terfactual fairness (see Theorem 2). In contrast, our work
considers the setting where we are only given a predictor
satisfying demographic parity (not a causal model) and can
build a causal model of our choice. In (Kasirzadeh and Smart
2021), the authors conclude that counterfactual fairness may
require what they deem to be an “incoherent theory” of so-
cial categories, i.e., some social categories may not admit
counterfactual manipulation. In (Kilbertus et al. 2020), they
examine the sensitivity of counterfactual fairness to “unmea-
sured confounding.” This is when a true causal effect be-
tween variables can be at least partially described by a non-
zero correlation between two of the ϵ-“error” variables cal-
culated during one possible counterfactual fairness process,
which can affect the independence guarantee from A. We
present our work as an addition to the existing set of papers
describing the limitations of counterfactual fairness.

Better understanding the theoretical and practical consis-
tency of algorithmic fairness has real social impact. As fair-
ness is operationalized through open source libraries like
Fairlearn (Bird et al. 2020) and AIF360 (Bellamy et al.
2019), work that furthers our understanding of fair model
guarantees becomes increasingly important.

Demographic Parity Is Counterfactual
Fairness

Our results start with a simple observation about the defi-
nition of latent variables. In the original counterfactual fair-
ness paper, the authors define latent variables U so that “U
is a set of latent background variables, which are factors not
caused by any variable in the set V [= A ∪ X] of observ-
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able variables” where A is the set of protected attributes and
X is the set of remaining variables (Kusner et al. 2017). In
other words, there are no incoming edges to U in the causal
model. This means that instances of latent variables are gen-
erated from a fixed set of parameters (that do not depend on
protected attributes). In addition, while not explicitly stated
in the definition, all causal models we are aware of also do
not have any incoming edges to A. This means that instances
of protected attributes are generated from a fixed set of pa-
rameters (that do not depend on latent variables). Together,
these observations imply the following:

Criteria 3. Latent variables are independent of protected
attributes.

This criteria is key to understanding practical applications
of counterfactual fairness. Counterfactual fairness attempts
to explain behavior from protected attributes and latent vari-
ables. The protected attributes hold information on features
outside of individuals’ control which would very often be
unfair to base decisions on while the latent variables con-
tain information on features within an individual’s control
which are fair to base decisions on. From this perspective,
it is clear that latent variables must be independent of pro-
tected attributes. Otherwise, this would imply that the inher-
ent ‘worthiness’ of latent variables would problematically
depend on protected attributes like race, gender, and age.

With Criteria 3 in hand, we show that any predictor
which satisfies demographic parity also satisfies counterfac-
tual fairness after a trivial modification.

Note that a predictor which satisfies counterfactual fair-
ness must have an internal method of estimating latent
variables and a causal model. So to say that a predictor
which satisfies demographic parity also satisfies counterfac-
tual fairness, we must introduce such a method and causal
model. We do so in the proof of the first theorem in a trivial
way.

Theorem 4. Any predictor Ŷ ′ : X × A → Y that satisfies
demographic parity can be modified into a method for esti-
mating latent variables and a predictor Ŷ : U × A → Y
that is counterfactually fair.

Proof. Our estimate of the latent variables u, given pro-
tected attributes a and remaining attributes x, is u =

Ŷ ′(x, a). Then the predictor Ŷ : U×A→ Y is given by the
identity function ŶA←a(u) = u. Because Ŷ ′ satisfies demo-
graphic parity, we know Pr(u|a) = Pr(u|a′) for a, a′ ∈ A.
That is, latent variables are independent of protected at-
tributes which meets Criteria 3. Further, Ŷ satisfies coun-
terfactual fairness because ŶA←a(u) = u = ŶA←a′(u).

The next theorem proves the converse of Theorem 4;
namely, any counterfactually fair predictor also satisfies de-
mographic parity.

Theorem 5. Consider a method for estimating latent vari-
ables and a counterfactually fair predictor Ŷ : U×X → Y .
Then the resulting predictor Ŷ ′ : X × A → Y satisfies de-
mographic parity.

Proof. Since the predictor is counterfactually fair, we know

Pr(ŶA←a(u) = y|x, a) = Pr(ŶA←a′(u) = y|x, a) (1)

for all y ∈ Y where the realization of latent variables u ∈ U
is estimated from observations a ∈ A and x ∈ X . Taking a
weighted sum (if X contains continuous random variables,
an analogous statement holds via integration) of the right
side of Equation (1) yields∑

x∈X
Pr(x|a) Pr(ŶA←a(u) = y|x, a)

=
∑
x∈X

Pr(x, ŶA←a(u) = y|a)

= Pr(ŶA←a(u) = y|a) = Pr(ŶA←a(u) = y).

The first equality holds because Pr(x|a) Pr(y|x, a) =
Pr(x, y|a) for random events x, y, a. The last equality
holds by Criteria 3 and since the (possible) randomness of
ŶA←a(u) only comes from u and the assignment A ← a.
The final equality gets us close to demographic parity but
the predictions could still depend on the assignment. We re-
peat the same steps for the left side of Equation (1) and find
that

Pr(ŶA←a(u) = y) = Pr(ŶA←a′(u) = y).

This tells us that the distribution of predictions made by a
counterfactually fair algorithm are independent of protected
attributes. That is, demographic parity holds.

Note that the contrapositive of Theorem 5 gives us a sim-
ple way to test whether a predictor is counterfactually fair.

Algorithms for Counterfactual Fairness
In this section, we empirically analyze six algorithms in
the context of counterfactual fairness on the running law
school example. We compare them in terms of how well they
achieve demographic parity (Definition 1), counterfactual
fairness (Definition 2), and independence between protected
attributes and latent variables (Criteria 3). We also compare
the algorithms’ test accuracy and the resulting trade-offs be-
tween fairness and performance. Finally, we investigate how
predictions on individuals differ between the algorithms.

The Algorithms
The first three algorithms—referred to as “Levels 1, 2 and
3”—come from the original counterfactual fairness paper
(Kusner et al. 2017). The next two algorithms are simple
heuristics for demographic parity while the final algorithm
is a straightforward learner without fairness constraints.

For all the algorithms we analyze, we use a linear regres-
sion model, ℓ2-norm loss, and Adam optimizer for learning.
We describe the algorithms next.

Level 1 Since evaluating the relationships between vari-
ables in a causal model is computationally expensive, the
first level only uses the remaining variables that are indepen-
dent of protected attributes to learn the outcomes. In prac-
tice, scenarios where remaining variables are not at least
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Listing 1: Converting unfair predictions to fair predictions
when labels are normally distributed.
1 Input: n group identities ai ∈ A and

unfair labels ȳi for samples i ∈ [n]
2 Output: predictions ŷi that satisfy

demographic parity
3 µ← mean({ȳi : i ∈ [n]})
4 σ ← std({ȳi : i ∈ [n]})
5 for a in A do
6 µa ← mean({ȳi : ai = a})
7 σa ← std({ȳi : ai = a})
8 for i in {i : ai = a} do
9 ŷi = µ+ σ(ȳi − µa)/σa

Listing 2: Converting unfair predictions to fair predictions
under any distribution of labels.
1 Input: n group identities ai ∈ A and

unfair labels ȳi for samples i ∈ [n]
2 Output: predictions ŷi that satisfy

demographic parity
3 CDF ← empirical CDF of {yi : i ∈ [n]}
4 for a in A do
5 CDFa ← empirical CDF of {yi : ai = a}
6 for i in {i : ai = a}
7 ŷi ← CDF (CDF−1

a (ȳi))

partially conditioned on protected attributes are so rare as
to be virtually non-existent. Instead, we implement Level 1
by using all remaining variables (without any protected at-
tributes). This approach has been called “fairness through
unawareness” (Grgic-Hlaca et al. 2016) and fails to make
fair decisions because protected attributes are often redun-
dantly encoded (Pedreshi, Ruggieri, and Turini 2008).

Level 2 The second level uses the full power of causal
models, but suffers from expensive and intensive computa-
tions; it requires domain expertise to specify the joint distri-
butions over all variables for the causal model. Remaining
variables are distributed according to subsets of latent vari-
ables and protected attributes. By using the known protected
attributes, the remaining variables, and the causal model,
Level 2 estimates likely values of latent variables. Then only
the latent variables are used to learn a predictor over the set
of possible outcomes.

Level 3 The third level is a compromise between the sim-
plicity of Level 1 and complexity of Level 2. Level 3 uses
the relationships in the causal model to express the remain-
ing variables of each individual as a deterministic func-
tion of related protected attributes and a special explanation
term. The deterministic function is learned from protected
attributes to explain the remaining variable. Then the differ-
ence between the deterministic function and an individual’s
remaining variable is their explanation term. These explana-
tion terms are used to learn the outcomes.

The next two algorithms are simple heuristics for demo-
graphic parity.

Listing 1 The first listing assumes the distribution of out-
comes in every protected group is normally distributed. Then
we can achieve demographic parity by simply calculating

the normalized score of each individual within their pro-
tected group and converting it to the outcome distribution
of the full population.

Listing 2 The second listing drops the assumption on the
distribution of each protected group. Instead, Listing 2 es-
timates the cumulative density function (CDF) of each pro-
tected group and converts an individual’s relative position
within their group to the same position within the full popu-
lation.

Listing 1 is appropriate when the outcomes are normally
distributed while Listing 2 is appropriate in general but can-
not distinguish noise from signal in distributions.

Full Linear Model The final algorithm uses a linear
model on all protected attributes and remaining variables to
learn outcomes. We expect the full linear model to mimic the
unfair behavior of the underlying data but achieve the best
test accuracy.
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Figure 3: Density plots for the distributions over predictions
made by the six algorithms we consider. The root mean
squared error (rMSE) is given next to each title and in Ta-
ble 2. Groups 1, 2, 3, and 4 correspond to protected groups
over the Cartesian product of binary race and gender.

Measures of Fairness
We use several empirical tests to measure how well each of
the algorithms achieves different definitions of fairness.

We first define a relaxation of counterfactual fairness in-
troduced in (Russell et al. 2017).

Definition 6 ((ϵ, δ)-Approximate Counterfactual Fairness
(ACF)). A predictor Ŷ : X ×A→ Y satisfies (ϵ, δ)-ACF if

Pr(|ŶA←a(u)− ŶA←a′(u)| ≤ ϵ|x, a) ≥ 1− δ.
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Notice that calculating (ϵ, δ)-ACF requires an internal es-
timate of latent variables. The only algorithms that have a
nontrivial estimate of latent variables are Level 2 and Level
3. Since both Level 2 and Level 3 use only the latent vari-
ables in learning the outcomes, changing the protected at-
tribute has no effect and both algorithms are (0, 0)-ACF.

For testing demographic parity and whether latent vari-
ables are independent of protected attributes, we use the
Kruskal-Wallis H test (Kruskal and Wallis 1952).

Definition 7 (Kruskal-Wallis H Statistic). The H statistic is
given by (N − 1)

∑g
i=1 ni(r̄i−r̄)2∑g

i=1

∑ni
j=1(rij−r̄)2

where N is the total

number of observations, g is the number of groups, ni is the
number of observations in group i, rij is the rank (among
all observations) of observation j from group i, r̄i is the av-
erage rank of observations in group i, and r̄ is the average
rank of all observations.

Using the Kruskal-Wallis H statistic, we can calculate the
probability that every group comes from a distribution with
the same median. Since the latent variables are independent
of the protected attributes if and only if the distributions of
the protected groups are the same, a small probability from
the Kruskal-Wallis H test implies that the latent variables
and protected attributes are not independent. We also use
the test to determine whether an algorithm satisfies demo-
graphic parity. Note it is possible that all groups come from
distributions with the same median but that the distributions
are in fact different so the test has one-sided error.

We present our results of the Kruskal-Wallis H tests in
Table 1. The first three data rows tell us the probability that
Criteria 3 holds. It is very likely that the latent variables in
each protected group come from distributions with the same
median in Level 2, suggesting that Level 2 satisfies Crite-
ria 3 in addition to counterfactual fairness. In contrast, it is
unlikely (probability < .05) that the two latent variables in
Level 3 are independent of protected attributes, suggesting
that Level 3 does not satisfy Criteria 3. Note that Level 3
is an example of an algorithm that ostensibly satisfies coun-
terfactual fairness but the latent variables do not meet the
necessary condition of Criteria 3. We corroborate this find-
ing in Figure 3: Level 1 and Level 3 clearly do not satisfy
demographic parity because the latent variables are not in-
dependent of protected attributes.

The last six rows in Table 1 tell us whether each algo-
rithm satisfies demographic parity. As expected, Level 1 and
the Full Linear Model are remarkably unlikely to satisfy de-
mographic parity. In line with the results for latent variables,
we see that Level 3 also is unlikely to satisfy demographic
parity. Finally, Level 2 likely satisfies demographic parity.
This is to be expected since the assumptions of Theorem
5—namely, counterfactual fairness and Criteria 3—hold. Of
course, Listings 1 and 2 are very likely to satisfy demo-
graphic parity by design.

Table 2 gives the root mean squared error (rMSE) of every
algorithm we consider. As expected, the Full Model with-
out fairness constraints has the lowest error. Listing 1 and
Listing 2 also give relatively low error. In contrast, Level 2
has the highest error. So far, Level 2 simultaneously satisfies

Variable H Statistic p-value

Level 2 Latent Variable .347 .951
Level 3 Latent UGPA 10.8 .0126
Level 3 Latent LSAT 84.6 3.21× 10−18

Level 1 Predictions 221 9.81× 10−48

Level 2 Predictions .346 .951
Level 3 Predictions 69.3 5.97× 10−15

Listing 1 Predictions .165 .983
Listing 2 Predictions .035 .998
Full Predictions 829 2.53× 10−179

Table 1: Kruskal-Wallis H test results for different vari-
ables. The p-value indicates the likelihood of observing the
H statistic if the variable was distributed the same in every
group. Every number is reported to three significant figures.

Level 1

Level 2

Level 3

Listing 1

Listing 2

Full

Figure 4: We randomly sample 40 individuals from Group
1 (Black men) in the law school example and visualize how
the relative order of their predicted outcomes changes based
on the algorithm making predictions.

Def. 1, Def. 2, and Criteria 3 but this is at the expense of
accuracy.

Lvl 1 Lvl 2 Lvl 3 Lst 1 Lst 2 Full

.933 .936 .908 .919 .921 .881

Table 2: The root mean squared error (rMSE) for each algo-
rithm predicted to three significant figures.

Individual Predictions
We have seen how the algorithms we consider perform dif-
ferently in terms of three fairness measures. But how do the
algorithms differ on the actual outcomes for individuals?

Figure 4 visualizes the change in relative ordering of
predicted outcomes for 40 randomly chosen individuals in
Group 1 (Black men) in the law school example. Notably,
the relative ordering is constant between Listing 1, Listing
2, and the Full Linear Model, as expected. However, the rel-
ative ordering is highly unstable for Level 1, Level 2, and
Level 3. This suggests that while Level 2 and Level 3 achieve
counterfactual fairness, they do so in dramatically different
ways. One explanation is that Level 2 satisfies Criteria 3
while Level 3 does not.

We find it surprising that Level 2 does not agree with List-
ing 1 and Listing 2 on the relative order of outcomes. All
three algorithms satisfy demographic parity, Criteria 3, and,
by Theorem 4, counterfactual fairness (when Listing 1 and
Listing 2 are trivially modified). How could it be that two al-
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Short Tall
World A World B World A World B
u ŷ u ŷ u ŷ u ŷ

Teal 0 0 1 1 0 1 1 0
Lucas 1 1 0 0 1 0 0 1

Table 3: Latent variable charm U and predicted outcome Ŷ
for each person, world, and protected group in the example
for Proposition 9.

gorithms are both fair under the same definitions while mak-
ing radically different predictions on individuals?

This question suggests the following natural definition.
Definition 8 (Preserving Group Ordering). Given unfair la-
bels, we say an algorithm preserves group ordering if the
relative ordering within each protected group under the un-
fair labels is the the same as the relative ordering of individ-
uals induced by the algorithm’s predictions.

Put differently, if individuals are in the same protected
class, then their relative ordering from a (possibly) unfair
predictor should induce the same relative ordering as the
fair predictor. That is, if an individual performs better un-
der the same unfair conditions as another individual, they
should perform better in a hypothetical world where those
unfair conditions were removed.

We believe that preserved within-group orderings are
preferable to the highly unstable orderings in the levels of
(Kusner et al. 2017). One reason to prefer preserved order-
ings is that even soft guarantees for relative orderings of
within group individuals leads to more transparent, trust-
worthy and ultimately useful fair algorithms (Abdollahi and
Nasraoui 2018; Bhatt et al. 2020).

Observe that Listing 1 and Listing 2 satisfy Definition
8 by design. This contrasts with Levels 1, 2, and 3 which
radically change the relative ordering of individuals within
a protected group. In Proposition 9, we show that there is
a causal model where counterfactual fairness is mutually
exclusive with Definition 8. This suggests that for some
causal models, achieving counterfactual fairness and pre-
serving relative group ordering are incompatible.

Note that Proposition 9, combined with the fact that List-
ing 1 and 2 satisfy demographic parity and preserve group
order, does not refute Theorem 4 since the method of esti-
mating latent variables in the proof of the theorem uses a
trivial causal model.
Proposition 9. There is a causal model and predictor where
a counterfactually fair algorithm does not maintain the rel-
ative ordering of predictions within each group.3

Proof. Consider an example with two people, say Teal
and Lucas. The protected attribute A is binary height,
the latent variable U is binary charm, and the true out-
come Y is binary success. The latent variable for Teal is
uTeal ∼ Binomial(1/2) while the latent variable for Lucas
is uLucas = 1 − uTeal. In other words, the latent variable for
each person is probabilistic but correlated: with probability

3An earlier version of this work gave an incorrect proof of the
proposition.

1/2, we live in World A and otherwise, we live in World B. In
World A, Teal is not charming and Lucas is while, in World
B, Teal is charming and Lucas is not. Now the predictor
function satisfies ŶA←short(u) = u, ŶA←tall(u) = NOT(u)
for latent variable charm u ∈ {0, 1}. The output of the pre-
dictor in each world is given in Table 3.

Notice that the relative order of the outcome produced by
the predictor and causal model changes with the counterfac-
tual intervention. In World A, Teal is behind Lucas as a short
person and ahead as a tall person. In World B, Teal is ahead
of Lucas as a short person and behind as a tall person. We
have constructed a causal model and predictor but it remains
to show that they satisfy counterfactual fairness and that the
latent variable is independent of protected attributes.

First, we show that the causal model and predictor are
counterfactually fair. Recall that World A and World B are
equally likely. As a result, by inspecting Table 3 and the con-
struction, we conclude that both Teal and Lucas are as likely
to be successful as a short person and as a tall person. There-
fore the construction satisfies counterfactual fairness.

Second, we argue that the latent variable is independent
of the protected attribute. That is, we want Pr(u, a) =
Pr(u) Pr(a) for u, a ∈ {0, 1} in our example. Again, by in-
specting Table 3 and the construction, we see that this holds.
For example, the probability a person is charming and tall
is 2/8 while the probability a person is charming is 4/8 and
the probability a person is tall is 4/8. The same holds for the
other three possibilities.

Additional Experiments So far we have reported on the
extensive empirical experiments we ran on the law school
data set. We corroborate our findings by running the same
set of experiments on two more data sets: Home Credit De-
fault Risk4 and synthetic data generated from a hypothetical
healthcare causal model loosely motivated by (Obermeyer
et al. 2019). Additional figures and results on these data sets
are included for reproducibility in the same publicly acces-
sible repository.5

Conclusion Counterfactual fairness has been celebrated
as novel and promising while demographic parity has been
treated as simple and flawed. Our work shows how the two
definitions of fairness are basically equivalent when consid-
ered across an entire population. We think it is a promis-
ing avenue for future work to identify similarities between
other definitions of fairness. In addition, we suggest sug-
gest a natural definition of preserving group orderings which
can be mutually exclusive with counterfactual fairness. We
leave open the problem of designing novel algorithms that
are competitive with simple benchmarks in terms of fairness,
performance, and preserving group orderings.
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