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Abstract

Generative transformer-based models have reached cutting-
edge performance in long document summarization. Never-
theless, this task is witnessing a paradigm shift in develop-
ing ever-increasingly computationally-hungry solutions, fo-
cusing on effectiveness while ignoring the economic, en-
vironmental, and social costs of yielding such results. Ac-
cordingly, such extensive resources impact climate change
and raise barriers to small and medium organizations distin-
guished by low-resource regimes of hardware and data. As
a result, this unsustainable trend has lifted many concerns
in the community, which directs the primary efforts on the
proposal of tools to monitor models’ energy costs. Despite
their importance, no evaluation measure considering mod-
els’ eco-sustainability exists yet. In this work, we propose
Carburacy, the first carbon-aware accuracy measure that
captures both model effectiveness and eco-sustainability. We
perform a comprehensive benchmark for long document sum-
marization, comparing multiple state-of-the-art quadratic and
linear transformers on several datasets under eco-sustainable
regimes. Finally, thanks to Carburacy, we found optimal
combinations of hyperparameters that let models be compet-
itive in effectiveness with significantly lower costs.

Introduction
In the last few years, we have witnessed remarkable progress
on a broad range of natural language processing (NLP) tasks
(Borgeaud et al. 2022; Moro et al. 2022; Frisoni et al. 2023),
accomplished by increasingly large and computationally-
hungry transformer-based models (Floridi and Chiriatti
2020; Smith et al. 2022) backed by high-performance ded-
icated hardware such as GPUs and TPUs (Wang, Wei, and
Brooks 2019). Such solutions are proposed to obtain new
state-of-the-art results, namely enhancing the score of auto-
matic evaluation measures that focus on effectiveness (e.g.,
ROUGE (Lin 2004) for text summarization and F1 for ques-
tion answering), completely overlooking the economic, en-
vironmental, and social costs of attaining those outcomes
(Strubell, Ganesh, and McCallum 2020). Thus, the AI com-
munity started raising concerns for this unsustainable trend
(Bender et al. 2021), proposing tools to monitor energy costs
without concrete solutions (Henderson et al. 2020).

Copyright © 2023, Association for the Advancement of Artificial
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An example of an NLP task affected by this shift is long
document summarization, which aims to compress a lengthy
input text into a shorter version while preserving the salient
details in terms of informativeness and factual consistency
(Koh et al. 2023). This task is dominated by large solu-
tions (Wu et al. 2021; Mao et al. 2022) requiring massive
labeled training data and high-memory GPUs (up to 48 GB)
to obtain state-of-the-art results at the expense of a high
carbon footprint (Dhar 2020; Patterson et al. 2022). Con-
sequently, this untenable tendency narrows the research to
large companies, raising barriers to small and medium orga-
nizations distinguished by low-resource regimes (e.g., GPUs
of 12 GB memory and 100 training samples). Besides, in
the face of the climate change problem, it is compulsory
to minimize carbon sources to avoid rising global temper-
atures (Pörtner et al. 2022). Hence, we argue that the re-
search must move toward environmental-friendly cutting-
edge approaches (Tambe et al. 2021; Du et al. 2022; Moro
and Ragazzi 2022; Frisoni et al. 2022b; Moro et al. 2023).
Nevertheless, there is no automatic evaluation measure to
capture the eco-sustainability of models, restricting the rise
of new research directions toward greener solutions.

This paper presents Carburacy,1 the first carbon-aware
accuracy measure to evaluate models by considering the
performance and the CO2 emissions demanded to fulfill
their effectiveness score. The key features of Carburacy
are: (1) Applicability in multiple NLP tasks, namely those
assessed by metrics that produce a score ∈ [0, 1] (e.g.,
text summarization and classification). (2) Two hyperpa-
rameters used to tune what should be prioritized and re-
warded (i.e., model effectiveness or eco-sustainability). To
test Carburacy, we benchmark multiple state-of-the-art
quadratic and linear transformers on various long docu-
ment summarization datasets under challenging scenarios of
limited hardware and data. Precisely, we study the impact
of many hyperparameters on model effectiveness and eco-
sustainability, optimizing the pipelines toward greener train-
ing. Moreover, we investigate the inference phase, which is
paramount for model deployment at the business level.

Contributions. Our contributions are the following:
(1) A novel carbon-aware accuracy measure to automati-
cally consider eco-sustainability. In this work, we propose

1The code is at https://github.com/disi-unibo-nlp/carburacy
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Carburacy, which fits many NLP tasks and assesses mod-
els based on the cost needed to achieve their effectiveness.
(2) In-depth comparison of models in long document sum-
marization under low-resource regimes. We perform a deep
benchmark of state-of-the-art models in long document sum-
marization under challenging settings of hardware and data.
(3) Findings of optimal combinations of hyperparameters.
Thanks to Carburacy, we uncover the hyperparameters
that let models obtain high effectiveness with low costs.

Related Work
Carbon Emissions Measures. Several works presented
tools to estimate the energy consumption (Yang et al. 2017)
and carbon footprint (Anthony, Kanding, and Selvan 2020;
Naidu et al. 2021) of machine learning models and trans-
formers (Cao et al. 2021; Lal et al. 2021), fighting against the
problem of climate change by promoting future directions
toward energy-efficient solutions. Despite their importance,
no single evaluation measure considering the effectiveness
and cost has been proposed, confining the development of
new environmentally friendly state-of-the-art models.

Energy Costs Comparative Studies. Various works pro-
posed studies on the environmental costs of models, ranging
from computer vision (Li et al. 2016; Hampau et al. 2022)
to NLP (Cao, Balasubramanian, and Balasubramanian 2020;
Strubell, Ganesh, and McCallum 2020; Bannour et al. 2021;
Zhou et al. 2021). Nonetheless, there is no comparative anal-
ysis of models in long document summarization and under
low-resource scenarios, ignoring the many different infras-
tructures that research teams and organizations may have.

Our Work. Unlike prior contributions, our paper pioneers
the exploration of the first carbon-aware accuracy measure
(Carburacy), presenting an in-depth comparative analy-
sis of cutting-edge models in long document summarization
under low-resource regimes of hardware and data. Accord-
ingly, Carburacy is not directly comparable with existing
cost estimation metrics because it is the first measure that
integrates both costs and effectiveness in a single score.

Methodology
In this section, we define the concept of effectiveness and
cost and introduce our novel measure dubbed Carburacy.

Effectiveness
The effectiveness (R henceforth) is the result in terms of the
model’s accuracy. In long document summarization, R is
evaluated with ROUGE (Lin 2004), which reckons the lexical
overlaps of words and sentences between the inferred and
target summary with three scores (i.e., r1, r2, rL). For text
summarization, we formally define R ∈ [0, 1] as:

R =
A(r1, r2, rL)

1 + σ2
r

(1)

where A is the average function and σ2
r is the variance of the

ROUGE scores. By dividing the averaged score by the vari-
ance, two models with the same average but different scores
are not considered equal. Indeed, high variance means that

Task Eval Metric Effectiveness (R)

Summarization ROUGE (r1, r2, rL)
A(r1, r2, rL)

1 + σ2
r

Translation BLEU BLEU

Classification Accuracy / F1 Acc / F1 /
A(Acc,F1)

1 + σ2
Acc,F1

Table 1: Effectiveness formulas for different NLP tasks.
Some tasks miss a custom formula because they are already
evaluated with a single metric that produces a score ∈ [0, 1].

the generated summary fails on some scores. For instance,
our measure considers a model that obtains an {r1, r2, rL}
score of {0.4, 0.2, 0.3} better than a model that achieves
{0.5, 0.15, 0.25}, despite having the same averaged score.

Eq. 1 explicitly defines the effectiveness of those tasks
estimated with ROUGE, but it can be formulated for numer-
ous NLP tasks (Table 1), e.g., text classification (Moro et al.
2018) and information retrieval (Moro and Valgimigli 2021).

Cost
The cost (C henceforth) denotes the resources required for
a model to obtain R. A first cost formulation is defined in
Schwartz et al. (2020) as C ∝ E·D·H , where E is the cost of
processing a single example, D is the size of the dataset, and
H is the number of experiments for hyperparameter search.

Since we aim to investigate the correlation between the
model effectiveness and cost by varying the hyperparame-
ters, and the cost depends on the single instance’s energy
consumption for each sample of the dataset, we define C as:

C = E ·D (2)

Thereby, we want to determine how to gauge E formally.
Since it is a common practice to consider only the computing
device’s dynamic energy consumption for comparing mod-
els (Gupta et al. 2022; Wu et al. 2022), although it does not
represent the total environmental cost, we assume the fol-
lowing candidate sources:
• Hardware cost: the monetary cost of acquiring the re-

quired hardware.
• CO2 emissions and energy cost: the CO2 produced or

the electricity used.
• GPU memory usage: the GB of GPU memory needed.

Since energy and CO2 emissions are proportional, accord-
ing to the provider policy on renewables, we only employ
the latter to estimate the cost. We also neglet (1) the hard-
ware buying cost because it is a one-time purchase strictly
related to market costs and (2) the GPU memory occupation
because it is unrelated to the carbon footprint, but we still
report it for each experiment. Therefore, we define E as:

E = CARBON(M(x)) (3)

where CARBON is the kg of CO2 produced by a model M
to process an instance x. More precisely, CARBON is cal-
culated by multiplying the power consumed by the compu-
tational infrastructure (quantified as kilowatt-hours) and the
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Figure 1: A analyzes how α impacts the Carburacy score (C = 0); the dashed lines are the derivatives. B shows different
behaviors by varying β and R (α = 10). C reports the relation between ∆C, the difference of carbon emissions, and the
effectiveness of keeping Carburacy stable using different α values, starting from a model with R = 0.4 and Υ · β = 0.5.

carbon intensity of the electricity consumed for computation
(quantified as kg of CO2 per kilowatt-hour of electricity).

Carburacy
We present Carburacy (Υ henceforth),2 the first carbon-
aware accuracy measure, which represents the trade-off be-
tween the model effectiveness (R) and cost (C), as follows:

Υ =
elogα R

1 + C · β
(4)

where α ≥ e and β > 0 are hyperparameters to balance
the effectiveness and the cost, respectively. Specifically, we
adopt elogα R to simulate a non-linear trend of the effective-
ness. As reported in Fig. 1-A, the function curvature is reg-
ulated by α, exhibiting a linear behavior for α = e. Under
this setting, α rewards the effectiveness gains that are math-
ematically more significant. For instance, the performance
improvement {0.05 → 0.10} is mathematically more signif-
icant than {0.70 → 0.75} because the first doubles the effec-
tiveness (+100%) while the second is proportionally smaller
(+7.14%). Thus, the greater the α value, the greater the cost
allowed for boosting lower performance (Fig. 1-A quantifies
this reward by reporting the function’s first derivative). Con-
versely, β weights the model cost (Fig. 1-B), assigning more
or less importance to the carbon footprint over performance.

We define ∆C as the emissions produced by improving
the effectiveness without decreasing Carburacy:

∆C =
elogα Rn − elogα Ro

Υ · β
(5)

where Rn and Ro are the new and old effectiveness scores,
respectively. As an example, given a model with R = 0.4,
and set β = 1 and Υ = 0.5, Fig. 1-C shows the ∆C value
needed to keep stable Υ while decreasing/increasing R (sev-
eral trends are shown based on different α values).

The decoding strategy at inference time plays a critical
role in R, but its cost is not yet considered in Eq. 4. For this

2We assign the upsilon Greek letter (Υ) to Carburacy to pro-
mote the green AI concept since it resembles a tree.

Dataset Domain # Docs Source Target
# words # words

PUBMED Biomedical 133,215 3224.4 214.4
ARXIV Scientific 215,913 6913.8 292.8
GOVREPORT Legal 19,466 9409.4 553.4

Table 2: Statistics of the datasets used as testbeds. The num-
ber of words are averaged across all instances.

reason, we measure Carburacy at training and inference
time, also providing their harmonic mean:

Υt =
elogα R

1 + Ct · βt
Υi =

elogα R

1 + Ci · βi

Υm = 2 · Υt ·Υi

Υt +Υi

(6)

where Ct, βt and Ci, βi are the cost and its modulator at train-
ing and inference time, respectively. In particular, while Ct
represents the CO2 emissions produced to execute the train-
ing phase with n samples, Ci considers only the cost of
processing a single test instance. Indeed, datasets have test
sets of a different number of samples which, unlike training,
do not contribute to model effectiveness (i.e., a test set of
10, 000 instances is more expensive to process than a test set
of 100 examples, but model effectiveness does not change).
In addition, since the model is trained once and applied on
demand, the inference cost, which is negligible w.r.t. the
training, should be evaluated for a single instance.

In this study, we empirically set α = 10, βt = 1, and
βi = 100, but they can be tuned differently according to
what should be prioritized (i.e., model effectiveness or eco-
sustainability). In detail, we choose α = 10 because it is
a good trade-off between a flat trend and a too-steep curve
(Fig. 1-A), βt = 1 to represent the unit cost, and βi = 100
to have the training and inference cost on similar scales.

Domain. {Υ ∈ R | 0 < Υ ≤ 1 }. We obtain that using
the exponential and letting R ∈ [0, 1]: for R = 0, logα 0 →
−∞ and e−∞ → 0+; for R = 1, logα 1 = 0 and e0 = 1.
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Experiments
Datasets
We contemplate the following public datasets of different
domains and text sizes as evaluation benchmarks (Table 2).3

• PUBMED (Cohan et al. 2018) consists of 133K biomed-
ical papers from PubMed.

• ARXIV (Cohan et al. 2018) comprises 216K scientific
papers from arXiv.org.

• GOVREPORT (Huang et al. 2021) includes 19K U.S.
government reports.

Models
We compare the results of state-of-the-art quadratic and lin-
ear transformer-based models with a base and a large size,
benchmarking 8 models overall.4

• BART (Lewis et al. 2020) is a transformer with a
quadratic memory complexity in the input size limited
to process sequences up to 1024 tokens in length due to
the positional embedding mechanism.5 We use the offi-
cial BART-base and BART-large checkpoints.

• T5 (Raffel et al. 2020) is a quadratic transformer with-
out an input size limit, thanks to the relative embedding
mechanism. We use the official 1.1 version of T5-base
and T5-large pre-trained checkpoints.

• LED (Beltagy, Peters, and Cohan 2020) is a transformer
with a linear memory and time complexity in the in-
put size, thanks to sparse attention. We use the official
LED-base and LED-large pre-trained checkpoints.

• LONGT5 (Guo et al. 2022) is a linear transformer with
sparse attention. We use the official LONGT5-base
and LONGT5-large pre-trained checkpoints with the
Transient-Global attention mechanism.

Experiment Setup
To compare state-of-the-art models in low-resource regimes,
we simulate two real-world scenarios.
• Limited GPU memory: we benchmark models and their

GPU usage by truncating input texts into different sizes,
simulating a low-resource scenario of GPU memory in
which the processing of long sequences throws “out of
memory” exceptions (we apply input truncation because
it is the general approach used when the input is longer
than the GPU memory). Technically, we used the follow-
ing sizes: 512, 1024, 2048, 4096, 8192, 16384.

• Limited number of training instances: we analyzed
models’ few-shot learning ability by fine-tuning them
with a different number of training samples, simulating
a low-resource scenario of labeled data. Concretely, we
used the following instances: 1, 10, 100, 1000, 10000.
3All datasets are publicly available in Hugging Face: https://

huggingface.co/datasets. We use the “scientific papers” dataset for
ARXIV and PUBMED and “launch/gov report” for GOVREPORT.

4All pre-trained model checkpoints are publicly available in
Hugging Face: https://huggingface.co/models

5More tokens could be fed into BART by training larger posi-
tional embeddings from scratch. However, the model is not pre-
trained for such embeddings, resulting in unfair comparisons.

Implementation Details
We describe the implementation details of our experiments
performed with PyTorch on a workstation using a sin-
gle GPU NVIDIA RTX 3090 of 24 GB memory, 64 GB
of RAM, and an Intel® Core™ i9-10900X1080 CPU @
3.70GHz.
• Training: we use the first n samples of the training sets

without shuffling, following the same approach in Chen
and Shuai (2021). We train all models for 3 epochs, sav-
ing the model checkpoint that performed best on the val-
idation sets. We apply gradient checkpointing to save
memory, used the Adam optimizer, set the learning rate
to 5e-5, and set the seed to 42 for reproducibility.

• Inference: we evaluate all models on the first 100 in-
stances of the test sets to save time. We use the beam
search as the decoding strategy, setting the beam width
to 2. We use an n-grams penalty of 3 for PUBMED and
ARXIV and 5 for GOVREPORT.6 We set the following
output lengths (min-max) based on statistics in Table 2:
PUBMED (100-300), ARXIV (150-350), GOVREPORT
(500-1000). At the end of each training epoch, we use
the same evaluation settings to monitor the performance
on the first 10 samples of the validation sets (to simulate
further a low-resource scenario), saving the checkpoint if
R is higher than the performance of the previous epoch.

Metrics
We evaluated the models under several facets:

• Effectiveness: we used Eq. 1 to assess the effectiveness,
considering the F1 scores for r1, r2, rL. In detail, we split
the summaries into sentences to compute the rL score.7

• Cost: we used Eq. 2 to compute the models’ cost. In par-
ticular, we leveraged the software CodeCarbon8 to esti-
mate E, namely the amount of CO2 emissions produced
by our infrastructure resources used to execute the model
training and inference. Concretely, CodeCarbon moni-
tors the CPU, TDP, and GPU energy consumption and
converts the energy into CO2 produced according to pre-
defined conversion policy rules based on the local energy
mix, defined in Lottick et al. (2019). Despite the impor-
tance of a complete vision of the overall footprint, we
omit the cost of the pre-training phase of models for sev-
eral reasons: (1) Pre-training is performed once and al-
lows models to be fine-tuned in a wide range of down-
stream tasks by transferring and specializing knowledge.
(2) We aim to compare multiple pre-trained models in
the long document summarization task. (3) The footprint
of the model pre-training is on higher scales than fine-
tuning, making the latter irrelevant if not applying an
empirical normalization. (4) The pre-training footprint is
unessential at the business level because the application
6The penalty ensures that no n-gram appears twice by manually

setting the probability of the following words that could create an
already seen n-gram to 0.

7We used the ROUGE measure provided by NLG Metricverse
(Frisoni et al. 2022a), using “rougeLsum” as rL.

8https://codecarbon.io/
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Figure 2: The Carburacy scores on GOVREPORT by varying the input size (reported on top) and the training samples.
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Figure 3: The GPU memory occupation on GOVREPORT by
varying the input size at training time.

costs are related to energy consumption usage. (5) The
CO2 emissions for pre-training such models, required for
the overall footprint, are generally not publicly released,
making the re-pre-training from scratch the only option.

• Efficiency: we used our Carburacy measure (Eq. 6) to
assess the models’ efficiency. Thus, we refer to efficiency
as the trade-off between effectiveness and costs.

• Occupation: we report the GB of GPU memory used at
training time to determine the models’ GPU occupation.

Results and Discussion
Analysis on the Number of Training Samples
Fig. 2 reports the Carburacy scores on GOVREPORT by
feed models several input sizes and training instances (the
GPU memory occupation at training time is shown in Fig. 3).
The trend of Carburacy is not linear but follows a curve
with a peak around 100 training documents (Table 5 reports
some values for greater understanding). Similar behavior
can be seen from almost all models tested on different set-
tings and datasets (we show these results in the Appendix9

for space reasons). This trend is due to the few-shot learn-
ing capabilities of language models, which achieve good
results with meager costs. Indeed, the better the few-shot
learning skills, the more eco-sustainable the models because
they can achieve good effectiveness with minimal CO2 emis-
sions. With more training samples, the extra cost does not
justify the slight improvement in effectiveness, thus lead-
ing to a drop in Carburacy. Large models, which con-
tain more parameters, tend to obtain a similar Carburacy
score to the base models, even if they produce significantly
more CO2; but, they are inefficient for long training sessions
because they emit more CO2 without significantly improv-
ing effectiveness. Indeed, with 10, 000 samples, base models
achieve a better Carburacy score than their large versions.

9Appendix is at https://github.com/disi-unibo-nlp/carburacy
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Figure 4: The graphs show the CO2 (the bars) and Carburacy (dashed lines) for different models. A reports the decoding
with different beam widths. B shows the training with different batch sizes. C reports the inference with different input lengths.

Analysis on the Input Size
Fig. 2 shows that enlarging the training input tokens results
in effectiveness improvements more significant than the car-
bon emissions. Because of the nature of the task, which is
long document summarization, extending the input tokens
means giving the model more information. Thus, the same
model in the same settings but with more input tokens gen-
erates a higher-quality summary. Conversely, a large number
of input tokens makes the model consume more energy and
GPU memory; however, the effectiveness rises significantly,
increasing the overall Carburacy. The Carburacy score
for extensive input lengths is, on average, better than for
shorter ones. This trade-off makes linear transformers more
eco-sustainable in long document summarization than mod-
els limited to processing few tokens, such as BART.

Analysis on the Training Batch Size
We study whether training with different batch sizes im-
proves Carburacy. Specifically, Fig. 4-B shows the results
by setting the following batch sizes: 1, 2, 4, 8, 16. We notice
that enlarging the batch size reduces Carburacy slightly.
This behavior is due to a drop in effectiveness while the cost
remains stable. Indeed, the model learns during the back-
propagation call while it adjusts the model weights to mini-
mize the loss. Enlarging the batch size and keeping the num-
ber of training samples fixed leads to minor training steps
with fewer backpropagation calls, resulting in a less-trained
model. As is known, a large batch size is helpful to avoid
overfitting and enhance generalization and optimal conver-
sion, which are aspects concerning long training sessions. In
our case, the training phase is relatively short, so the batch
size keeps only the drawback of reducing the number of
backpropagation calls, worsening the Carburacy score of
models. The only exception among all models is LONGT5-
base, where Carburacy tends to improve.

Analysis on the Decoding Strategy
The decoding strategies used to generate the final summary
are fundamental for the model’s effectiveness (Wiher, Meis-
ter, and Cotterell 2022). Therefore, we investigate two cru-

cial components in the decoding phase: the input size and the
number of beams in the beam search decoding method. As
reported in Table 3 and Table 4, the CO2 emissions during
the test phase are significantly larger than in training, even
when the latter uses more samples. Indeed, the model’s en-
coder and decoder are only called once at training time for
each input example. On the contrary, the decoder is called
j ≤ k ≤ z times during inference, with j and z equal to
the min and max number of target tokens to generate, re-
spectively. Thus, investigating the CO2 footprint of decoding
techniques is crucial, particularly for business applications.

Beam Search. It is a decoding strategy that produces
N different summaries for each document and keeps the
most probable (N is the number of beams). Despite its
widespread usage in text generation, it forces the model to
work with multiple copies of the input, resulting in high en-
ergy consumption and GPU usage. Fig. 4-A contains the
Carburacy score of three models using the following
beam widths: 2, 4, 6, 8, 10. Results show that, for each
model, Carburacy tends to decrease even when the ef-
fectiveness improves because the energy consumed is more
than the performance gain. The picture also reports a linear
trend of CO2 emissions with respect to the number of beams.

Inference Input Length. In this experiment, we select
two linear and quadratic models: LED-large, LED-base, T5-
large, T5-base. All checkpoints are trained with 1024 as
the input length on 100 training samples. We investigate
different inference input lengths: 1024, 2048, 4096, 8192,
16384. Fig. 4-C reports how CO2 emissions change ac-
cording to the inference input length. Linear models keep a
stable Carburacy while CO2 emissions increase slightly,
mitigated by a minor effectiveness improvement. Quadratic
models fail, with a significant Carburacy drop due to the
linear increase of CO2 emissions. To sum up, increasing the
input length at inference time does not help any model.

Findings
Q1: which are the most efficient models? Table 3 reports
statistics of the top-3 efficient models for each dataset, which
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Hyperparameters Effectiveness Costs Efficiency

Dataset Model Input
Size

Training
Samples

ROUGE
(R1 / R2 / RL) R kg CO2 (C)

Train / Test
Memory (MB)

Train / Test
Carburacy

(Υt / Υi / Υm)
PUBMED LONGT5-B 2048 1000 39.46/14.83/35.76 29.69 0.0237 / 0.0212 7566 / 5516 55.08/57.77/56.39

LED-L 8192 100 37.64/14.46/33.90 28.37 0.0073 / 0.0307 19540 / 11886 56.62/56.14/56.38
LED-B 4096 100 35.76/12.96/32.22 26.98 0.0023 / 0.0090 8334 / 4366 56.21/55.87/55.93

ARXIV LONGT5-B 2048 100 41.65/14.15/37.64 30.70 0.0025 / 0.0262 7734 / 6484 59.44/58.34/58.88
LED-L 1024 100 41.08/13.22/37.29 30.07 0.0023 / 0.0157 10746 / 5704 58.93/58.43/58.68
LED-B 8192 100 41.49/13.52/37.55 30.39 0.0042 / 0.0187 13150 / 6164 58.87/58.52/58.70

GOVREPORT LED-B 8192 100 54.33/21.49/51.48 41.51 0.0036 / 0.0801 10776 / 5833 67.54/63.20/65.30
LED-L 2048 100 50.40/17.70/47.37 37.67 0.0034 / 0.1021 10748 / 6254 64.79/59.38/61.97
LONGT5-B 4096 100 50.40/17.31/47.36 37.52 0.0042 / 0.1729 8474 / 10872 64.52/55.70/59.78

Table 3: The results of the top-3 efficient base (B) and large (L) models for each dataset. Best scores are bolded for each dataset.

Model Size Samples R C
Train / Test Υm

Quadratic
T5-B 1024 1000 23.07 0.0101 / 0.0229 51.52
T5-L 512 1000 24.41 0.0185 / 0.0493 51.50
BART-B 512 1000 25.80 0.0033 / 0.0041 55.14
BART-L 512 100 24.80 0.0007 / 0.0085 54.29

Linear
LONGT5-B 4096 100 25.64 0.0027 / 0.0359 54.18
LONGT5-L 8192 10000 25.07 0.7176 / 0.0710 25.96
LED-B 8192 10 25.88 0.0002 / 0.0096 55.32
LED-L 1024 100 25.84 0.0023 / 0.0107 55.07

Table 4: The comparison of base (B) and large (L) models
with similar effectiveness on the PUBMED dataset.

Training
Samples R C

Train / Test Υt / Υi / Υm

1 26.90 0.0001 / 0.3416 56.52/42.14/48.28
10 29.85 0.0005 / 0.2230 59.06/48.37/53.18
100 42.17 0.0058 / 0.1160 67.55/61.59/64.43

1000 42.81 0.0633 / 0.1155 58.13/62.01/60.01
10000 45.67 0.5322 / 0.1146 27.40/63.84/38.34

Table 5: The results of LED-base with 16384 as input length
on GOVREPORT by varying the number of training samples.

are LED-base, LED-large, and LONGT5-base. In Table 4, we
analyze the models that achieve a similar R on PUBMED,
finding that LED-base, LED-large, and BART-base are the
three most efficient models. In general, linear models are
more efficient than quadratic ones, even on short documents.

Q2: which are the most impacting factors? We found
that the number of training samples and beams is directly
proportional to the CO2 emissions. A similar behavior re-
gards input size at training and inference time for quadratic
models. Differently, linear models do not suffer such draw-
backs because raising the training input length leads to high
effectiveness and Carburacy.

Q3: which is the most eco-sustainable pipeline? Based
on our findings, we initially suggest training models with

Model R C
Train / Test Υm

Text Classification (IMDB dataset, 2011)
DISTILBERT-base 89.64 0.0051 / 0.0012 95.12
BERT-base 89.99 0.0113 / 0.0021 94.98

Question Answering (SQUAD dataset, 2016)
DISTILBERT-base 66.05 0.0048 / 0.0002 83.31
BERT-base 68.59 0.0080 / 0.0003 84.54

Table 6: The application of Carburacy to other NLP tasks.

small batch sizes and raising them at the end to avoid over-
fitting. To reduce carbon emissions while maintaining good
performance, we indicate using fewer training samples (e.g.,
100) and small beam widths (e.g., 2) for ablation studies.

Conclusion
We presented Carburacy, the first measure to score mod-
els by considering both effectiveness and costs. We com-
pared multiple state-of-the-art transformers in long doc-
ument summarization under real-world low-resource set-
tings of hardware and data. Our results report the more
environmental-friendly models and a set of hyperparameter
combinations that let models achieve high effectiveness with
low energy costs. Thanks to Carburacy, the research com-
munity can move toward carbon-aware state-of-the-art com-
petitions (Table 6 shows the applicability of Carburacy
to several NLP tasks). Future work includes extending our
measure to general text mining (Frisoni and Moro 2020;
Frisoni, Moro, and Carbonaro 2020), vision language (Moro
and Salvatori 2022; Moro, Salvatori, and Frisoni 2023), non-
NLP tasks (Lodi, Moro, and Sartori 2010; Cerroni et al.
2013), and ones characterized by unbounded evaluation met-
rics (i.e., with a score not in [0, 1]), such as pre-training with
language modeling, a very energy-demanding session that
deserves attention from an eco-sustainable point of view.
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