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Abstract
AI systems can create, propagate, support, and automate bias
in decision-making processes. To mitigate biased decisions,
we both need to understand the origin of the bias and define
what it means for an algorithm to make fair decisions. Most
group fairness notions assess a model’s equality of outcome
by computing statistical metrics on the outputs. We argue that
these output metrics encounter intrinsic obstacles and present
a complementary approach that aligns with the increasing fo-
cus on equality of treatment. By Locating Unfairness through
Canonical Inverse Design (LUCID), we generate a canonical
set that shows the desired inputs for a model given a preferred
output. The canonical set reveals the model’s internal logic
and exposes potential unethical biases by repeatedly interro-
gating the decision-making process. We evaluate LUCID on
the UCI Adult and COMPAS data sets and find that some bi-
ases detected by a canonical set differ from those of output
metrics. The results show that by shifting the focus towards
equality of treatment and looking into the algorithm’s inter-
nal workings, the canonical sets are a valuable addition to the
toolbox of algorithmic fairness evaluation.1

Introduction
Artificial intelligence (AI) systems are used in decision-
making processes throughout all aspects of human life, rang-
ing from detecting child abuse, determining access to edu-
cation or healthcare, and granting loans (Amrit et al. 2017;
Ledford 2019; Makhlouf, Zhioua, and Palamidessi 2021).
However, it is by now a well-established fact that algorithms
can be biased and lead to discrimination against already dis-
advantaged population groups (Barocas and Selbst 2016;
Buolamwini and Gebru 2018; Chouldechova and Roth 2018;
Whittaker et al. 2018). The sources of such biases are mul-
tiple and include problem specification, historical bias, un-
representative data, biased measurement methods, or choice
of objective function (Barocas, Hardt, and Narayanan 2019;
Fazelpour and Danks 2021; Lee and Singh 2021b; Suresh
and Guttag 2021).

Recent efforts to identify algorithmic discrimination of-
ten focus on the statistical properties of a model’s out-
put. The standard approach is to translate philosophical or
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1Code is available at https://github.com/Integrated-
Intelligence-Lab/canonical sets.

political notions of group fairness into a statistical met-
ric (Makhlouf, Zhioua, and Palamidessi 2021). The model’s
output can then be analysed with respect to the chosen no-
tion of group fairness and the model is judged to be “fair”
or “unfair”. There are several widely recognised issues with
output-based fairness evaluations of this kind. First, there
often is substantial philosophical disagreement as to what
ought to be considered a “fair” outcome distribution (Binns
2018; Gallie 2019). The now infamous controversy about the
alleged racism of the COMPAS recidivism risk algorithm
boiled down to such a disagreement. In this case, the two
fairness measures under debate were accuracy equality and
equalised odds with respect to race. Second, different no-
tions of group fairness are incompatible with each other, ex-
cept for highly special cases (Kleinberg, Mullainathan, and
Raghavan 2016). Third, the computation of fairness metrics
depends on a benchmark data set, which is often also used
to evaluate the model on other metrics such as accuracy.
The metrics do not assess the model’s fairness towards the
whole population after deployment (Northcutt, Athalye, and
Mueller 2021). Fourth, work on group fairness usually relies
on the evaluation of a limited number of prescribed protected
attributes, running the risk of missing discrimination either
against people who are at the intersection of different groups
or against groups that do not share a protected characteris-
tic (Binns 2020; Crenshaw 1990; Wachter and Mittelstadt
2019). Finally, focussing exclusively on output distributions
to determine fairness is only one part of the story. In ev-
eryday life and when stakes are high, the output of a given
decision is not the only thing one typically cares about. We
are also interested in how the decision came about, e.g. why I
wasn’t granted the loan I applied for or why I didn’t receive
the job I interviewed for (High-Level Expert Group on AI
2019; Wachter, Mittelstadt, and Russell 2017). Understand-
ing the reasoning behind a decision is not just relevant from
a moral point of view, it is equally important within a legal
context. Disparate treatment and direct discrimination both
aim at addressing cases in which similarly situated individ-
uals are not treated alike on grounds of a legally protected
characteristic. In these cases, it becomes relevant both that
such individuals were treated differently and why they were
treated differently. Output-based fairness evaluations cannot
address these issues as they do not take into account the in-
ternal logic of the model in question.
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Figure 1: An overview of LUCID for a binary classifier trained on the UCI Adult data set. Through gradient-based inverse
design on the input layer, we generate a canonical set for a preferred output. The weights and biases of the model remain
fixed; the greyscale of each connection encodes the fixed value. The canonical set reveals the model’s internal logic and is
visualized via the histograms. We locate the unfairness by analyzing whether the distributions of the protected features within
the canonical set remain balanced after inverse design.

We present a method (called LUCID, for Locating Unfair-
ness through Canonical Inverse Design), complementary to
output-based fairness evaluations, that takes into account a
model’s internal logic. In particular, we introduce the notion
of a “canonical set” that allows us to evaluate the fairness of
a model’s decision-making processes (see Fig. 1). Through
gradient-based inverse design, we generate a canonical in-
put, which can be thought of as the desired input given a
preferred output for a trained model. The canonical set then
emerges from repeatedly interrogating the model’s decision-
making process by generating canonical inputs. By revealing
information about the model’s mechanisms, the canonical
set provides insights into how the model reaches certain de-
cisions, e.g., what features play a crucial role in the model’s
decision-making process. To locate unfairness in the model’s
logic, we inspect the distribution of a protected demographic
feature within the canonical set. This approach aligns with
the increasing focus on equality of treatment beyond equal-
ity of outcome.

In contrast to traditional fairness evaluations, LUCID
does not require a specific fairness metric, a ground truth,
or a benchmark data set. We show that LUCID can be ap-
plied to any differentiable model. As an illustration, we eval-
uate binary classifiers trained on the UCI Adult (Dua and
Graff 2017) and COMPAS (Angwin et al. 2016) data sets.
We find that analyzing the canonical set exposes several un-
ethical biases, which interestingly differ from those found by
traditional group fairness metrics. By looking into the algo-
rithm’s internal workings, the canonical sets are a valuable

addition when evaluating algorithmic fairness.

Background and Related Work
While, technically, many countries have anti-discrimination
laws in place that are designed to protect people from dis-
criminatory harms (Barocas, Hardt, and Narayanan 2017;
European Commission 2018), there are often considerable
practical difficulties associated with the very detection of al-
gorithmic discrimination. The first problem is that those sub-
ject to unfair treatment (e.g., the rejected job applicant) of-
ten lack the epistemic resources needed to identify instances
of discrimination (Milano et al. 2021; Selbst and Barocas
2018). The second problem is that access to data sets by
third parties is often limited due to intellectual property and
privacy rights. Finally, the third problem relates to the fre-
quent opaqueness of the algorithmic decision-making pro-
cess itself. LUCID mainly addresses the second and third
problems.

LUCID lies at the intersection of fairness and in-
terpretability in algorithmic decision-making. There is a
strong interaction between these fields, and their connec-
tions (Meng et al. 2022) and trade-offs (Kleinberg and Mul-
lainathan 2019) are part of ongoing research. The most
widespread group of methods to gauge fair decision-making
translate philosophical or political notions of group fair-
ness into mathematical statements on the model’s out-
put (Makhlouf, Zhioua, and Palamidessi 2021). The num-
ber of this kind of fairness metrics has grown over the past
years, accounting for at least 19 definitions (Barocas, Hardt,
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and Narayanan 2019; Hardt, Price, and Srebro 2016; Zafar
et al. 2017). Furthermore, most prominent open-source fair-
ness toolkits rely on these statistical output metrics (Lee and
Singh 2021a).

Over the past few years, much work has been done on post
hoc interpretability methods, especially in the computer vi-
sion literature (Das and Rad 2020). The most prominent ex-
amples are feature importance estimation methods that help
understand which features have a high impact on the output
of a model by giving a score to each input. While the feature
importance estimation methods differ in various ways, they
can be broadly categorized into perturbation- and gradient-
based explanations (Agarwal et al. 2021).

SHAP (Lundberg and Lee 2017) is an example of the for-
mer as it constructs local explanations of decision-making
algorithms by using perturbations of individual samples.
However, the resulting explanations are found to be un-
reliable, especially in the context of fairness (Slack et al.
2020; Balagopalan et al. 2022). Moreover, the standard im-
plementation method does not account for feature depen-
dence whereas many other implementations are computa-
tionally very expensive (Gohel, Singh, and Mohanty 2021).
Nevertheless, perturbation-based methods are often used in
combination with statistical fairness metrics (Datta, Sen, and
Zick 2016). Thereby, this interpretable fairness analysis in-
herits the obstacles from the output metrics, namely philo-
sophical disagreements (Binns 2018; Gallie 2019), statisti-
cal incompatibilities (Kleinberg, Mullainathan, and Ragha-
van 2016), the absence of universal ground truth, and the
selection of a benchmark data set (Northcutt, Athalye, and
Mueller 2021) and a limited number of prescribed protected
attributes (Binns 2020).

The Integrated Gradients (Sundararajan, Taly, and Yan
2017) method is an example of gradient-based explanations.
The gradients of the outputs of individual samples with re-
spect to their inputs are used to construct local explana-
tions. Importantly, the gradients can also be used to con-
struct global explanations by generating an input with the
highest activation and certainty for a specific output start-
ing from random noise (Simonyan, Vedaldi, and Zisserman
2014). One of the first implementations of this method,
called DeepDream, was developed at Google (Mordvintsev,
Olah, and Tyka 2015) in 2015. The resulting input images
illustrate which elements are essential to get the preferred
output. For example, when generating input images that op-
timize the output “dog,” the results are images with many
dog legs, ears, and noses, merged in an unnatural, almost
psychedelic way. The resulting images are therefore called
“dreams.”

Since then, the technique to determine hidden parameters
of a complex system through inverse design has been used
in several other research fields, including physics, computer
science, engineering, and biotechnology (Ferruz and Höcker
2022; Forte et al. 2022; Lenaerts, Pinson, and Ginis 2021;
Ren, Padilla, and Malof 2020). We show that LUCID builds
upon these methods as the canonical sets are the result of
repeatedly applying inverse design to generate canonical in-
puts, thereby revealing the internal logic of a trained model.

Canonical Inverse Design
Conventional neural networks use gradient descent to im-
prove their workings by taking advantage of their mathe-
matical structure, which can be differentiated straightfor-
wardly (Nielsen 2015). All the layers in a model can be opti-
mized through gradient descent, including the input values.
Indeed, the input vector can be seen as a special layer of the
model. With LUCID, we use this property to create a canoni-
cal input for a preferred output. In other words, starting from
a random input vector one can construct the ideal input of a
trained model through gradient descent on the input layer,
keeping the weights and biases fixed.

This gradient-based inverse design has been extensively
used in the computer vision literature (Mordvintsev, Olah,
and Tyka 2015; Simonyan, Vedaldi, and Zisserman 2014;
Sundararajan, Taly, and Yan 2017), but there is a key differ-
ence in our application to tabular data. For images, canon-
ical inputs are interpretable individually and difficult to ag-
gregate, whereas for tabular data we have the opposite sce-
nario. In addition, due to the stochastic nature of randomly
generated vectors, there is little information in the canoni-
cal version of a single input vector. Therefore, we generate
a canonical set which results from repeatedly interrogating
the model’s decision-making process by generating canoni-
cal inputs, revealing its internal workings. To locate unfair-
ness in the model’s logic, we inspect the distribution of a
protected demographic feature within the canonical set, and
compare it to the initial random distribution. This approach
aligns with the increasing focus on equality of treatment be-
yond equality of outcome, as this requires interpretability,
which builds and supports trust, and contributes to procedu-
ral fairness.

In Algorithm 1, we show an implementation of LUCID
and detail how a canonical set can be generated for a differ-
entiable model by updating a random input vector via gradi-
ent descent on the input layer. First, we generate an extensive
set of randomly initialized input vectors where the features
are sampled from a uniform distribution. Then, these ran-
domly initialized input vectors are transformed into canoni-
cal inputs through inverse design. The transformations are
the result of minimizing the loss between the model pre-
dictions and the preferred output (e.g., a loan is granted).
Afterwards, the canonical set is analyzed to learn about the
internal workings of the model and evaluated if the model is
insensitive to protected attributes.

Design Considerations
We discuss the details of how to implement LUCID to con-
struct the canonical set, including the encoding of features
into vectors, the initialization of the vectors, the relation be-
tween the learning rate and the number of epochs, and the
specification of the preferred output. While these choices
have an influence on the resulting canonical set, the method
itself is agnostic to these choices.

Numerical vs. Categorical Features Data referring to hu-
mans usually contains categorical features such as gender,
occupation, and nationality, and numerical features such as
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Algorithm 1: LUCID, our proposed algorithm. The default
setup in our paper: number of canonical inputs N = 1000,
number of epochs E = 200, learning rate α = 0.1, a binary
classifier s, and a cross-entropy loss function l.
Inputs: A differentiable model (s(X)), and objective func-
tion (l(ŷ|y)) with prediction ŷ and preferred output y.
Parameters: Number of canonical inputs (N ), epochs (E),
and learning rate (α).
Output: A canonical set (X).

1: M ← length(X)
2: for i = 0, ..., N do
3: {X(m)

i }Mm=1 ∼ U(0, 1)
4: for j = 0, ..., E do
5: ŷj ← s(Xi)
6: Xi ← Xi − α∇Xi l(ŷj |y)
7: end for
8: end for
9: return X

age, weight, and income. However, models only process nu-
merical inputs. To feed data to a neural network, the categor-
ical features are encoded. These techniques include “one-hot
encoding” if the number of categories is known when de-
signing the model, “hash encoding” if the number of cate-
gories is not known upfront, “label encoding” to transform a
categorical feature into numerical values (Wijaya 2021).

Initialization of the Input Vectors The input layer needs
to be initialized with a set of randomly generated vectors.
These vectors can be created in multiple ways. Indeed, the
features in the training data each satisfy a particular distribu-
tion. These distributions might be the result of defective data
collection practices, might not represent the distributions of
the populations, or reveal the impact of discriminatory prac-
tices. To create the initial input vectors, the values of the
numerical and categorical features could follow these distri-
butions or they could be drawn from a random distribution.
The latter option ensures an entirely random initialization
and also works when the training data set is unknown.

The choice of the random distribution and its parameters
depend on the range of realistic values for the inputs. For ex-
ample, a uniform distribution between zero and one is a valid
choice if the features are all between zero and one after pre-
processing with min-max scaling. Finally, before starting the
inverse design process, the categorical features of each input
vector can be formatted to correspond to a “real” sample. For
example, the categorical features can be one-hot encoded
by assigning the category with the largest value a numeri-
cal value of one, and setting all the other categories to zero.
See Fig. 2 for the distribution of the initialized vectors (in
dark blue) when the numerical and categorical features are
generated according to a uniform distribution for the binary
classifier trained on the UCI Adult data set.

Evolution of Numerical Features In practice, numerical
characteristics typically have lower and upper limits. The in-
verse design process is agnostic to the meaning of these val-
ues and might update them outside of the real-world range. It

Figure 2: The left panel shows the model’s predictions of
randomly generated vectors before (dark blue) and after
(light green) being updated through gradient-based inverse
design with a learning rate of 0.5. In the right panel, the
canonical inputs are categorically formatted and again pre-
dicted by the model. The prediction is expressed as a value
between 0 and 1 with a threshold of 0.5. There is a small loss
of information due to the categorical formatting, but all vec-
tors are still positively predicted. The results in these plots
were generated by LUCID for a binary classifier trained on
the UCI Adult data set.

is possible to enforce chosen boundaries in each epoch, each
couple of epochs, or simply at the end. Enforcing boundaries
shifts the focus to updating other features. This also means
that certain information is lost. Therefore, we do not limit
the range of the numerical features as the shift of these val-
ues contains information.

Categorical Formatting When a categorical feature is
one-hot-encoded, the vector includes zeros for the number
of possible values. One of these entries then receives the
value one, signaling the category of the feature. However,
during the inverse design process, all values in the input vec-
tor are updated. This process, therefore, can also update all
the values which were initially zero. However, a vector with
real values on all positions does not correspond to an actual
sample, with only one specific value for each feature. There-
fore we need to format those vectors to correspond to “real”
samples. For each categorical feature, the highest value re-
lated to said feature indicates the value of the category and
is indicated as one. All the other positions reset to zero. Note
that a part of the information in the vector is now lost. The
impact on the predictions of the numerical vectors and the
formatted vectors is shown between the first and second row
in Fig. 3 for the neural network trained on the UCI Adult
data set. It is possible to format the input vector during each
couple of epoch(s), or only at the end during the inverse de-
sign process. We have chosen the latter for this paper.

Learning Rate and Number of Epochs The traditional
gradient descent method requires a “learning rate” which de-
termines how much the weights and biases are adjusted in
each epoch. During the learning phase, this parameter varies
typically between 10−4 and 10−1 (Nielsen 2015). In LU-
CID, the learning rate indicates how fast the randomly gen-
erated input vectors are adjusted. It can typically take larger
values as only the input layer is being updated, while during
training all weights and biases are updated.

The aim of generating the canonical set is that all inputs
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Figure 3: The learning rate parameter of inverse design influences the generation of the canonical inputs. For six different
learning rates between 10−4 and 0.5, a thousand vectors are randomly initialized following a uniform distribution. On the first
row, the predictions are plotted before (dark blue) and after (light green) inverse design. On the second row, the predictions of
the same initial thousand vectors and the canonical inputs after categorical formatting are plotted. The canonical inputs receive
a higher prediction when the learning rate is higher. After categorical formatting, the predictions are lower due to a loss of
information. Each inverse design has the same amount of epochs, here 200. The results in these plots were generated by LUCID
for the UCI Adult classifier.

strongly activate the preferred output. The learning rate and
the number of epochs both have an influence on how fast
this is achieved. See Fig. 3 for the evolution of the predic-
tions when the learning rate increases for the binary clas-
sifier trained on the UCI Adult data set. A sufficient num-
ber of epochs is needed to achieve adequate vectors in the
canonical set. When the learning rate is lower, the number
of epochs needs to be higher to achieve a canonical set with
a similar mean loss. However, the categorical features may
not often change when updating the vector for very small
learning rates.

The Preferred Output A canonical set can be generated
for each possible output. The two most common tasks are
classification and regression. In the former, the output is of-
ten a one-hot encoded vector with one (or multiple) input(s)
representing the relevant category (or categories in the case
of a multiclass or -label task). For regression, the output is
often a scalar or vector with real values. Each of these tasks
has a corresponding loss function that can be minimized,
the most popular being cross-entropy for classification and
mean squared errors for regression. Note that as long as the
models are differentiable LUCID can be applied. The pre-
ferred output depends on the model’s task and the evalua-
tion of the fairness question. The positive (negative) output
results in a (dis)advantage for the individual. The canoni-
cal set of this output tells us which features positively (neg-
atively) impact the decision-making process. In this paper,
we focus on the positive outputs and the classification tasks
which allows us to better compare the canonical sets with
the output-based fairness metrics.

Locating Unfairness
We evaluate LUCID on models trained on the UCI
Adult (Dua and Graff 2017) and COMPAS (Angwin et al.
2016) data sets. The task of UCI Adult is to predict if a

person earns more or less than $50, 000 per year. The pre-
ferred outcome is that a person earns more. We focus on the
legally protected featured encoded in the UCI Adult data set
as “sex,” “race,” “native country,” “marital status,” and “re-
lationship.” For COMPAS, the task is to predict if a person
will commit recidivism in the next two years. The preferred
outcome is that a person is predicted to not commit recidi-
vism and can thus be released on bail. The legally protected
features in the COMPAS data set are “race,” and “sex.” The
models for both tasks are binary fully-connected neural net-
work classifiers. The classifiers consist of hidden layers with
ReLU activation functions and a softmax output layer, with
85, 1% and 64, 0% accuracy respectively. We choose for this
rather simple and small architecture as the point of this ex-
periment is not to achieve state–of–the–art performance, but
to demonstrate the capabilities of LUCID and compare it
with output–based fairness metrics. Note that the computa-
tional complexity of LUCID depends on the model, and the
number of epochs and inputs.

To locate the unfairness in the classifier trained on the UCI
Adult data set, we assess the distributions of the protected
features “sex,” “race,” “marital status,” and “relationship” in
the canonical set (see Fig. 4). Following a ‘Goodness for
Fit’-test with α = 0, 05, we learn that the “race” feature
keeps its initial uniform distribution, and “Sex,” “marital sta-
tus,” and “relationship” do not after the canonical inverse
design. This indicates a preference of the model for cer-
tain values of these features. Additionally, three numerical
features are analyzed: “age,” “education level,” and “hours
per week.” All three distributions shift to larger values to
achieve a positive output. In the canonical set for the clas-
sifier trained on the COMPAS data set both the “race,” and
“sex” feature do not keep their initial uniform distribution
after the canonical inverse design (see Fig. 5). This indicates
that women and Asian people are treated preferentially.

We compare the results of LUCID with two well–known
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Figure 4: To locate unfairness in the binary classifier trained on the UCI Adult data set, we apply LUCID to assess if the pro-
tected features have a uniform distribution in the canonical set. This canonical set was created with a learning rate of 0.1 looping
over 200 epochs. To assess if it is balanced w.r.t. the four protected features “sex,” “race,” “marital status,” “relationship,” their
distribution before (dark blue) and after (light green) inverse design is analyzed. The error bars indicate the variance of the
distribution with the respective number of categories. We learn that the “race” feature keeps its uniform distribution. “Sex,”
“marital status,” and “relationship” do not keep their uniform distribution after inverse design. This indicates a preference of
the model for certain values of these features. Additionally, three numerical features are analyzed: “age,” “education level,” and
“hours per week.” All three distributions shift to higher values to achieve a positive output.

traditional output-based notions of assessing fairness based
on group membership: Statistical Parity and Equal Opportu-
nity (Makhlouf, Zhioua, and Palamidessi 2021). Statistical
Parity holds when all subpopulations have an equal Positiv-
ity Rate (PR). This means that the same proportion of each
subpopulation receives a positive output. Equal Opportunity
holds when all subpopulations have an equal True Positive
Rate (TPR). This implies that for each subpopulation the
same rate of people who should receive a favorable output
also receive this output.

In Table 1, we show the PR and the TPR of the respective
subpopulations of the four protected features for the UCI
Adult data set. We note that none of the protected features
adheres to either Demographic Parity or Equal Opportunity
within an acceptable error margin. Interestingly, these biases
differ from those found with LUCID. For example, for the
“race” feature, the two fairness metrics indicate that the cat-
egories “White” and “American Indian Eskimo” have better
rates and, therefore, a benefit. However, with LUCID, we do
not find a preferred “race” category. The statistical metrics

also find a bias in the “martial status” and “relationship” fea-
tures. For “relationship,” the highest value of the two rates
corresponds to the most preferred category in the canoni-
cal set. However, the second-highest value differs. The tra-
ditional metrics indicate “Husband” while the canonical set
indicates “Not in family.” For the “Marital status” feature the
highest and the second-highest values are exchanged, i.e.,
“Married” and “Military spouse.” In Table 2, we present the
PR and the TPR of the respective subpopulations of the two
protected features for the COMPAS data set. Overall, the re-
sults of these fairness metrics are similar to the results of
LUCID.

While LUCID confirms the results of the fairness met-
rics on the COMPAS data set, there is not always a one-
to-one match on the UCI Adult data set. These differences
may be the result of several distinct properties of both data
sets. First, the UCI Adult data set contains a lot more vari-
ables which can encode the information embedded in the
protected features. These “proxy” variables may be used by
the model to make certain decisions that result in discrimina-
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MALE FEMALE WHITE
ASIAN PAC.
ISLANDER

AMER. INDIAN
ESKIMO BLACK OTHER

PR 24.7 8.0 47.7 0.6 38.6 0.6 4.2
TPR 60.0 54.6 75.0 29.5 62.4 13.3 34.0

MARRIED DIVORCED
NEVER

MARRIED SEPARATED WIDOWED
SPOUSE
ABSENT

MILITARY
SPOUSE

PR 38.8 4.3 1.6 3.4 5.0 5.7 42.9
TPR 63.4 36.5 28.5 33.3 46.5 41.7 100.0

WIFE OWN CHILD HUSBAND NOT IN FAMILY OTHER RELATIVES UNMARRIED
PR 47.7 0.6 38.6 4.2 0.6 2.4

TPR 75.0 29.5 62.4 34.0 13.3 34.1

Table 1: Positivity Rates and True Positive Rates of Subpopulations for the Protected Features in the UCI Adult Data Set.

MALE FEMALE
AFRICAN

AMERICAN ASIAN CAUCASIAN HISPANIC
NATIVE

AMERICAN OTHER

PR 76.8 90.8 45.3 100.0 75.6 75.0 20.0 93.7
TPR 50.0 59.7 30.2 71.4 51.6 50.0 20.0 52.4

Table 2: Positivity Rates and True Positive Rates of Subpopulations for the Protected Features in the COMPAS Data Set.

Native
American

Hispanic

Caucasian

Asian

African
American

Other

0% 20% 40%

Race

0% 20% 40% 60%

Female

Male

Sex

% of set % of set

Figure 5: To locate unfairness in the binary classifier trained
on the COMPAS data set, we apply LUCID to assess if the
protected features have a uniform distribution in the canon-
ical set. This canonical set was created with a learning rate
of 0.1 looping over 200 epochs. To assess if it is balanced
w.r.t. the protected features “sex,” and “race,” their distribu-
tion before (dark blue) and after (light green) inverse design
is analyzed. The error bars indicate the variance of a uni-
form distribution with the respective number of categories.
We learn that both the “race” and “Sex,” feature do not keep
their uniform distribution after inverse design. This indicates
a preference of the model for certain values of these features.

tory outputs. Second, the output-based fairness metrics focus
on the outcome, i.e., whether or not the output probability is
above or below a certain threshold. In contrast, LUCID is
an input-based analysis that aligns with the increasing focus
on equality of treatment. The canonical inputs maximize the
model’s preferred output. LUCID thus looks for the inputs
which do not simply lie above the threshold, but which are
strongly preferred by the model. Finally, a lot of categories
in the protected features do not contain a lot of data points

(e.g., “Military spouse” in the UCI Adult data set). The PR
and TPR of these categories are not statistically relevant, and
therefore the results may differ from LUCID. Even, in the
case that the results are similar, LUCID provides a sanity
check and may detect potential overfitting on these few data
points. Note that the statistical metrics can only be evalu-
ated using a ground truth and do not consider the internal
dynamics of the model.

Conclusion
To ensure that algorithms are used for the benefit of society,
they should be accessible for transparent evaluation. Above
all, because decision-making algorithms can create, prop-
agate, support, and automate bias in decision-making pro-
cesses. Therefore, assessing whether the internal logic of al-
gorithms is “fair” is essential to mitigate these biased algo-
rithms, and promoting equality of treatment.

We introduce LUCID which generates a trained model’s
canonical set through gradient-based inverse design. We
show that this set provides meaningful information about the
treatment of protected features by analyzing if it is balanced
with respect to said features. By unleashing the technique
on two models, trained on the UCI Adult and COMPAS data
sets respectively, we find that analyzing the canonical set ex-
poses several biases of which some interestingly differ from
those found in traditional output analyses.

LUCID is a useful addition to the toolbox of algorithmic
fairness evaluation, as it can be implemented without access
to the training data set or the output, and explains the inter-
nal workings of the algorithm while locating the unfairness.
Further research includes applying it on other types of mod-
els such as decision trees, determining potential clustering
of inputs in the canonical set, and performing a dynamical
analysis to examine which features adjust faster than others.
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