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Abstract
We introduce EINNs, a framework crafted for epidemic fore-
casting that builds upon the theoretical grounds provided by
mechanistic models as well as the data-driven expressibility
afforded by AI models, and their capabilities to ingest het-
erogeneous information. Although neural forecasting mod-
els have been successful in multiple tasks, predictions well-
correlated with epidemic trends and long-term predictions re-
main open challenges. Epidemiological ODE models contain
mechanisms that can guide us in these two tasks; however,
they have limited capability of ingesting data sources and
modeling composite signals. Thus, we propose to leverage
work in physics-informed neural networks to learn latent epi-
demic dynamics and transfer relevant knowledge to another
neural network which ingests multiple data sources and has
more appropriate inductive bias. In contrast with previous
work, we do not assume the observability of complete dy-
namics and do not need to numerically solve the ODE equa-
tions during training. Our thorough experiments on all US
states and HHS regions for COVID-19 and influenza fore-
casting showcase the clear benefits of our approach in both
short-term and long-term forecasting as well as in learning
the mechanistic dynamics over other non-trivial alternatives.

1 Introduction
The COVID-19 pandemic has led to a maturing of methods
for epidemic modeling and forecasting with the CDC estab-
lishing the first Center for Forecasting and Outbreak Analyt-
ics in 2021. A variety of forecasting innovations in machine
learning and deep learning were developed–e.g., (Rodrı́guez
et al. 2021a; Kamarthi et al. 2021)–with many lessons
learned for COVID-19 and future pandemics. As the current
experience has shown, predicting and preventing epidemics
is one of the major challenges with far reaching impacts on
health, economy and broad social well being1.

From this perspective, active participation by several aca-
demic and industrial teams (including by coauthors) in mul-
tiple CDC-led forecasting initiatives has led to two broad
themes that are important for epidemic modeling. First,
modern disease surveillance has grown by leaps and bounds
yielding novel data sources that can shed light into hap-
penings real-time. Statistical/ML epidemic models leverage
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these data sources to provide dramatic improvements in
short-term forecasting (usually 1-4 weeks ahead). At the
same time, as these methods do not explicitly learn mecha-
nistic dynamics, such methods do not provide understanding
of how the epidemic will unfold at even longer time hori-
zons, and do not support posing causal and counterfactual
questions (e.g., design of countermeasures). Such longer-
term forecasting remains the province of mechanistic epi-
demic models that can support scenario-based understanding
of epidemic progression (e.g., ”what will happen if schools
are closed?”). However, these methods present scalability
issues, their calibration is prone to noise (Hazelbag et al.
2020), and they have limited capability to ingest multimodal
data sources (Viboud and Vespignani 2019). At the inter-
section of these two modeling approaches, we have hybrid
models that make compartmental models (based on ordinary
differential equations – ODEs) more informed of these data
sources (Shaman et al. 2013; Arik et al. 2020). However,
most of these approaches use the mechanistic model for pre-
diction, thus, they are not flexible enough to fit the complex
patterns in epidemics and have very few tunable parameters.
In addition, they are not easily generalizable to new model-
s/data sources or do not aim to incorporate ODE dynamics
from first principles (e.g., predict ODE parameters instead
of the ODE states).

In this paper, we develop a general framework for in-
corporating epidemic dynamics from a mechanistic model
into a neural framework for forecasting, which enables
seamless integration of multimodal data, greater representa-
tion power, and inclusion of composable neural modules of
learned representations. Our focus is to leverage the selec-
tive superiorities of both approaches (see Figure 1) to have
predictions that are accurate (low error) and well-correlated
with even longer-term epidemic trends than what has been
usually studied in past literature.

Recent lines of research (e.g., (Karniadakis et al. 2021))
aim to bridge scientific models (usually represented as dif-
ferential equations) and ML algorithms. Specifically, the
rapidly growing literature in physics-informed neural net-
works (PINNs) has demonstrated that integrating neural net-
works with ODEs can lead to large scalability improvements
as forward passes (over the ODE) are no longer needed (Lu
et al. 2021). In addition, the neural network flexibility and
gradient-based learning enables robust solutions in spite of
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Figure 1: Modeling spectrum and performance: Our method,
EINNS, takes the best from both modeling approaches and
is suitable for short- and long-term forecasting, and its pre-
dictions are well-correlated with the actual epidemic trends.

noise (Yang et al. 2021). We propose to build upon this body
of work to incorporate the dynamics of a mechanistic epi-
demic model into deep neural models. Our goal requires in-
novations to the PINN literature as many of the compart-
ments in epi-models are latent (e.g., the actual number of
people exposed to the disease) while most work in PINNs
has only experimented with all states of the system dynam-
ics being observable.

In addition, PINNs are limited to working with the vari-
ables that are described in the mechanistic equations which
limits their capabilities to ingest data sources. On top of that,
PINNs often use a simple multi-layer perceptron architec-
ture whose inductive bias is often insufficient for sequen-
tial data. The main technical innovation of this paper comes
from designing a transfer learning framework for transfer-
ring learned dynamics from a PINNs to a Recurrent Neu-
ral Network (RNN) that can ingest exogenous data features
(data not-represented in the ODE). The goal of this is to have
an RNN aware of epidemic ODE dynamics that has learned
how data features (inputs to the RNN) shape/connect to the
latent epidemic dynamics (outputs of the RNN).

We summarize our contributions as follows:
• Push the boundaries of data-driven epi forecast-

ing via integration of ODE-based mechanistic dynamics:
We introduce Epidemiologically-informed Neural Networks
(EINNs), a new framework to bridge the gap between mech-
anistic and neural models for epidemiology. Our method in-
corporates epidemiological (expert) knowledge embedded
in ODE models into neural networks (NNs). The key idea
in EINNs is utilizing a PINN to learn the latent epidemic
dynamics and transfer its learned representations to another
neural model with more appropriate inductive bias (RNN)
and capable of ingesting heterogeneous sources of data that
are exogenous to the ODE equations.

• Transfer learning via gradient matching of dynam-
ics: We propose a novel method to transfer learned repre-
sentations from a PINN (source model) to another neural
network (target model). This is based on matching the gra-
dients of mechanistic ODEs in the target model as we do
so when training the source model. This cannot be directly
done in the target model (RNN) due to its neural architecture
and data inputs. Therefore, we propose approximating inter-
nal representations of source and target models to enable the

target model to learn to match the ODE gradient.
• Extensive empirical evaluation: We evaluate our

method in the challenging task of weekly COVID-19 fore-
casting (in 48 geographical regions and a period of 8
months) and flu (in 10 regions and 5 months). Our results
showcase that our method can indeed leverage the ‘best of
both worlds’ compared to other non-trivial ways of merging
such approaches. We believe this opens new avenues for ex-
ploring how AI can better complement domain knowledge
in traditional epidemiology.

2 Related Work
Mechanistic and ML models for epidemic forecasting:
Epidemic mechanistic models (Hethcote 2000) like the pop-
ular SIR are designed using domain knowledge of the epi-
demic dynamics. They model causal underpinnings to ex-
plain empirically observed variables (e.g., mortality), and
ODE-based models have been a workhorse of epidemi-
ology since the late 18th century (Marathe et al. 2013).
More recently, there are several successful applications of
ML to short-term forecasting (Osthus et al. 2019; Brooks
et al. 2018; Adhikari et al. 2019; Rodrı́guez et al. 2021a)
which led them to be often ranked among the top perform-
ing models in these tasks (Cramer et al. 2022; Reich et al.
2019). Some of the recent deep learning innovations in-
clude advances in incorporting multi-view and multimodal
data (Kamarthi et al. 2022b), spatial correlations (Deng
et al. 2020; Jin et al. 2021), transfer learning for domain
adaptation (Rodrı́guez et al. 2021b) and non-parametric ap-
proaches (Kamarthi et al. 2021; Zimmer et al. 2020).
Hybrid epidemic models: They integrate mechanistic mod-
els and ML approaches (Rodrı́guez et al. 2022). Some lines
of work use statistical techniques to estimate the mechanistic
parameters (e.g. transmission rate) (Arik et al. 2020; Wang
et al. 2021a), learn from simulation-generated data (Wang
et al. 2019), or use the ODEs as regularization (Gao et al.
2021). However, in addition to the previously mentioned
flexibility problems, these models require a forward pass
over the mechanistic models, which may become very ex-
pensive for long periods and large mechanistic models. Fur-
thermore, they often need to discretize the continuous ODE
space, which is a delicate process as it has been found
that sub-optimal discretization can impede the learning pro-
cess (Thuerey et al. 2021). Our approach utilizes PINNs
which allows skipping forward passes and discretization.
Perhaps the most prominent in this line of research is the
work by (Shaman et al. 2013) that integrated search volume
data into an SIRS ODE model via the principle of data as-
similation. However, developing such data assimilation ap-
proaches requires a large amount of domain knowledge and
cannot be used to incorporate many of the data features stud-
ied in our work (e.g., mobility).
Physics-informed neural networks (PINNs): PINNs are
universal function approximators via neural networks that
embed knowledge of ODEs and partial differential equations
(PDEs) via unsupervised loss functions based on these equa-
tions. They have been used for forward and inverse problems
with ODEs in a variety of domains including computational
biology (Yazdani et al. 2020). PINNs have connections to
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implicit neural representations (Sitzmann et al. 2020) in
the sense that they both provide continuous representations
breaking the discretization (grid) limitation, which is advan-
tageous for when data samples are irregular. Previous work
often use a multi-layer perceptron architecture because they
are amenable for direct computation of derivatives of neural
network outputs with respect to its inputs (via autograd). In-
deed, incorporating inductive biases into PINNs is an active
research area–e.g., convolutional layers (Wandel et al. 2022)
and graph neural networks (Kumar and Chakraborty 2021)–
and to our best knowledge a recurrent neural architecture for
PINNs remains an open problem. Also, incorporating exoge-
nous variables to this framework and working with partially
observable systems are largely unexplored problems (Cai
et al. 2021; Wang et al. 2021b). Our approach EINNS ex-
tends the capabilities of PINNs by directly addressing these
limitations in the context of epidemiology.

3 Background
As mentioned earlier, we aim on merging neural models
with epidemiological dynamics from a mechanistic model.
Without loss of generality, here we introduce instantiations
of such models which we refer to as building blocks. Their
definitions help us to explain the formulation of the problem
INCORPORATING EPI-DYNAMICS IN NNS and later our
implementation and experiments. Additionally, we briefly
introduces PINNs as formulated for Systems Biology.

3.1 ODE-Based Mechanistic Epidemic Models

Our first building block is a mechanistic epidemic model.
Epidemiologists use different mechanistic models for each
disease because infection dynamics and disease progression
varies (Hethcote 2000). In this paper we use COVID-19 and
influenza as a vehicle to demonstrate the benefits of our gen-
eral framework, therefore, we use two different mechanis-
tic epidemic models: SEIRM and SIRS (SIRS description is
similar to SEIRM and can be found in our appendix).
SEIRM model for COVID-19: The SEIRM ODE model
consists of five compartments: Susceptible (S), Exposed
(E), Infected (I), Recovered (R), and Mortality (M ). It is
parameterized by four variables Ω = {β, α, γ, µ}, where
β is the infectivity rate, 1/α is the mean latent period for
the disease, 1/γ is the mean infectious period, and µ is
the mortality rate. Due to COVID-19’s prolonged incuba-
tion period, the SEIRM has been broadly used in modeling
its progression (Wu et al. 2020; Morozova et al. 2021). It
has also been used by the CDC in modeling transmission
of Ebola (Gaffey et al. 2018). To capture the evolving na-
ture of the dynamics and spread of COVID-19 (e.g. consider
the multiple variant waves), we leverage the dynamic ver-
sion of the SEIRM model, where the parameters governing
the disease progression themselves evolve over time. In such
a setting, the dynamics is governed by the set of param-
eters Ωt = {βt, αt, γt, µt} at the given time-stamp t. Let
st = [St, Et, It, Rt,Mt]

T be the values taken by the states
at time t. (ODE state St represents the number of susceptible
people at time t, similar for the other states). Then, the ODEs

describing the SEIRM model are given by fODE(st,Ωt):

dSt

dt
= −βt

StIt
N

,
dEt

dt
= βt

StIt
N

− αtEt,

dIt
dt

= αtEt − γtIt − µtIt,
dRt

dt
= γtIt,

dMt

dt
= µtIt.

In our SEIRM model, only mortality is considered ob-
served (Wu et al. 2020), therefore, ODE states St, Et, It,
and Rt are latent. By solving the set of ODEs, we can dis-
cover the latent epidemic dynamics which are described by
the values of st and Ωt for the entire period for which we
have observational data, i.e., ∀t ∈ {t0, . . . , tN}.

3.2 RNN Architecture

Our second building block is a deep sequential model, which
we instantiate with an RNN with attention, extensively used
in neural epidemic forecasting as a central building block
(Adhikari et al. 2019; Kamarthi et al. 2021; Wang et al.
2019). Here, we introduce the base architecture of this
model. Informally, at prediction time t = tN we are given
a multivariate time series of features/signals X = {xt}tNt=t0

with xt ∈ RDx , where Dx is the number of features. And
we are tasked to predict K steps ahead in the future. We en-
code the feature time series until tN by passing it through
a Gated Recurrent Unit (GRU) (Cho et al. 2014) to obtain
a condensed representation for each time step: {ht}tNt=t0 =

GRU({xt}tNt=t0
) where ht is the hidden state of the GRU for

time step t. To capture long-term relations and prevent over-
emphasis on last terms of sequence we use a self-attention
layer (Vaswani et al. 2017), and finally a feedforward net-
work to make the prediction yt=N+k.

3.3 PINNs for Systems Biology

Recently, several works (Yazdani et al. 2020; Karniadakis
et al. 2021) in Systems Biology have used PINNs for solv-
ing forward and inverse problems with ODEs. The neural
network N(t) is a function of single variable t and ODE sys-
tem is in the form fODE(t) describing the rate of change (gra-
dient) of some function with respect to t. Gradient dN(t)

dt can
be using computed via Automatic Differentiation–autograd,
which in turn makes it possible to train the neural network
N(·) while minimizing the residual between the two gradi-
ents, e.g. loss

(dN(t)
dt − fODE(t)

)2
.

4 Problem Formulation
As mentioned earlier, we aim on harnessing the strengths
of both machine learning/deep learning approaches (which
have been very successful in short-term forecasting) and
mechanistic models (which are useful for long-term trend
projections). Hence, our problem is one of merging neural
models with mechanistic model dynamics while maintaining
benefits from both the techniques. To capture this specific
intention, we modify traditional forecasting problems (Ad-
hikari et al. 2019) in the following manner:
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Problem: INCORPORATING EPI-DYNAMICS IN NNS
Given: • A base epidemiological model mathemati-
cally represented as a set of ODEs (for example, see
the SEIRM and SIRS models in Section 3.1). • A base
RNN (See Section 3.2). • Data: an observed multi-
variate time series of COVID/flu-related signals X =
{xt}tNt=t0

and corresponding values for the forecasting
target (new COVID-associated deaths or ILI flu counts)
Y = {yt}tNt=t0

, where t0 is the first day of the outbreak
and tN is the current date.
Predict: next K values of the forecasting target, i.e.
{ŷN+k}Kk=1 (here K is the size of the forecasting win-
dow/horizon), such that predictions are accurate and
well-correlated with the trends of the epidemic curve.
We are also interested in learning if taking advantage of

selective superiorities of both approaches can push the pre-
diction horizon (i.e., how many steps ahead we can fore-
cast). Typically, CDC forecasting initiatives request short-
term forecasts up to 4-weeks ahead (K = 4) – see (Cramer
et al. 2022; Jin et al. 2021). Longer forecasting horizons
have not been explored much, thus, we propose the double
of the current horizon (i.e., K = 8) in this paper.

5 Our Approach
To tackle the problem INCORPORATING EPI-DYNAMICS IN
NNS, one can easily conjure ‘naı̈ve’ approaches. A simple
approach is to calibrate the given mechanistic model with
the observed targets Y , and train the base RNN using the
generated (synthetic) curve. Similarly, one could also use the
ODEs to regularize the neural predictions or could train an
ensemble with neural network’s and ODE-model’s predic-
tions. However, as we show later in our experiments, while
these approaches often can maintain the performance of the
base RNN, they do not generate well-correlated predictions.
Overview: See Figure 2. We propose using an heteroge-
neous domain transfer learning setup (Moon and Carbonell
2017), where we transfer knowledge from a source model to
a target model. Here our source model is a PINN whose pur-
pose is discovering the latent epidemic dynamics (solving
ODEs). The gradients of our ODE epi-models (dst/dt) are
with respect to time; therefore, as noted in Section 3.3, time
is the only input to this PINN. Thus, we refer to this PINN
as time module. The target model is an RNN which ingests
data features from heterogeneous sources–thus we call it
feature module–and incorporates appropriate inductive bias
to model sequential time series data. Note that both source
and target models predict the same output st, which are the
ODE states. Therefore, the feature module learns a mapping
from a multivariate time series of COVID/flu-related sig-
nals X (exogenous data features, i.e., not-represented in the
ODE) to the epidemic dynamics st. Next, we explain each
of these modules in detail.

5.1 Time Module (Source Model): Learning
Latent Time-Varying Dynamics

The time module interfaces with the set of ODEs describ-
ing an epidemic mechanistic model. Via PINNs, it learns

the latent epidemic dynamics given observational data. Fol-
lowing the introduction in Section 3.3, PINNs solve the
ODEs by jointly minimizing the observational error and the
residual between gradient given by the ODE and the gra-
dient of the neural network with respect to the time in-
puts (computed via autograd). As in most literature–see
Section 2–our time module NTime(t) is parametrized by a
multi-layer perceptron that ingests time t as input and pre-
dicts ODE states for time t, denoted as st ∈ RDs , where
Ds is the number of ODE states (e.g., 5 for SEIRM). We
want this neural network to make predictions that follow epi
dynamics described the set ODEs fODE. This is, we make
NTime(t) = st; subject to dst/dt = fODE(st,Ωt), where Ωt

are the learned ODE parameters for time t. We minimize the
ODE loss (unsupervised loss LODE-T) while fitting the ob-
served data (supervised loss LData-T):

LODE-T =
1

N + 1

tN∑
t=t0

[
dst
dt

− fODE(st,Ωt)

]2
(1)

LData-T =
1

N + 1

tN∑
t=t0

[
M̂t −Mt

]2
(2)

where M̂t is predicted mortality by the time module. To dis-
cover the latent dynamics, we want to obtain st and Ωt.
Constraining the optimization via domain knowledge: In
contrast to the setting in most prior work in PINNs where
most states of the system dynamics are observed, most states
in our SEIRM model are latent. We found learning in such
a scenario can be very challenging. We alleviate this by in-
fusing additional epidemiological domain knowledge in the
form of monotonicity constraints. In particular, we adapt
monotonicity losses from (Muralidhar et al. 2018) to our
setting. They proposed to penalize consecutive predictions
if they are not monotonic in the required direction. Note that
the difference between consecutive predictions are discrete
approximation to the derivatives. Here, we generalize this
loss to continuous derivatives by taking the limit limt→0.
Now, derivatives can be directly computed via autograd. To
incorporate these constraints, we use domain knowledge.
Using SEIRM as an example (similar can be easily derived
for other epidemiological models), we know that the Sus-
ceptible state St monotonically decreases and the Recovered
state Rt monotonically increases. Then, we add a penalty
when dSt/dt is positive and when dRt/dt is negative as fol-
lows:

LMono =
1

N + 1

( tN∑
t=t0

dSt

dt
ReLU(

dSt

dt
) +

tN∑
t=t0

−1
dRt

dt
ReLU(−dRt

dt
)
)
, (3)

where ReLU(x) = max(0, x) is the rectified linear function.
Note that St and Rt are part of st, which is the output of the
time module; thus, dSt

dt and dRt

dt are computed via autograd.
Coping with spectral bias in neural networks: One of the
central issues in fitting PINNs is the spectral bias of neu-
ral networks, which is the tendency of neural networks to
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Figure 2: Depiction of our proposed framework EINNS. (a) The pipeline of EINNs has two independent computational paths:
time module (source model) and feature module (target model). For simplicity, in our equations we refer to NTime as a single
module, but, in practice, this is implemented as two neural models: Noutput ◦ NTime where Noutput is a multi-layer feedforward
network. Similarly, NFeat is implemented as Noutput ◦ NFeat. During training step 2, when et ≈ eFt , we will freeze layers and
train only Noutput. (b) Three gradients are computed via autograd: dst/dt, det/dt, and dsFt /deFt . Using these gradients we
can compute ODE loss for the time module and approximate dsFt /dt via our gradient trick. (c) We utilize equations fODE to
compute the ODE losses. Approximation of dsFt /dt is used to compute the ODE loss for the feature module LODE-F. This loss
encourages integration of ODE dynamics from the time module (source model) into the feature module (target model).

fit low frequency signals (Wang et al. 2021b). To overcome
this, usually the neural networks are given more flexibility to
fit high frequency systems. Here, we adopted Gaussian Ran-
dom Fourier feature mappings (Tancik et al. 2020): Γ(v) =
[cos(2πBv), sin(2πBv)]T , where each entry in B ∈ Rd×1 is
sampled from N (0, σ2), where σ is a hyperparameter.
Handling time-varying ODE parameters: ur ODE model
is time varying, therefore we have to learn mechanistic pa-
rameters for each time step, which increases the difficulty of
the optimization. To make this more tractable, we propose a
consistency loss between consecutive parameters.

LParam =
1

N + 1

tN∑
t=t0

[Ωt+1 − Ωt]
2 (4)

5.2 Feature Module (Target Model): Connecting
Features to Epidemic Dynamics via Gradient
Matching

The feature module is composed of a based RNN and in-
gests multivariate time-series of COVID/flu-related signals
X to predict the epidemic dynamics sFt . (Note: embeddings
and outputs of feature module have superscript F to avoid
confusions with the ones from the time module). Here, we
want to ensure that the predictions made by the feature mod-
ule are consistent with the ones given by the ODE model.
Hence, we want the feature module neural network NFeat(X )
to follow the learned latent dynamics from the time mod-
ule neural network NTime(t) (note the heterogeneous do-
mains). We can formalize our goal as follows: NFeat(X ) =

sFt ; subject to dsFt
dt = fODE(sFt ,Ωt), where sFt ∈ RDs , are the

ODE states predicted by the feature module and Ωt are the
same ODE parameters used by in the time module.
Matching the ODE gradient: We cannot directly calculate
dsFt
dt via autograd from the inputs as we did for the time mod-

ule because our feature module is an RNN and ingests fea-

tures. We propose to use internal representations (embed-
dings) so that we can approximate the gradient to an expres-
sion that can be computed via autograd. Let et ∈ RDe and
eFt ∈ RDe be embeddings for the time module and feature
module, respectively (De is embedding size). Then, by us-
ing the chain rule, we propose to approximate the gradient
of sFt assuming et ≈ eFt and have our gradient trick:

dsFt
dt

=
dsFt
deFt

deFt
dt

≈ dsFt
deFt

det
dt

(5)

where dsFt
deFt

can be calculated in the feature module using au-

tograd because eFt is the only variable that is needed to com-
pute sFt . Similarly, t is the only input needed for computing
et, thus, we can use autograd to compute det

dt . To make this
approximation valid, we have to make these embeddings et
and eFt similar. We do this with the following loss:

LEmb =
1

N + 1

tN∑
t=t0

[
et − eFt

]2
(6)

This derivation allows us to make the feature module to learn
the gradients learned by the time module by minimizing an
ODE loss for the feature module:

LODE-F =
1

N + 1

tN∑
t=t0

[
dsFt
deFt

det
dt

− fODE(sFt ,Ωt)

]2
(7)

Aligning with data and time module outputs: Matching
the ODE gradient is not enough to ensure the dynamics will
be transferred. We have to make sure that the feature module
outputs are aligned with data and with the ODE dynamics as
found by the time module. For fitting the data, we define data
loss in a manner similar to the time module:

LData-F =
1

N + 1

tN∑
t=t0

[
M̂F

t −Mt

]2
(8)
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where M̂F
t is the predicted mortality of the feature module.

To align the time and feature modules, we use knowledge
distillation (KD) (Ba et al. 2014), a popular transfer learning
method. We impose our KD loss on the outputs of these two:

LOutput =
1

N + 1

tN∑
t=t0

[
st − sFt

]2
. (9)

Note that our time module is able to predict for any
given time but our base RNN makes prediction for one
target in the future. To align these two, we make our fea-
ture module to make joint prediction using a decoder GRU
which takes ut0:tN as the initial hidden state and roll the
GRU forward for every prediction step ahead taking time
as input. Thus, our decoder equations will be et=tN+k

=
GRU(ut0:tN , tN+k) and our final predictions yt=tN+k

=
FFN(et=tN+k

).

5.3 Model Training, Inference, and
Implementation

During training, our first goal is to make et ≈ eFt so that
later we can use the gradient approximation stated in Equa-
tion (5). This is a 2-step process which we detail in our ap-
pendix. At inference, we solely utilize the feature module
predictions as it ingests features and we want to emphasize
the utility of inserting dynamics in ML models.

6 Experiments
6.1 Setup, Metrics, and Baselines
All experiments were conducted using a 4 Xeon E7-4850
CPU with 512GB of 1066 Mhz main memory and 4 GPUs
Tesla V100 DGXS 32GB. Our method implemented in Py-
Torch (implementation details in the appendix) trains on a
GPU in about 30 mins for one predictive task. Inference
takes only a few seconds. Appendix, code, and other re-
sources can be found online2.
Evaluation: All the results are for forecasting COVID-
19 mortality in the US up to 8-weeks ahead in the fu-
ture. For COVID-19, as per previous CDC-coauthored pa-
pers (Cramer et al. 2022), we evaluate at state and national
level. Specifically, we include 47 states; we exclude 3 out of
the 50 states where the SEIRM mechanistic model had dif-
ficulties fitting due to sparsity of death counts (specifically
Alaska, Montana, and Wyoming). Our evaluation period is 8
months from Sept. 2020 to March 2021. which includes the
complete Delta wave in the US, and we make 8-weeks ahead
predictions for every two weeks in this period. We used June
2020 to Aug. 2020 to tune our models. For flu, we also fol-
low CDC (Biggerstaff et al. 2018) and predict for all 10 HHS
region3 for a period of 5 months (Dec. 2017 to May 2018).
For each forecasting week, all models are trained with his-
torical data available until that week (i.e., they are trained
on every prediction week). In total, we make 5696 predic-
tions per model which requires training each of them 700+
times, therefore, is very computationally expensive to run all
models for multiple runs.

2Resources website: https://github.com/AdityaLab/EINNs
3hhs.gov/about/agencies/iea/regional-offices/index.html

Metrics: Our focus is in predictions that are accurate and
well-correlated the epidemic trends, thus we measure two
aspects of our predictive performance: error and trend corre-
lation. Specifically, we use two different versions of Normal-
ized RMSE (NR1 and NR2) and Normal Deviation (ND),
and Pearson correlation. See more details in appendix.
Data: We collected important publicly available signals
from a variety of trusted sources that are relevant to COVID-
19 forecasting. For COVID-19, we collected 13 features in
this dataset, this include mobility from Google and Apple,
social media surveys from Facebook, hospitalization data
from the U.S. Depart. of Health & Human Services and
CDC, and cases and mortality from Johns Hopkins Univ. For
flu, we use the 14 signals from the Google symptom dataset.
See appendix for more details and links.
Baselines: As we are the first to pose the INCORPORAT-
ING EPI-DYNAMICS IN NNS problem, we do not have off-
the-shelf baselines. Instead, our focus is on how to incor-
porate ODE dynamics into NNs. Hence we focus on the
different ways these have been explored in literature (Dash
et al. 2022). • GENERATION: Similar to (Wang et al. 2019;
Sanchez-Gonzalez et al. 2020), the NN learns directly from
data generated by the numerical solution of SEIRM/SIRS. •
REGULARIZATION: Similar to (Gao et al. 2021; Gaw et al.
2019), the NN predicts both the ODE states and the ODE
parameters. Then uses the ODE parameters to regularize the
states via a loss based on the SEIRM/SIRS equations. • EN-
SEMBLING: As per (Adiga et al. 2021; Yamana et al. 2017),
combines predictions from RNN and SEIRM/SIRS via a
NN that outputs final predictions.

6.2 Results in COVID-19 and Influenza
Our results showcase EINN as an effective general frame-
work for incorporating epidemic dynamics from a mecha-
nistic model into a neural network. We first demonstrate that
we can leverage advantages from both modeling paradigms
resulting in consistently good forecasts across all tasks and
metrics. We also compare against other non-trivial methods
to incorporate ODE dynamics into neural models. To con-
textualize our model’s performance with the broader picture
of epidemic forecasting, we also have results with standard
data-driven baselines, which can be found in our appendix.
Q1: Leveraging advantages of both mechanistic models
and neural models. Our RNN has a lower or similar error in
short- and long-term forecasting than the SEIRM and SIRS,
but its predictions are much less correlated with epidemic
trends (see lines 1-2 of comprehensive results in Table 1). By
integrating mechanistic and neural models, EINNS is capa-
ble of taking advantage of both. Comparing EINNS with the
SEIRM/SIRS, Pearson correlations are close but our predic-
tions are much more accurate (up to 77% less error). Indeed,
EINNS not only improves RNN correlation by 475% but
also its accuracy up to 55% thanks to the incorporation of
short and long-term dynamics. Note that our goal was not to
beat the SEIRM/SIRS but have a method that has a consis-
tently good performance across accuracy and correlation.
Q2: Benefits over other ways to incorporate epidemic dy-
namics into neural models. EINNS has the lowest error
and best correlation in comparison with other existing ways
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Trend
Short-term (1-4 wks) Long-term (5-8 wks) correlation

Model NR1 NR2 ND NR1 NR2 ND PC

Task 1: COVID-19 Forecasting (US National + 47 states)

RNN (GRU+Atten) 1.09 0.50 0.86 1.19 0.53 0.96 0.08
Mechanistic model (SEIRM) 2.35 1.13 1.36 7.14 2.99 3.11 0.53
GENERATION 0.79 0.35 0.60 0.93 0.40 0.74 -0.01
REGULARIZATION 1.05 0.48 0.81 1.19 0.53 0.97 0.09
ENSEMBLING 0.91 0.41 0.68 0.93 0.40 0.69 -0.01
EINNS (ours) 0.54 0.24 0.38 0.85 0.37 0.66 0.46
PINN (time module standalone) 0.84 0.38 0.64 0.93 0.40 0.72 0.24
EINNS-NoGradMatching 0.64 0.29 0.49 0.98 0.43 0.79 0.03

Task 2: Influenza Forecasting (10 HHS regions)

RNN (GRU+Atten) 0.72 0.38 0.67 1.19 0.51 1.14 -0.03
Mechanistic model (SIRS) 0.72 0.38 0.51 1.16 0.55 0.81 0.71
GENERATION 0.76 0.4 0.71 1.21 0.52 1.15 -0.14
REGULARIZATION 1.19 0.64 1.00 1.22 0.54 0.9 -0.45
ENSEMBLING 0.89 0.47 0.77 0.83 0.35 0.73 -0.69
EINNS (ours) 0.53 0.27 0.37 1.01 0.42 0.73 0.68
PINN (time module standalone) 0.55 0.29 0.44 1.13 0.48 1.02 -0.47
EINNS-NoGradMatching 0.53 0.27 0.38 1.02 0.42 0.76 0.50

Table 1: EINNS is the only one consistently providing accurate and well-calibrated forecasts and it is among the best performing
for all metrics (lower NR1, NR2 and ND is better; higher Pearson correlation is better). Top 2 models per column are in bold
(including tied models). These results are an average across 5696 predictions per model.

to incorporate epidemic dynamics to neural networks. We
can see that these methods may excel in one task (e.g., EN-
SEMBLING in long-term forecasting) but they are severely
worse in other important tasks. Instead, EINNS is the only
one consistently good in all tasks.
Q3: Ablation: time module PINN and gradient match-
ing. We perform ablation studies to understand what are the
contributions of the main components of our model. First,
we analyze our time module trained standalone, i.e., being
trained without the feature module with losses in Equations
(5-9) (PINN in Table 1). We can see that, although our time
module PINN directly interacts with the ODE and their be-
havior will be coupled during training, they have different
behavior in test. In fact, this points to the need that we need
features to be able to extract representations that general-
ize in test. Second, we assess the contribution of our gra-
dient matching trick (EINNS-NoGradMatching), for which
we train with all losses except for the ones in Equations (6)
and (7). In this scenario where only LOutput helps to transfer
the dynamics, we can see that it is a less effective way.
Q4: Sensitivity to hyperpameters. We found our results are
not sensitive to changes in most hyperparameters. See ap-
pendix for more details and extra results (more baselines).

7 Discussion and Societal Impact
Preventing and responding to pandemics requires trustwor-
thy epidemic forecasts, e.g. forecasts well correlated with
actual epidemic trends. The ML community has been very
active in CDC forecasting initiatives and has harnessed mul-
tiple successes. However, generating trustworthy epidemic
forecasts may require more than only data. In this paper

we tackle this challenge by introducing EINNS to incor-
porate mechanistic dynamics (via the SEIRM/SIRS model)
into neural models (using a RNN style base model). We
show the effectiveness of a principled method to transfer rel-
evant knowledge via gradient matching of the ODE equa-
tions, without integrating (forward pass) the ODE model.
Through extensive experiments over states/regions in the US
we also show the usefulness of EINNS in COVID-19 and
flu forecasting and also the importance of our various de-
sign choices. Overall, we believe this work opens up new
avenues for leveraging epi domain knowledge into AI mod-
els for better decision making. Connecting complex mech-
anistic models to neural networks also enables us to have
learned representations useful for other tasks downstream
like what-if predictions, which would be worth exploring. In
addition investigating more complex epidemiological mod-
els (like network based agent models) would be fruitful.
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