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Abstract

Achieving gender equality is an important pillar for hu-
mankind’s sustainable future. Pioneering data-driven gender
bias research is based on large-scale public records such as
scientific papers, patents, and company registrations, cover-
ing female researchers, inventors and entrepreneurs, and so
on. Since gender information is often missing in relevant
datasets, studies rely on tools to infer genders from names.
However, available open-sourced Chinese gender-guessing
tools are not yet suitable for scientific purposes, which may
be partially responsible for female Chinese being underrep-
resented in mainstream gender bias research and affect their
universality. Specifically, these tools focus on character-level
information while overlooking the fact that the combina-
tions of Chinese characters in multi-character names, as well
as the components and pronunciations of characters, convey
important messages. As a first effort, we design a Chinese
Heterogeneous Graph Attention (CHGAT) model to capture
the heterogeneity in component relationships and incorpo-
rate the pronunciations of characters. Our model largely sur-
passes current tools and also outperforms the state-of-the-
art algorithm. Last but not least, the most popular Chinese
name-gender dataset is single-character based with far less
female coverage from an unreliable source, naturally hinder-
ing relevant studies. We open-source a more balanced multi-
character dataset from an official source together with our
code, hoping to help future research promoting gender equal-
ity.

Introduction
Recently, there have been increasing gender-equality stud-
ies, regarding female researchers (Larivière et al. 2013;
Huang et al. 2020), inventors (Jensen, Kovács, and Soren-
son 2018; Koning, Samila, and Ferguson 2021), en-
trepreneurs (Ritter-Hayashi, Vermeulen, and Knoben 2019;
van den Oever 2021), and STEM students (Cimpian, Kim,
and McDermott 2020), based on large-scale public records
such as scientific papers, patents, and company registrations.
Given the fact that many of these datasets do not contain
gender information, genders are usually inferred from indi-
vidual names. Surprisingly, Chinese females are underrep-
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resented in such research, though there is abundant compa-
rable data in Chinese. One possible reason is the lack of
reliable Chinese name-gender guessing tools that suit the
standard of scientific purposes, compared with their English
counterparts.

Ngender1 is a basic tool for Chinese name-gender guess-
ing, based on Naı̈ve Bayes. It calculates the probability of a
first name, often consisting of one or two Chinese characters,
being a female name, by multiplying such probabilities of
individual characters. Though straightforward, Ngender has
two limitations. One is associated with Naı̈ve Bayes itself –
it does not work for out-of-sample characters that the clas-
sifier has never seen. Furthermore, it overlooks the knowl-
edge from the combination of characters as well as the char-
acter components. The Ngender training data also deepens
both limitations – it only contains the numbers of times each
available character appears in names of females and names
of males, instead of the frequencies of complete first names
under both genders. Existing studies have proved that word
representations from neural network language models such
as BERT and GloVe have a gender tendency and convey gen-
der information (Jia and Zhao 2019; Yang and Feng 2020;
Lauscher et al. 2020; Matthews, Hudzina, and Sepehr 2022).
Among them, Jia and Zhao (2019) propose a BERT-based
model in which each character, whether in or out of the
sample, gets a representation from a pre-trained BERT that
handles the ‘character-out-of-sample’ problem for name-
gender prediction. Besides, by concatenating the character
embedding with the pronunciation embedding, their model,
Pinyin BERT (PBERT), also proves that pronunciations de-
liver gender information.

However, beyond semantics from characters themselves
and their pronunciations, the semantics arisen from charac-
ter components are overlooked in current gender guessing
tools. A large portion of Chinese characters consists of com-
ponents, and these components help shape the meanings of
the characters (Yu et al. 2017). Following this lead, stud-
ies utilize the component-level internal semantic features
for Chinese character representation learning in a word2vec
fashion (Sun et al. 2014; Yu et al. 2017; Zhang et al.
2019). In this direction, Wang et al. (2021) takes a step
forward, capturing the semantic relationships between char-

1https://github.com/observerss/ngender
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acters with shared components by constructing a homoge-
neous graph. In this way, characters and their components
are inter-linked such that the semantic relationships between
characters are better shaped and weighted with the atten-
tion mechanism. Though their FGAT model is the SOTA for
many downstream NLP tasks, the relationships it relies on
are in fact often heterogeneous, and it has not considered the
same-pronunciation connections which can potentially aug-
ment the graph, as hinted by PBERT.

王

珍 珠旺

㐱 日 朱

wáng
jade

wàng
prosperous

zhēn
precious

zhū
pearl

Phonetic Component
Semantic Component

zhěn sun zhū

Figure 1: Example of the shared-component connections.
‘ ’ is the semantic component of ‘ ’ and ‘ ’, but is the
phonetic component of ‘ ’.

We illustrate the heterogeneity in shared-component con-
nections with an example and discuss how it affects our
model design. In Figure 1, we see that the character ‘ ’ (pre-
cious, zhēn)2, ‘ ’ (pearl, zhū) and ‘ ’ (prosperous, wàng)
share the component ‘ ’ (jade, wáng). If modeled by a
homogeneous graph as in FGAT, it will indicate that ‘ ’,
‘ ’, and ‘ ’ have equal pair-wised semantic similarity, con-
tributed by the shared component ‘ ’. Actually, ‘ ’ and
‘ ’ are much closer semantically, than to ‘ ’. Regarding
genders, ‘ ’ and ‘ ’ are popular in female names, while
‘ ’ has a strong male tendency. Therefore, modeling their
relationships homogeneously would mislead name-gender
prediction. In fact, their relationships can be distinguished
if we know the ‘ ’ in ‘ ’ is a phonetic component (solid
arrow in Figure 1) which indicates the pronunciation of
‘ ’ and the ‘ ’ in ‘ ’ and ‘ ’ is a semantic component
(dashed arrow in Figure 1) contributing to its meaning. Be-
sides ‘ ’, ‘ ’ also has a semantic component ‘ ’ (sun)
as shown at the bottom of Figure 1. Similarly, ‘ ’ and
‘ ’ has ‘ ’ (zhěn) and ’ ’ (zhū) as their phonetic compo-
nents, respectively. A character with both semantic compo-
nent and phonetic component, such as ‘ ’, ‘ ’ and ‘ ’, is
called a picto-phonetic character. 80.5% of Chinese charac-
ters are picto-phonetic (Sun 1997), suggesting the effect of
the heterogeneity in shared-component relationships is non-
negligible. Therefore, we design heterogeneous graphs that
specify character-semantic component edges and character-
phonetic component edges.

Within this model structure, we introduce the shared-
pronunciation connection as a new type of edges, given
the effectiveness of pronunciations in gender guessing.
As a straightforward example, characters sharing the pro-
nunciation ‘mei’ (the same pronunciation of the charac-
ter ‘ ’, which means beautiful) are more likely to be in

2The meaning and the pronunciation (italic) are in parentheses.

female names. Now with character-semantic component
edges, character-phonetic component edges, and character-
pronunciation edges, we use a multi-level Chinese character
attention network first to learn the importance of different
components and structural information at the component-
level and then aggregates the gender information conveyed
by pronunciations (i.e., pinyin).

In addition to methodological contributions, we provide
a high-quality Chinese name-gender dataset. Most Chinese
name-gender datasets, such as the Ngender dataset, only
contains frequencies of individual characters instead of com-
plete names and loses important information for Chinese
name-gender prediction. Unlike English first names, which
are usually one-word names, most Chinese first names have
one or two characters, with two-character names being the
majority (84.55%)3. For Chinese first names with more than
one character, the combinations of characters can be infor-
mative, and they sometimes even deliver opposite informa-
tion as we can get from individual characters. For instance,
‘ ’(win) and ‘ ’(male) are characters appearing more in
male names, but ‘ ’(triumph over males) is a female
name. Furthermore, character combinations A-B and B-A
sometimes differ in gender probabilities, as suggested by our
analysis in the Dataset section. To unleash the power of se-
quential representations and promote relevant research, we
open source our large-scale full first name data, collected
from an official source.

To sum up, our contributions in this paper include:

1. To the best of our knowledge, this is the first work that
uses a graph neural network to model Chinese charac-
ters’ internal and external connections for name-gender
prediction to facilitate gender-equality studies.

2. We propose a heterogeneous graph with a multi-level at-
tention network to capture the heterogeneity in seman-
tic relationships between characters and components, as
well as gender inclination indicated by pronunciations.
The model outperforms various baselines and reaches a
state-of-the-art accuracy of 93.62%.

3. We provide a dataset of 58 million Chinese names with
associated genders as well as our source code4, in hopes
of promoting gender equality research, especially for the
underrepresented Chinese females.

Related Work
Name-Gender Prediction
Name-gender prediction is a common task in gender-quality
studies (Larivière et al. 2013; Huang et al. 2020; Kon-
ing, Samila, and Ferguson 2021), as well as in web-
based services like advertising and recommendation sys-
tems (Mukherjee and Bala 2017; Wu et al. 2019). Names,
being very informative in many languages and cultures, are
one important clue for gender guessing.

For western names, Wais (2016) designs genderizeR to
predict the gender of an input name, simply according to the

3www.mps.gov.cn/n2253534/n2253535/c8349222/content.html
4https://github.com/ZhangDataLab/CHGAT
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majority gender of people under this name in their data. Neu-
ral network language models further help exploit more in-
formation and tackle the ‘out-of-sample’ problem. Hu et al.
(2021) construct a character-level BERT-based model to
guess genders from English names.

Chinese, different from Latin-based languages, is logo
graphic. Besides the Chinese characters, their components
and pronunciations also convey information (Cao et al.
2018). Furthermore, in multi-character Chinese names,
combinations across characters bring additional informa-
tion. However, most gender-guessing tools only rely on
character-level information. For instance, Ngender and the
model proposed by Zhao and Kamareddine (2017) both
regard the product of all characters’ probabilities under a
gender as the name’s probability of being that gender, and
output the gender with the highest probability. They have
natural limitations in capturing the extra information that
comes with the combinations of characters. Jia and Zhao
(2019) concatenate character embeddings and pronuncia-
tion embeddings from pre-trained BERT models and mit-
igate these limitations. However, the connections between
Chinese characters indicated by shared components and pro-
nunciations are yet to be fully exploited.

Representing Characters with Components
The components of Chinese characters convey rich seman-
tic information. Previous work incorporates the component
information into the character embeddings based on the
word2vec model to learn the representation of the Chinese
characters (Sun et al. 2014; Yin et al. 2016; Yu et al. 2017).
Seeking finer-grained information, some studies break com-
ponents into sequenced strokes (subcomponents) to enhance
the representations (Cao et al. 2018; Zhang et al. 2019).
Though the characters are decomposed into components or
subcomponents, the word2vec model cannot discriminate
their importance and irrelevant parts can introduce noises
into the representations.

Hence, Wang et al. (2021) model a character and its com-
ponents in a homogenous graph with attention to learn the
importance of components. Meanwhile, it shapes the char-
acter semantics through the characters’ connections with
other characters sharing the same components. As a re-
sult, their FGAT model achieves SOTA results on various
downstream NLP tasks. However, as discussed in Introduc-
tion, their homogenous graph cannot model the heterogene-
ity in character-component relationships, since the majority
of Chinese characters are picto-phonetic and the character-
semantic component relationships and character-phonetic
component relationships should be specified individually in
the form of heterogeneous graphs. As an add-on, the shared-
pronunciation relationships can also be integrated in hetero-
geneous graphs, potentially bringing more gender informa-
tion for our prediction task.

Method
The overall structure of our model is shown in Figure 2. We
take the Chinese characters and their pronunciations as the
inputs to learn the information from the intra-character and

intra-pronunciation combinations in names. Input names in
the form of Chinese characters go into a Chinese Heteroge-
neous Graph Attention (CHGAT) layer and the BERT text
encoder layer simultaneously. The output embeddings from
the two layers are added and concatenated with the name’s
pronunciation embedding, generated by the BERT text en-
coder layer. This embedding is then fed into the Transformer
encoder module to learn the contextual information within
names. Finally, the classifier, a single layer fully connected
network, is used to predict the gender. We detail the design
of our heterogeneous graph as well as its core component,
the CHGAT layer, in the following sections.

Heterogeneous Graph Structure
Formation of Chinese Characters. Chinese evolves from
an ancient hieroglyph writing system. Basic characters such
as wood and fire appeared first, with their individual graph-
ical representations. Characters indicating more complex
concepts, are composed by the combinations of these basic
characters (Tao et al. 2019).

For example, by paralleling two ‘ (wood, mū)’ we get
‘ (woods, lı́n)’. When ‘ (woods, lı́n)’ is further combined
with ‘ (fire, huǒ)’ underneath it, it becomes ‘ (burn, fén)’.

Although the shapes of characters change over time, how
they are combined (i.e., their structures) are preserved. There
are 17 types of structures in modern Chinese according to
QXK5 (a Chinese character information system built by re-
searchers from Beijing Normal University) and we list them
in Table 1. As mentioned in Introduction, 80.5% of simpli-
fied Chinese characters are picto-phonetic, and QXK pro-
vides the semantic components and phonetic components of
most Chinese characters.

Graph Structure. In this paper, we define a heteroge-
neous graph with four types of nodes, namely, character,
semantic component, phonetic component, and pronuncia-
tion, and three types of paths, including character-semantic
component, character-phonetic component, and character-
pronunciation, to incorporate gender information.

If a character is picto-phonetic, it connects with its one
component representing the sound through a character-
phonetic component edge. For its other components, it con-
nects with them by character-semantic component edges.
If a character is non-picto-phonetic, it connects with its
components through character-semantic component edges
as well. Besides, a character-pronunciation edge is added be-
tween the character and its pronunciation.

We take an example of the character ‘ ’ to demonstrate
how characters, pronunciations, and different types of com-
ponents are represented and connected in our heterogeneous
graph. In Figure 3, the focal character ‘ ’ and its phonetic
component ‘ ’ are connected by a character-phonetic com-
ponent edge, and character ‘ ’ and its semantic component
‘ ’ are connected by a character-semantic component edge.

Previous research (Wang et al. 2021) utilizes the homo-
geneous graph to formulate the relations of components to
characters, where there is only one type of node represent-
ing all components and characters and one type of edge

5https://qxk.bnu.edu.cn/#/help
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Figure 2: System structure.

Index Structure Type Icon Example
1 left to right ,
2 left to middle and right ,
3 above to below ,
4 above to middle and below ,
5 full surround ,
6 surround from above ,
7 surround from below ,
8 surround from left ,
9 surround from upper left ,

10 surround from upper right ,
11 surround from lower left ,
12 integral ,
13 isosceles triangle layout ,
14 square layout ,
15 multielement combination ,
16 overlaid ,
17 multielement stacking ,

Table 1: The list of Chinese characters’ formation types. The
first 11 structure type names follow their unicode names,
while the last 6 have no formal names, so we describe their
structural characteristics as best we can.

for inter-character shared-component relationships. They as-
sume that a glyph represents the same semantics when used
as a character, a semantic component, or a phonetic com-
ponent, which is oversimplified. We distinguish between the
semantic and phonetic components, and connect the focal
character to all the characters sharing the same components.

As discussed in Introduction section, Jia and Zhao (2019)
show that character pronunciations have gender inclinations,
but they only use pronunciations as independent representa-
tions, without the message interacting with character embed-
dings. Hence, we connect the character ‘ ’ and its pronun-
ciation ‘zhū’ by a character-pronunciation edge, as shown in
Figure 3.

Character-Phonetic Component

Character-Sementic Component
Character-Pronunciation 

玟 珍

王珠

zhū

朱

茱 姝

Character
Semantic Component

Pronunciation
Phonetic Component

Figure 3: An example of graph composition of the character
‘ ’. ‘ ’, ‘zhū’ and ‘ ’ are the phonetic component, pronun-
ciation and semantic compoente of ‘ ’, and they are con-
nected with ‘ ’ through the character-phonetic component,
character pronunciation and character-sementic component,
respectively.

Chinese Heterogeneous Graph Attention
To aggregate the information in the heterogeneous graph,
we design the Chinese Heterogeneous Graph Attention
(CHGAT) layer with three-level attentions. Both the seman-
tic graph and the phonetic graph contain structural informa-
tion. After the node-level attention aggregates the informa-
tion within each graph, structural information remains scat-
tered among semantic component and phonetic component
nodes. Therefore, the network captures the structural infor-
mation of a character by aggregating the two node-level rep-
resentations. To assemble information from the pronuncia-
tion and the structure representations, another attention, i.e.,
the aggregate attention, is used.

We denote the set of Chinese characters as C =
{c0, c1, ..., cm}. A character ci’s feature embedding is f (i)

c .
All characters share one pronunciation graph gpr, which
is a ‘character-pronunciation-character’ meta-path in (Wang
et al. 2019)’s definition, but each character has its own se-
mantic graph and phonetic graph. For a character ci, its se-
mantic graph contains all the one-hop and two-hop semantic
components of ci, denoted as g(i)

s , while its phonetic graph
is the one containing the one-hop phonetic component of ci,
represented by g

(i)
p . The feature embedding of component so
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in the semantic graph is f (o)
s , while the feature embedding

of component pt in the phonetic graph is f (t)
p .

Wang et al. (2021) introduce position embedding that
adds position information to the component representations.
The same components may appear in various positions of
different characters, and this position information can affect
the meanings of these components. Hence, we add another
position embedding, which represents the position of each
component in the character, denoted as

λ = {λ(0),λ(1), ...,λ(a)}. (1)

Therefore, the initial embedding xi
c, the semantic compo-

nents’ initial embedding xo
s, and the phonetic components’

initial embeddings xt
p for an input character are:

xi
c = f (i)

c + λ(lc), (2)

xo
s = f (o)

s + λ(ls). (3)

xt
p = f (t)

p + λ(lp), (4)

respectively. i, o, and t denote the index of character, seman-
tic component, and phonetic component, respectively. lc, ls,
and lp represent their corresponding position index, respec-
tively.

Here, we define character ci’s phonetic graph feature em-
beddings as X(i)

p , and its semantic graph feature embed-
dings as X(i)

s . The pronunciation graph feature embedding
is X(i)

pr .
Inspired by HAN (Wang et al. 2019), we use a three-

level attention mechanism in our scenario. As illustrated in
Figure 2. The model first learns the node-level embeddings
within each graph, and then the node-level embeddings of
a semantic graph and phonetic graph are fed into the struc-
ture attention to learn a structure embedding. This embed-
ding and the node-level pronunciation embedding are used
to learn the character’s final embedding with an aggregated
attention.

Node-level Attention. We first project different types of
node features into the same feature space with a transforma-
tion matrix:

γ
(i)
k = W

(i)
k x

(i)
k , (5)

where W
(i)
k ∈ Rdk×d is a learnable parameter. k ∈

{s, p, pr} represents path type, and dk is the input feature
dimension. The importance score of node j to target node i
is computed as:

n
(i,j)
k = LeakyReLU (wk[γ

(i)
k ||γ(j)

k ]), (6)

where wk ∈ R1×2d is a learnable vector. The importance
score is then normalized to be the weight of node j to node
i, denoted as θ(i,j)k :

θ
(i,j)
k =

exp(n
(i,j)
k )∑

j∈N (i)
k

exp(n
(i,j)
k )

, (7)

where N (i)
k is the set of all i’s neighbors in the k type of

path. The node-level embedding is then the weighted sum of
all nodes connecting to itself:

h
(i)
k = ∥

t
ELU(

∑
j∈N (i)

k

θ(i,j)γ
(i)
k ), (8)

where t is the number of heads, and ∥ represents the con-
catenation operation.

Attention Module. The attention module aggregates the
representation with different semantics into one representa-
tion. We denote it as:

h(i) = attn(h
(i)
1 ,h

(i)
2 , ...,h(i)

v ), (9)

where v represents the number of inputs. The importance of
each input to the target embedding is:

wr =
1

|N |
∑
i∈N

qT (tanh(Wh(i)
r + b)), (10)

where q, W and b are learnable parameters in the model.
r ∈ {1, 2, ..., v} is the type of semantics, and N is the input
name. Then the importance score of each input is:

δr =
exp(wr)∑

u∈[1,v] exp(wu)
. (11)

The target embedding is:

h(i) =
∑

r∈[1,v]

δrh(i)
r . (12)

Structure Attention Layer. In the structure attention
layer, we learn the structure representation of ci from its
node-level embeddings of the semantic graph and the pho-
netic graph with an attention module:

h
(i)
structure = attn(h(i)

s ,h(i)
p ). (13)

The h
(i)
structure denotes the structure representation of char-

acter ci.

Aggregate Attention Layer. The aggregate attention
layer assembles the character ci’ pronunciation representa-
tion, and its structure representation into one embedding.
Again, this is achieved by applying an attention module,
which is:

z(i) = attn(h
(i)
structure,h

(i)
pr ). (14)

Finally, z(i) is the output of ci at the CHGAT layer.

Loss Function
Our objective function is defined as:

L = −
J∑
j

yj log(ŷj) + (1− yj)log(1− ŷj) (15)

where J represents the number of data, yj is the label of the
jth input, and ŷj represents the predicted probability of yj
being the label.
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Records # First Names M-to-F%
Ngender 32,067,566 9,442 197.28
Our Dataset 58,393,173 560,706 111.58
9,800 Names 9,800 6,972 100.00
25,856 Names 25,856 21,051 100.00

Table 2: Statistics of the datasets. For the Ngender dataset,
we count its unique characters as its unique first names, since
it is a single-character dataset. Besides, we show the ratio of
males to females for each dataset.

Dataset
We provide a dataset with 58,393,173 records of 560,706
different first names and the associated gender for each name
occurrence, collected from an official source. To be spe-
cific, we begin with 8,224,820 unique full names without
gender information in a company registration dataset from
China’s State Administration for Industry and Commerce.
These full names are then used as queries to a service from
Guangdong province government that provides the number
of females and males with the querying name. The resulting
gender frequencies are aggregated under the 560,706 unique
first names to form our dataset.As a comparison, the most
popular Chinese name-gender prediction tool (Ngender) on
GitHub provides a dataset of 32,067,566 entries of 9,442
characters which is collected from unofficial sources. The
detail information of the datasets is shown in Table 2.

Our dataset is naturally more informative than the Ngen-
der dataset – Ngender only provides for each character the
numbers of females and males with this particular character
in their first names, and the information from multi-character
combinations is absent. However, this combination conveys
important gender information. For instance, when two char-
acters associated with the same gender are put together, their
combination can indicate the opposite gender, as discussed
in Introduction. According to our statistics, these cases ac-
count for 1.75% of names in our dataset. Beyond this, we
discover that when we reverse the two characters in names,
14.77% of names would have reversed gender tendency.
These confirm that character combinations actually deliver
helpful information for distinguishing genders.

Moreover, our dataset is more balanced with a male-to-
female ratio (M-to-F) of 111.59%, against a highly unbal-
anced ratio of 197.28% for Ngender.

Experiments
Experimental Setup
Datasets. Besides our dataset, we use the aforementioned
Ngender dataset to train the models as a comparison for en-
hancements from improved data quality. We test the models
not only by splitting training and test sets, but also by intro-
ducing test data from two independent sources containing
names and genders. We name them 9,800 Names (Cai et al.
2021) and 25,856 Names (Du, Liu, and Tian 2020) respec-
tively. Their detailed information is in Table 2.

Implementation Details. Both the Ngender dataset and
our dataset are split into 90% training, 5% validation, and

5% test. All models are trained with the same epochs. The
learning rate and the weight decay value of each model are
adjusted with grid search. We use the accuracy score to eval-
uate all models, which is the number of correctly guessed
instances over the total instances.

The initial embeddings in all models are randomly initial-
ized. For all tasks, we set the number of attention heads to
6 and the dimension of embedding vectors to 768. We use
AdamW as the optimizer. The learning rate and the weight
decay of all models are adjusted with grid search.

Baselines. We compare our method (CHGAT) with three
representative baselines:
• Ngender: A commonly used Chinese name-gender pre-

diction tool based on Naı̈ve Bayes.
• Pinyin BERT (Jia and Zhao 2019): Pinyin BERT

(PBERT) makes use of characters’ semantics from a pre-
trained BERT as well as the gender information delivered
in pronunciations by concatenating the two embeddings
and feeding them into a BERT model.

• FGAT (Wang et al. 2021): The Chinese character
formation graph attention network is a state-of-the-art
model in Chinese character representation learning. It is a
multitask representation model that uses a homogeneous
graph to capture the semantic information delivered by a
character’s components. To make a fair comparison, we
include pronunciation by concatenating the name’s pro-
nunciation embedding to the output character embedding
from FGAT, and use the concatenated embedding to pre-
dict name gender.

Experiment Results
Table 3 shows that our model hits the highest accuracy
scores in all training and test combinations. When the ex-
periment is conducted entirely on our dataset, it achieves the
accuracy of 93.62% which is significantly higher than the
public available Ngender on its public dataset (84.76%).

Our method and FGAT, as the graph-based methods, out-
perform PBERT in all experiments by up to 4.72% relatively.
This indicates the structural information captured plays an
important part in name-gender guessing. Our method fur-
ther surpasses the current SOTA, FGAT, by 0.14% to 1.27%
when trained on the Ngender dataset, suggesting the het-
erogeneity in component relationships and information con-
veyed in shared pronunciations help the prediction.

It is worth noting that models trained on our dataset all
outperform themselves trained on the Ngender dataset, with
exceptions when the test set is from Ngender (the ‘Ngender’
column in Table 3). This suggests that our dataset is a better
source for training data and a possible reason for the excep-
tions is that dataset-dependant information may be learned,
and it helps predict the test examples from the same dataset.

Ablation Study
To validate the pronunciation node type included in our het-
erogeneous graph and the design consideration of three-level
attention network, we build two variants (variant 1 and vari-
ant 2) of our network and compare them with our origi-
nal model and FGAT. variant 1 is obtained by removing
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Testing Dataset

Training Method 9,800 Names 25,856 Names Ngender Ours

Ours

Ngender 0.7066 0.7529 0.6636 0.8757
PBERT 0.8136 0.8081 0.7849 0.9309
FGAT 0.8139 0.8126 0.7854 0.9329

CHGAT 0.8147 0.8186 0.7873 0.9362

Ngender

Ngender 0.6868 0.7518 0.6636 0.8476
PBERT 0.7541 0.7776 0.8010 0.9012
FGAT 0.7798 0.7977 0.8042 0.9148

CHGAT 0.7897 0.8040 0.8054 0.9168

Table 3: Experiment results of all models trained on the Ngender data and our data, and tested on four datasets.

the pronunciation node type and character-pronunciation-
character meta-path graph from the CHGAT layer in the
original model (details in the upper part of Figure 4). The ag-
gregation attention layer used for aggregating pronunciation
and structural information is no longer needed and therefore
removed. In variant 2 (shown in the lower part of Figure 4),
we remove the structure attention layer and use the aggre-
gate attention layer directly.

On the 9,800 Names dataset (split in 8:1:1 for training,
validation, and test sets), the two variants show decreased
performance from the original model but still remain more
effective than the FGAT model as shown in Table 4. The
variant 1 achieves a relative improvement of 1.27% com-
pared to FGAT, which suggests that the heterogeneous graph
in variant 1 obviously captures more structural information
than the homogeneous one in FGAT.

Unsurprisingly, our model achieves a relative improve-
ment of 1.26% compared to variant 2, which indicates that
the multi-level attention network in the original model is
more effective than the single-level attention network.

Though variant 2 includes pronunciation information, it
has a worse performance compared with variant 1. This sug-
gests that variant 2’s single-level attention does a very bad
job in incorporating pronunciation information, such that it
even introduces noises that undermine its performance.

FGAT variant 1 variant 2 our model
accuracy 0.8010 0.8112 0.8071 0.8173

Table 4: Accuracy of FGAT, variant 1, variant 2, and our
model trained and tested on 9,800 Names.

Complexity Analysis
We analyze the complexity of the baselines and our model.
For PBERT, the complexity is O(dn2), where d denotes the
feature dimension and n is the sequence length (number of
Pinyin letters in a name). FGAT has a word graph learn-
ing part that increases the complexity to O(dn2 +L|V |d2 +
L|E|d), where L is the number of GNN layers, |V | is the
number of nodes and |E| is the number of edges. Compared
with FGAT, our model performs additional attention aggre-
gations, adding adp2 to the complexity, where p denotes the
number of meta-paths and a is the number of aggregations.
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A
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Figure 4: Illustration of CHGAT layer’s variants.

This is a slight increase since the complexity is largely de-
termined by d2. Besides, as the training happens offline and
we do not need instant responses when guessing the genders,
the complexity is acceptable in practice.

Conclusion
To address the lack of high-quality Chinese name-gender
prediction tools and to facilitate the gender bias research for
the underrepresented, we propose a heterogeneous graph at-
tention model incorporating structural and pronunciation in-
formation of Chinese characters for Chinese name-gender
prediction that outperforms all SOTA models. Besides, we
open source a large-scale Chinese name-gender dataset as
well as our source code. As a future step, we plan to ex-
tend our method to the many other tasks that involve Chinese
character representations.
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