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Abstract

The mobile communication enabled by cellular networks is
the one of the main foundations of our modern society. The
configuration of network parameters is crucial for optimiz-
ing the performance of cellular networks and providing bet-
ter user experience, but it’s becoming complicated with the
increasing size and complexity of the networks. The current
practice relies on experts’ prior knowledge, which is not ad-
equate and requires a lot of maintenance costs. We propose
a learning-based framework for handover parameter config-
uration, which addresses the complicated dependencies be-
tween neighboring cells and optimizes the whole network.
We introduce a novel approach called auto-grouping graph
convolutional network (AG-GCN), which imitates how the
network responds to different network states and parame-
ter values. Our framework uses a local multi-objective op-
timization strategy to balance the performance of each cell
and its neighbors during the parameter configuration stage. It
achieves better average network throughput compared to ex-
perts’ recommendations and alternative baselines and has the
potential to reduce costs arising from human expert interven-
tion and maintenance.

Introduction
The rapid growth in the number of devices that need real
time, high quality connection to the internet (e.g., internet
of things (IoT) devices, health monitoring equipment, de-
vices used for online education and remote working, au-
tonomous vehicles, etc.) makes it essential to improve cel-
lular network performance. Unsatisfactory user experience
and network interruption have negative impacts in our mod-
ern society. Thus, improving the cellular network has both
economic and social impact towards achieving United Na-
tions Sustainable Development Goals (UNSDGs) (United
Nations 2015; World Economic Forum 2020). Moreover, it
can highly contribute to enhancing infrastructure, promoting
sustainable industrialization, fostering innovation, responsi-
ble consumption, enabling sustainable cities and communi-
ties, and promoting decent work and economic growth (Go-
har and Nencioni 2021; Rao and Prasad 2018; Siriwardhana
et al. 2021).
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The performance of a cellular network relies heavily on
its parameter configurations and it is becoming more cru-
cial, as the number of mobile users continues to grow rapidly
(statista 2022). These parameters govern access control,
handover, and resource management (Dahlman, Parkvall,
and Skold 2013; Bhat et al. 2012). One of the parameters that
has a significant impact on the quality of service (QoS) in
such networks is the handover (Tekinay and Jabbari 1991).

Optimizing handover parameters is one of the most com-
mon approaches to guarantee minimum service delay or
interruption and improve coverage and throughput (Mu,
Barco, and Fortes 2014). However, with the massive increase
in both the size and complexity of cellular networks, pa-
rameter configuration is becoming complicated. The current
practice, which relies largely on experts’ prior knowledge,
is inadequate, requiring many domain experts and leading to
high maintenance costs.

One of the key challenges in the network parameter op-
timization problem is the complex spatial and temporal de-
pendencies in the cellular network. Any employed algorithm
should be capable of tracking the non-stationary changes in
the environment, i.e., the fluctuations of user number, net-
work load, etc. (Agiwal, Roy, and Saxena 2016). Also, due
to the diverse characteristics of cells across the network, the
best parameter configuration for one cell may not be optimal
for another and parameter configuration of one cell not only
affects its own performance, but also affects its neighbors’
(Dahlman, Parkvall, and Skold 2013). Therefore, there are
strong interactions between neighboring cells which become
extremely complicated in heterogeneous network. Conse-
quently, developing an algorithm that can adapt to the tem-
poral dynamics and cell diversity in real networks is essen-
tial for parameter configuration (Jiang et al. 2016).

The current cellular network deployments rely heavily on
human-designed rules and analytical models based on lim-
ited network states and parameters, which cannot fully cap-
ture the complex relationships and non-stationary changes
in network dynamics. These models may also be too simpli-
fied, leading to degraded performance, and unable to deal
with the diverse cells in the network, making them sub-
optimal (Imran, Zoha, and Abu-Dayya 2014).

Recently, data-driven approaches based on machine learn-
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ing (ML) have been extensively used for parameter con-
figuration and network management in cellular networks
(Yu et al. 2017; Tabrizi, Farhadi, and Cioffi 2012; Riihi-
jarvi and Mahonen 2018; Chuai et al. 2019; Ye et al. 2013).
The multi-layer perceptron (MLP) has been identified as a
universal function approximator (Goodfellow, Bengio, and
Courville 2016), making it suitable for environments like
cellular networks that lack an accurate analytical model
and are highly dynamic. ML models are capable of utiliz-
ing high-dimensional information and approximating com-
plex functions, allowing for a more accurate prediction of
network performance metrics and parameter configurations,
which cannot be achieved by human experience.

In order to address the above challenges, we investigate
two important questions: 1) Modeling: how to model the
spatial and temporal dependencies of the cellular network?
2) Decision-making: how to choose the parameter values to
jointly optimize the overall performance of interconnected
and interacting cells? We first, propose a ML-based model to
precisely imitate the cellular network environment and then,
use it to configure the parameters.

We demonstrate that the proposed handover parameter
configuration framework can improve the average network
throughput compared to existing methods while reducing
costs from human expert intervention and maintenance. This
has the potential to provide better internet access to under-
served areas and enable important applications like online
education and health monitoring (Attaran 2021). Our main
contributions are summarized as follows.

• We propose a novel method to model the impact from the
neighbors of each cell in a distinguishable way to capture
the complex spatial dependencies of the network.

• We consider the changing dynamics of the network in our
reward model to better reflect the temporal dependencies.

• We introduce a multi-objective optimization strategy
based on the model to consider several performance met-
rics and improve the overall network throughput, which
has the potential for high social impact applications.

Background and Related Work
The adjustment of handover parameters can significantly af-
fect network throughput and traffic load balance. During the
handover process, the user equipment (UE) monitors the
received signal power (RSRP) of the serving cell and re-
ports measurements to prepare for handover when the RSRP
drops below a pre-defined threshold (A2-threshold) (3GPP
TS36.331 2016). Increasing the A2-threshold decreases the
number of UEs triggering handover in the serving cell,
spreading load to its neighbors and impacting throughput.
Decreasing the A2-threshold may cause poor experience for
edge UEs and repeated connection loss. Techniques such as
fuzzy systems, deep reinforcement learning (DRL), and con-
textual bandit have been used to optimize wireless network
parameters.

The use of graph convolutoinal networks (GCNs) (Hamil-
ton, Ying, and Leskovec 2017; Kipf and Welling 2017; Fan
et al. 2019) has also yielded significantly well-designed

models to predict the network traffic and optimize the corre-
sponding parameters. For example, in (Zhang et al. 2020),
the authors introduce a novel handover strategy based on
GCNs. The handover process is modeled as a directed
graph by which the user tries to predict its future signal
strength. Other works such as (Zhao et al. 2020) introduce
novel methods of network traffic prediction combined with
a greedy search or action configuration method to optimize
handover parameters. However, these works fail to consider
the heterogeneous aspect of the cellular networks.

Despite being effective, none of the above-mentioned
methods uses the capacity of the neighbors’ information to
fully tailor the model to adapt to the spatial characteristics
of a cellular network, where the interaction is complex and
the network is heterogeneous. Also, despite the fact that
these techniques consider some important measures of op-
timization, none of them approaches the problem at hand
by considering two of the most important measures simul-
taneously (especially from the users’ perspective): load bal-
ancing and throughput. In this article, we propose an effec-
tive and efficient framework that models the network as a
heterogeneous graph where we learn an implicit interaction
type for each neighboring cell. Then, it incorporates the im-
pact of neighboring cells from each interaction group in a
unique way. Moreover, in contrast to the available methods
in the literature, we exploit two important measures in the
network simultaneously, to configure the parameters effec-
tively: throughput and load balancing, which are directly re-
lated to the user experience in the network.

Problem Formulation
Let us consider a network with N cells, and form N clusters
each composed of one of the network cells as its center cell
along with its neighboring cells. As an example, we choose
the optimization of the A2-threshold to investigate the per-
formance of our algorithm. According to the 3GPP standard
(3GPP TS36.331 2016), an A2 event is triggered when the
received power at user u from cell n, Pu,n, satisfies

Pu,n +Hys < Thresh, (1)
where Hys is the hysteresis parameter to avoid frequent han-
dovers and Thresh is the A2-threshold we are optimizing.

We consider an online optimization process. In real prac-
tice, network operators are often conservative and only allow
a limited number of experiments. During the optimization
period of L days, and the A2-threshold can be adjusted once
for each cell at the beginning of each day. For day t, let Dt

be the total bits transmitted by all the cells, and Tt be the to-
tal transmission time. We would like to maximize the accu-
mulated network throughput of the optimization period, i.e.,
max

∑L
t=1

Dt

Tt
. Maximizing the overall network throughput

by jointly optimizing the A2-threshold of all cells is diffi-
cult. The problem becomes even more complicated as the
network size increases, which makes a centralized solution
not scalable. The adjustment of the A2-threshold of one cell
only affects its local neighborhood and thus, we convert the
centralized problem into a local decision problem. That is,
each cell only examines its local performance metrics and
chooses its own parameter configuration value.
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The adjustment of the A2-threshold affects the network
throughput via two means: better resource utilization by load
balancing, and improved cell throughput with less connec-
tion loss and measurement reporting. Consequently, in order
to configure it, these two metrics must be considered in the
local decision problem. The throughput of cell i on day t is
highly dependent on its A2-threshold, formulated as action
ait, denoted as αi

t(a
i
t). The load balancing factor in the i-th

cluster with center cell i on day t with ait is defined as the
ratio of the center cell throughput to the average throughput
of its neighboring cells, denoted by βi

t(a
i
t) and formulated

as βi
t(a

i
t) = αi

t(a
i
t)/ᾱ

i
t, where ᾱi

t is the average throughput
of the neighbors of cell i with action ait and, denoting by
Nt(i) the set of all neighbors of cell i on day t, it can be
formulated as ᾱi

t = 1
|Nt(i)|

∑
j∈Nt(i)

αj
t (a

j
t ). The through-

put ratio (rather than traffic/user ratio) is used since different
cells have different capacities. This value approaches 1 when
loads of different cells match their capacities.

Our goal is to maximize the overall network throughput
on each day by optimizing the two important network per-
formance metrics, namely, throughput ratio βi

t(a
i
t) and cell

throughput αi
t(a

i
t) for each cell i ∈ [1, Nt], where Nt is the

total number of cells on day t, at the same time. Therefore,
we propose the following optimization problem for tuning
the A2-threshold for cell i:

argmax
ai
t∈A

(
−
√∣∣1− βi

t(a
i
t)
∣∣, αi

t(a
i
t)
)
, (2)

where A is the set of all possible values for the A2-threshold
in the cellular network.

The challenge of solving the above problem lies in sev-
eral folds. First, since the network performance function is
complex, dynamic and unknown, obtaining accurate βi

t(a
i
t)

and αi
t(a

i
t) is difficult. Instead, in this work, we adopt a

data-driven approach to learn reward models and estimate
the performance metrics. Second, in real-world cases, only
a limited experimental budget is allowed by network opera-
tors leading to insufficient diverse historical data (state, ac-
tion pairs) to train a data-driven learning model. In our de-
sign, we use a data augmentation technique in the form of
neighbor cell augmentation to enrich the features from each
cell. Third, the handover parameter configuration is affected
by adjacent cells. Thus, it is essential to model the informa-
tion coming from the adjacent cells to achieve accurate re-
ward modeling. Lastly, optimizing one performance metric
greedily might hinder another, thus, how to jointly optimize
different performance metrics needs careful consideration.

Temporal Auto-Grouping GCN for Reward
Modeling

In order to better capture the dependency between each
cell and its neighboring cells, we first introduce our novel
method for neighboring cell feature aggregation. Second, we
propose a temporal feature aggregation step with recurrent
neural networks (RNN) to model the temporal correlation
from the historical sequence of the network states. Third, we
elaborate the overall training process, considering the im-

pact from the neighboring cells, the temporal correlation in
the network and the action we aim to optimize.

Spatial Feature Modeling
The handover parameters are important for the learning
problem in both the center and neighboring cells in cel-
lular networks. We propose to capture the neighboring
cell information by using message-passing neural networks
(MPNNs), specifically graph neural networks (GNNs).
GNNs are effective in modeling real-world applications with
structural information by incorporating each node’s features
and those of its neighboring nodes in each layer (Hamil-
ton, Ying, and Leskovec 2017; Ying et al. 2018; Wang et al.
2019). We believe that the GNN framework is well-suited
for handling the dependencies between the center cell and
its neighboring cells in cellular networks.

Graph-Based Cellular Network Modeling We construct
a graph Gt=(Vt, Et,Xt) for day t, where each node v∈Vt

represents one cell and is associated with a feature vector
xvt ∈Rd (v-th column of Xt ∈Rd×|Vt|), including the sta-
tistical properties of node v measured on day t. The sta-
tistical properties could include several features such as the
antenna transmission power, physical resource block (PRB)
usage ratio, the amount of data traffic, and the transmission
bandwidth. These features serve as the node attributes. The
edge set Et encodes the interactions between cells based on
the handover events between pairs of cells. Based on his-
torical data, if any pair of cells has an average number of
handover events above a threshold τ , we assume an edge
between those two cells. The neighboring set for node v is
denoted as N g

t (v)={u|u ∈ Vt, (u, v) ∈ Et}.
Due to the heterogeneous nature of the cellular network,

the relationships between the neighboring cells can be com-
plex. Concretely, there might be an implicit M latent rela-
tionship types R = {r1, r2, · · · , rM} that can be learned to
better handle the complex interactions in the cellular net-
works. The proposed auto-grouping GCN (AG-GCN) ap-
proach aims to capture the interactions between neighbor-
ing cells in a distinguishable way. It does so by dividing
neighboring cells into different groups, where each group
provides shared information. AG-GCN is inspired by a re-
cent work (Pei et al. 2020) and aims to handle the unique
properties of cellular networks. The approach is described
in detail in the following sections

Neighborhood Augmentation The limited experiment
budget in cellular network modeling leads to a lack of di-
verse historical data. In addition, constructing the graph
based on handover events may result in cells with a limited
number of neighboring cells. To address these issues, we use
a data augmentation technique to enrich the features of each
cell based on the similarity between cells in a latent space.

We define a feature transformation function f(·) : Rd →
Rl which maps the input node feature xvt ∈ Rd to a la-
tent space yvt = f(xv

t ) ∈ Rl. In order to capture the long-
range dependencies and similarity in the cellular network,
we design an additional neighborhood in the latent repre-
sentation space based on Euclidean distance. For each node
v ∈ Vt, we form the augmented neighborhood Nt(v) =
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N g
t (v) ∪ N s

t (v), where N g
t (v) and N s

t (v) are the neigh-
bors of node v in the original graph and in the latent space,
respectively. The neighbors in the latent space are selected
based on their Euclidean distance to the center cell. The n
nearest nodes in the latent space are selected to create N s

t (v)
for cell v, where the number of nodes we select based on the
feature similarity is equal to the neighborhood size in the
original graph |N g

t (v)|=|N s
t (v)|=n. The neighbor augmen-

tation module in Fig. 1 illustrates this process.

Neighborhood Auto-Grouping Once we have obtained
the augmented neighborhood set, the neighbors in the
augmented neighborhood Nt(v) are divided into different
groups by a geometric operator γ. Consider node v and
its neighbor node u ∈ Nt(v). The relation between them
on day t is denoted as γ(yv

t , yut ) : (Rl,Rl) → R =
{r1, r2, · · · , rM}. This grouping aims at combining neigh-
bors’ information in groups with similar inter-group fea-
tures. For each group ri ∈ R, the neighborhood feature set
on day t is defined as N ri

t (v) = {u|u ∈ Nt(v), γ(yv
t , yut ) =

ri}. The auto-grouping module in Fig. 1 demonstrates this
process. Note that yellow neighbors (marked with *) are the
projected counterparts of the neighbors in the graph space,
while the green neighbors (marked with +) correspond to the
augmented neighbors from the latent space.

Conditional Message Passing Since the order within
each neighbor group should not impact the output of the
representation, we apply a permutation invariant function
π(·) on the neighbors within each group (mean pooling
across each feature dimension) and aggregate them sepa-
rately. Fig. 1 shows an example of the AG-GCN, where
l = 2 and |R| = 4 and the representation after the per-
mutation invariant function π(·) is shown by black dashed
arrows ended to nodes 1, 2, 3, and 4. Then for each group
ri ∈ R, a non-linear transform is further applied as:

zv,rit = σ
(

Wv,ri
t · π

(
{xut |u ∈ N ri

t (v)}
))

, (3)

where Wv,ri
t is a learnable weight matrix for the neighbors

in group ri of node v on day t, and σ(·) is a non-linear
function, e.g., tanh. Then for each node we aim to aggre-
gate the transformed neighborhood features from their dif-
ferent groups of neighbors in a distinguishable way. The
vectors zv,rit for ri ∈ R are further aggregated as hv

t =
[zv,r1t ; · · · ; zv,rMt ], where [ ; ] represents concatenation.

Temporal Feature Modeling
We propose to use additional temporal features for each
center cell to extract the changing dynamic pattern of its
states within each day to further improve the reward model
performance. We assume the samples of the center cell v
on day t can be divided into K groups by their tempo-
ral order. For all the samples in each group k, we take
the average network state for each group of samples and
denote it as xvt,k. We use an RNN layer to capture this
temporal dependency of the features from different groups
by feeding all the network states as an input sequence
Pv
t =

[
xvt,1

T ; xv
t,2

T ; · · · ; xv
t,K

T
]T ∈ RK×d, to obtain cvt =

RNN(Pv
t , δ) ∈ Rd′

, where δ and d′ are the set of trainable
parameters and the output dimension of the RNN layer, re-
spectively.

Overall Training Pipeline
The model aims to predict the throughput ratio and through-
put of a cellular network’s center cell for the next day based
on current network states and actions taken. The perfor-
mance metrics are influenced by the actions taken and pre-
vious performance metrics. Hence, we consider the current
throughput ratio, i.e., βv

t , in the prediction process.
To make the final prediction, the learned representation of

the neighborhood by the AG-GCN aggregation, the tempo-
ral features of the center cell, and the throughput ratio of the
current day, i.e. βv

t , are concatenated to form the state vec-
tor of cell v as svt = Ψ(Wv

t ·
[
βv
t ; cvt ; hv

t

]
), where Wv

t is
a learnable weight matrix for node v on day t, and Ψ(·) is
a non-linear function, e.g., tanh. Since the final representa-
tion should be sensitive to the chosen input action (of which
the decision making process will be elaborated later), the
throughput ratio and throughput of the next day for cell v
are formulated as the output of a non-linear transformation
Λ(·) function of state and action:

β̂v
t+1 = Λ

(
Wv

β .([s
v
t ; a

v
t ])

)
, (4)

α̂v
t+1 = Λ

(
Wv

α.([s
v
t ; a

v
t ])

)
, (5)

where Wv
β and Wv

α are trainable matrices of node v for
throughput ratio and throughput models, respectively. The
overall flow of data from the graph structure to the final pre-
diction is represented in Fig. 1. Note that we train two sepa-
rate models for predicting the throughput and the throughput
ratio simultaneously.

To properly use the A2-threshold for the prediction, we
use the change in this parameter compared to the previous
day as the action avt = A2vt+1−A2vt , where A2vt+1 and A2vt
are the A2-thresholds for cell v on day t + 1 and t, respec-
tively. The reason for this design choice has twofold. First, it
reduces the range of the action space and makes it easier for
the model to learn. Besides, the delta action directly reflects
the change in the cell coverage/loads, so they are more sen-
sitive to the performance metrics. To form the training ob-
jective, we consider data of T+1 consecutive days and form
the pairs (t, t+1), t ∈ {1, 2, · · · , T}, to predict the through-
put ratio and throughput of the center cell in day T + 1, by
minimizing the following loss functions respectively:

1

T

T∑
t=1

1

Nt

Nt∑
v=1

(β̂v
t+1 − βv

t+1)
2 + λ1||Θ1||2, (6)

1

T

T∑
t=1

1

Nt

Nt∑
v=1

(α̂v
t+1 − αv

t+1)
2 + λ2||Θ2||2, (7)

where λ1 and λ2 are the hyperparameters chosen for reg-
ularization. Θ1 and Θ2 represent all the trainable parame-
ters in the models. The trained reward model is now able to
mimic the real network and predict both throughput ratio and
throughput of each center cell for the coming day and can be
used to check the impact of actions towards the performance
metrics we are considering.
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Figure 1: The flow of information from graph structure to final prediction, used to form the training pipeline of two models for
predicting the throughput α̂ and the throughput ratio β̂ for Tin = {1, 2, · · · , t − 1}. In this demo example, the auto-grouping
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Action Configuration
As discussed in the earlier sections the main objectives to
consider in the action configuration process are load balanc-
ing, identified by the throughput ratio, and the cell through-
put. Hence, the best action for cell v on day t, i.e. avt ∈ A, is
the one that optimizes the problem in (2). In general, when
dealing with a multi-objective problem, different objectives
are often conflicting, and we may not be able to optimize
them simultaneously. One common way to tackle this prob-
lem is to give different objectives weights and optimize the
weighted objective value. However, in our scenario, it is dif-
ficult to determine the weights and different clusters may
require cluster-specific weights. Here we break the problem
in (2) into two sub-problems, and solve them sequentially.
We first optimize the action with respect to the predicted
throughput ratio, i.e., β̂v

t+1(a
v
t ) for cell v on day t, where

avt ∈ A, and then optimize the throughput α̂v
t+1(a

v
t ). Specif-

ically, the throughput ratio is optimized and we find the set
of best c values for avt , denoted Av

c , such that

min
av
t∈Av

c

−
√∣∣1− β̂v

t+1(a
v
t )
∣∣ ≥ max

av
t∈A−Av

c

−
√∣∣1− β̂v

t+1(a
v
t )
∣∣. (8)

Then, our goal is to achieve the maximum possible through-
put for cell v on day t and this is through

âvt = argmax
av
t∈Av

c

α̂v
t+1(a

v
t ). (9)

âvt is then the final recommended action for cell v on day t.
This procedure for all the Nt cells of the network on day t is

presented in Algorithm 1.

Experimental Results
The experiments are conducted on a large-scale cellular net-
work simulator constructed from real-world data. Principal
Component Analysis (PCA) is used as the mapping function
f(·) to obtain a 2-dimensional latent representation in the
AG-GCN step. This transformation enables neighborhood
augmentation and neighbor group assignment. Then, the re-
lationship operator γ assigns a group to each subset of points
in each quadrant of the 2-dimensional space, as presented
in Table 1. The permutation-invariant function π applied to
each group of neighbors is average in the experiments.

Datasets
To perform our experiments and evaluate the proposed
model, two datasets are used in this study:

Dataset-A: A real metropolitan cellular network contain-
ing around 1500 cells sampled hourly and collected from
Oct. 17 to Oct. 31, 2019. Each data sample contains infor-
mation such as the cell ID, sample time, configuration of cell
parameters, and measurements of the cell states.

Dataset-B: Also a real metropolitan cellular network. The
network contains 1459 cells, and the data is collected from
Sep. 1 to Sep. 29, 2021. Each data sample contains similar
information as above.
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Algorithm 1: TAG-GCN for Action Configuration
Input: Pv

t and xu
t where, u ∈ Nt(v) ∀v ∈ [1, Nt]

Output: avt for ∀v ∈ [1, Nt]

1: Let v = 1 and ∀j ∈ [1, Nt] set Aj
c = ∅.

2: while v ≤ Nt do
3: Feed the TAG-GCN model with Pv

t and xut , for all
neighbor u ∈ Nt(v).

4: Freeze all inputs of TAG-GCN except actions and
predict the performance metrics α̂v

t+1(·) and β̂v
t+1(·)

for the input actions.
5: for |Av

c | ≤ ν do

6: x = argmaxa∈{A−Av
c} −

√∣∣1− β̂v
t+1(a)

∣∣
7: Av

c = Av
c ∪ {x}

8: end for
9: avt = argmaxa∈Av

c
α̂v
t+1(a)

10: v = v + 1
11: end while
12: return avt for ∀v ∈ [1, Nt]

γ(yv
t , yu

t ) yvt [0] > yu
t [0] yvt [0] ≤ yut [0]

yvt [1] ≤ yu
t [1] 2 1

yvt [1] > yu
t [1] 3 4

Table 1: The relationship operator γ

Reward Model Accuracy Evaluation
Dataset Generation We use a simulator to modify
Dataset-A with a random policy, in order to evaluate the
prediction accuracy of their model. We randomly select the
A2-threshold for each cell around the default action -100
dBm within the range of [−105,−95] on each day. This ap-
proach provides a diverse dataset for training all models and
allows for a fair comparison of their accuracy. On the other
hand, for Dataset-B, which already has a reasonable amount
of diversity in the handover parameter configuration, the raw
dataset from the live network is used directly for training and
evaluation.

Training Process and Metrics As samples are generated
hourly, we aggregate them daily. To evaluate the model accu-
racy in predicting cell throughput and throughput ratio, we
train the model with the generated pairs {(1, 2), · · · , (t −
1, t)} for t = 9 and 12 days for Dataset-A and B, respec-
tively. At each day t > 2, data pairs {(1, 2), · · · , (t− 2, t−
1)} are used as training and validation sets, and (t − 1, t)
serves as testing set for evaluation across different models.
We report the mean square error (MSE) to measure the re-
ward model performance.

Comparison with Benchmark Models It is important to
note that, the social impact of this work has not been ad-
dressed by ML approaches the same way as we propose.
Due to the uniqueness of our problem, existing solutions
for optimizing handover parameters are either not appropri-
ate to solve it or there is no apparent way to directly adapt
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Figure 2: Achieved MSE of the throughput for test data of
(a) Dataset-A and (b) Dataset-B for different methods

them to our problem. For instance, traditional handover op-
timization methods rely on designing fuzzy rules based on
different measures of QoS in the network (Vasu et al. 2012),
however, designing proper rules is complex and cannot han-
dle the change in highly dynamic systems well. Instead, we
hope to use a data-driven approach, among which the (deep)
RL method gains the most attention (Cao et al. 2018; Wang
et al. 2018). However, in this type of problems, the network
provider only allows limited explorations of the parameter
values (e.g., allows changing the A2 value once a day) to en-
sure the stability of the network. Thus, we only have limited
days for exploring the best action, while RL models, usually
need longer episodes to optimize the accumulated return.

In order to show the effectiveness of our proposed reward
model, we compare it with alternative designs for the pre-
diction model. It should be mentioned that all of these mod-
els are our contribution. The first model is MLP, where we
only use the features of the center cells and ignore the neigh-
boring cells’ features. In GCN model, we follow the typi-
cal GCN formulation (Hamilton, Ying, and Leskovec 2017)
and process the network as a homogeneous graph where the
neighbor information is aggregated jointly without distinc-
tion. The AG-GCN model ignores the temporal dependen-
cies of the data which we consider in TAG-GCN model. In
Fig. 2, we compare the prediction accuracy of these models
for throughput in Dataset-A and B. We observe on average
the best accuracy for the test set is achieved by AG-GCN
and TAG-GCN, with TAG-GCN performing marginally bet-
ter on the average rank metric across the evaluation days, in-
dicating that our neighbor aggregation and temporal features
extraction have a considerable impact on the reward model-
ing for cellular networks. The same results also achieved for
the throughput ratio model.

Overall Parameter Optimization Performance
The Action Recommendation Process In the following
experiments we use the presented models to recommend the
actions for Dataset-A. The actions in day 1, i.e., Oct. 17,
have been set to the default value which is -100 dBm. Unless
otherwise stated, the actions for the second day, i.e., Oct. 18,
are initialized by a set of random values around the default
action in the range of [−105,−95]. The model is trained it-
eratively on each day and used to recommend actions for the
next day. The process is depicted in Fig. 3, where states of
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Figure 3: The process of action recommendation by the
trained model and the simulator
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Figure 4: Performance comparison of different models along
with optimal action curve initialized with random actions

the cells on day t are given to the trained model to predict
performance metrics of the network on day t + 1 and the
action avt is adjusted for each cell based on the predictions.
Finally, the network states and performance measurements
for day t + 1 are computed according to the new selected
action by the cellular network simulator and used for model
training and action recommendation in the following day.

Baseline Performance Bounds In addition to the result
achieved by the actions recommended by the models, we
use three baseline performance bounds achieved by the de-
fault A2-threshold, the expert rule, and the optimal actions
of the simulator. As stated before the default A2-threshold
value is −100 dBm and this is used as the lower bound in
the following experiments. The optimal actions in the simu-
lator are obtained by brute-force search and it introduces the
upper performance bound. The expert rule-based method is
provided by experienced network operators which has a bet-
ter performance than the default action. We hope to use our
proposed learning based framework to further fill the gap
with the reward achieved by optimal actions.

Results We plot the trajectory of the throughput differ-
ence to the default A2-threshold baseline (dash black line)
in Fig. 4. We repeat all the experiments 20 times for all mod-
els, where each run uses the same set of random actions on
the first action exploration day (Oct. 18) for all the models.
We also show the performance achieved through the expert
rule action recommendation, default action, and the optimal
actions of the simulator (random actions are also used on
Oct. 18 for the curve of the optimal action). TAG-GCN can
achieve better average throughput in the final days which in-
dicates the importance of our auto-grouping GCN design to
tailor the heterogeneous property of the cellular networks.
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Figure 5: Trend of the throughput ratio for sample clusters

Besides, as expected, all the learning-based models can beat
the expert rule algorithm which is highly dependent on hu-
man experience and is unable to recover from the perfor-
mance degradation due to bad random initialization on the
first day. Furthermore, to show the effectiveness of our pro-
posed model in terms of load balancing and enhancing clus-
ter throughput ratio, we illustrate the progress of this ratio
achieved by TAG-GCN for some selected severely unbal-
anced cells in Fig.5. As it can be seen, the throughput ratio
of the clusters forms a trajectory that converges to the ideal
target value 1.

The experiments showed that the proposed ML-based so-
lution improves network performance and optimizes han-
dover compared to conventional methods. This reduces do-
main expert intervention, management costs, and improves
maintenance efficiency, which can help provide reliable and
high-quality network access to currently underserved areas.
This could lead to new opportunities like remote education,
remote working, health monitoring, and video streaming in
those regions.

Conclusion
The paper proposes a novel approach called TAG-GCN to
address the handover parameter configuration problem in
cellular networks. This approach utilizes a reward predic-
tion model to accurately estimate the performance metrics
and investigate the impact of adjacent cells on the center cell
of each cluster. The model also considers the temporal de-
pendencies in the data to account for changing network dy-
namics. A multi-objective parameter configuration strategy
is then proposed based on the reward model to optimize the
performance metrics in each neighborhood. The simulations
show that TAG-GCN outperforms existing methods and can
lead to significant improvements in cellular network perfor-
mance, which can have a positive social impact on sectors
such as health and education.
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