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Abstract

Non-Pharmaceutical Interventions (NPIs), such as social
gathering restrictions, have shown effectiveness to slow the
transmission of COVID-19 by reducing the contact of people.
To support policy-makers, multiple studies have first mod-
eled human mobility via macro indicators (e.g., average daily
travel distance) and then studied the effectiveness of NPIs. In
this work, we focus on mobility modeling and, from a mi-
cro perspective, aim to predict locations that will be visited
by COVID-19 cases. Since NPIs generally cause economic
and societal loss, such a micro perspective prediction benefits
governments when they design and evaluate them. However,
in real-world situations, strict privacy data protection regula-
tions result in severe data sparsity problems (i.e., limited case
and location information). To address these challenges, we
formulate the micro perspective mobility modeling into com-
puting the relevance score between a diffusion and a location,
conditional on a geometric graph. we propose a model named
Deep Graph Diffusion Infomax (DGDI), which jointly mod-
els variables including a geometric graph, a set of diffusions
and a set of locations. To facilitate the research of COVID-
19 prediction, we present two benchmarks that contain geo-
metric graphs and location histories of COVID-19 cases. Ex-
tensive experiments on the two benchmarks show that DGDI
significantly outperforms other competing methods.

Introduction
The COVID-19 pandemic has been the greatest global pub-
lic health challenge with over 567 million confirmed cases
and over 6.3 million deaths as of 27 July 20221. The out-
break of the COVID-19 not only threatens the public health
but also has a devastating impact on economic activity, lead-
ing to increased food insecurity, poverty, and socioeconomic
inequality (Wang et al. 2020; Laborde et al. 2020; Clouston,
Natale, and Link 2021). To control the spread of COVID-
19, Non-Pharmaceutical Interventions (NPIs), such as so-
cial gathering restrictions, school and business closures, and
stay-at-home orders, are implemented via changing people’s
mobility behaviours (Haug et al. 2020). Therefore, multiple
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1who.int/publications/m/item/weekly-epidemiological-update-
on-covid-19---27-july-2022

studies (Levin et al. 2021; Hu et al. 2021; Gibbs et al. 2020,
2021) have analyzed the human mobility patterns to support
policy-makers. They usually aggregate mobility data, pro-
vided by commercial companies, such as SafeGraph 2 and
Google 3, and then compute metrics (e.g., daily average frac-
tion of residents staying at home) to model human mobility.
Despite their effectiveness, they only focus on a macro as-
pect of mobility during COVID-19 and ignore the impact of
NPIs on individuals. Since NPIs slow the virus spread by
limiting human mobility, an in-depth understanding of hu-
man behaviours during the COVID-19 pandemic will allow
decision makers judiciously and promptly implement inter-
ventions.

In this work, we strictly follow the real-world scenario
that case diffusions (i.e., location visiting histories) can only
be observed when they are tested positive, which abides by
the privacy data protection regulation of most countries/re-
gions. Under these settings, we aim to answer the question:
will a location be visited by the COVID-19 cases (e.g., con-
firmed cases, close contacts, and asymptomatic infections)
in the near future? Addressing the above problem is chal-
lenging due to the data sparsity in two aspects.

Firstly, due to the privacy policy, the available diffusion
data is anonymous, resulting in a limited number of loca-
tion visiting records of each case. To alleviate such data
sparsity, a common solution is to incorporate side informa-
tion. Thus, we propose to utilize the geometric information,
i.e., a geometric graph is constructed where two locations
are connected if they are neighbors. To this end, our prob-
lem is formulated into computing the relevance score be-
tween a diffusion and a location, conditional on a geomet-
ric graph. Following the most recent works (Chang et al.
2021b, 2020; Schwabe, Persson, and Feuerriegel 2021), we
employ the representation learning framework. That is, we
use fixed-length embedding vectors to denote locations, dif-
fusions, and graphs respectively. Figure 1 is an example of
the COVID-19 high-risk location prediction, in which a dif-
fusion illustrates a location history of the COVID-19 case,
and the geometric graph reflects the distance between loca-
tions.

Secondly, most locations have a small number of appear-
2https://www.safegraph.com/academics
3https://www.google.com/covid19/mobility/
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ances. Generally, in real-world diffusions, common loca-
tions (head nodes) can have sufficient appearances while
some uncommon locations (tail nodes) can be underrepre-
sented by limited appearances (Anderson 2006). This im-
balance poses great challenge to learning unbiased repre-
sentations, making the learned representations easily dom-
inated by head nodes. To address this limitation, we ex-
tend the idea of Mutual Information (MI) maximization
(Oord, Li, and Vinyals 2018) to the COVID-19 mobility pre-
diction, which has been proven to be effective in learning
high-quality representations with skew distributions (Wang
et al. 2021a). Unlike previous graph MI maximization meth-
ods (Velickovic et al. 2019) which only have single input
(i.e., graph) and output (i.e., location embedding), our for-
mulation involves multiple variables including two inputs
(i.e., the geometric graph and diffusions) and two repre-
sentations (i.e., location and diffusion representations). It is
difficult to enforce consistency among these four variables
within the framework of MI maximization. In this work, we
present Deep Graph Diffusion Infomax (DGDI), to tackle
the above challenges. DGDI is defined between two joint
distributions: the joint distribution of the graph input and lo-
cation representations and that of diffusions and diffusion
representations. Moreover, our theoretical derivations show
that DGDI can be lower bounded by a linear combination of
two univariate MI: the univariate MI between the graph input
and diffusion representations and the univariate MI between
diffusion representations and location representations. Upon
this decomposition, the univariate MI can be easily com-
puted via InfoNCE (Oord, Li, and Vinyals 2018) or Deep
Graph Infomax (DGI) (Velickovic et al. 2019). We then de-
rive the visit probability by a similarity function of diffusion
and location representations.

Social impact Given the existence of immune escape (i.e.,
vaccines may fail to protect people) (Zhang et al. 2022), es-
pecially for some COVID-19 variants (e.g., Omicron), and
the specific drug for COVID-19 is still in an early stage,
non-pharmaceutical interventions are still practical and ef-
fective to combat COVID-19. However, since these inter-
ventions may cause substantial economic and societal loss
while hurt individuals’ mental health and social security, ef-
fectively quantifying human mobility during the COVID-19
pandemic to assess NPI effectiveness is necessary to balance
costs. Besides, human mobility models can benefit the con-
trol of other epidemics as well, such as influenza (Venkatra-
manan et al. 2021) and ebola (Peak et al. 2018).

Related Work
In this section, we review human mobility and graph con-
trastive learning papers that are related to our work.

Human Mobility Modeling
Non-pharmaceutical interventions have been one of the most
effective tools to defeat COVID-19 transmission and most
NPIs aim to change human mobility to reduce the con-
tact rate. Outside the Artificial Intelligence (AI) community,
plenty of works (Gibbs et al. 2020; Hu et al. 2021; Levin
et al. 2021; Gibbs et al. 2021; Lai et al. 2020; Chang et al.

2021a) have studied the relations between human mobil-
ity and NPIs or COVID-19 transmission, which could pro-
vide valuable insights for future public health efforts. Most
of them focus on computing mobility metrics via aggregat-
ing mobility data, e.g., daily average fraction of residents
staying at home (Levin et al. 2021), daily average number
of trips (Hu et al. 2021) and movement flow matrix (Gibbs
et al. 2020). Nevertheless, these macro-view researches are
too simple to model real-world mobility, as they treat indi-
viduals without differentiation. Note that in the AI domain,
there are analogous tasks such as mobility prediction and
diffusion prediction which can be utilized to model individ-
ual trajectories. Thus in this work, we fill this gap and de-
rive a mobility prediction method for COVID-19 cases. We
believe such an approach can help discover more valuable
insights during NPI designs.

Existing mobility prediction methods in AI commu-
nity can be broadly categorized into: Matrix Factorization
(MF) (Liu et al. 2013), Markov Chain (MC) (Zhang, Chow,
and Li 2014; Chen, Liu, and Yu 2014), and deep learn-
ing models which consist of recurrent models (Yao et al.
2017; Sun et al. 2020b; Li et al. 2021), attention mecha-
nism (Yu et al. 2020), and graph neural networks (Lim et al.
2020). Diffusion prediction models follow a similar research
line, from early simple linear models (Kempe, Kleinberg,
and Tardos 2003; Granovetter 1978; Barbieri, Bonchi, and
Manco 2012; Saito et al. 2009; Rong, Zhu, and Cheng 2016;
Rong, Cheng, and Mo 2015) to recent deep learning based
models (Feng et al. 2018b; Wang et al. 2017a; Sankar et al.
2020; Wang et al. 2021b, 2017b; Wang, Chen, and Li 2018;
Islam et al. 2018; Yang et al. 2021) including recurrent neu-
ral networks (RNNs) and variational autoencoders (VAEs).

Compared to diffusion prediction methods, mobility pre-
diction models usually have an additional user representa-
tion model learned from users’ history trajectories (users
generally have more than one trajectory) and user features.
Nevertheless, in our task, users have no such rich features
but a single trajectory due to privacy protection. In this re-
gard, we follow the settings of diffusion prediction which
only rely on the location visiting history and a graph to make
predictions.

Graph Contrastive Learning
The recent advance of contrastive learning in computer
vision motivates the studies of graph contrastive learn-
ing (Velickovic et al. 2019; Jing, Park, and Tong 2021; Peng
et al. 2020; You et al. 2020; Sun et al. 2020a; Qiu et al.
2020). DGI (Velickovic et al. 2019) maximizes the mutual
information between node representations and global sum-
mary of the graph. HDMI (Jing, Park, and Tong 2021) lever-
ages two signals to train the model: the mutual information
between location embedding and global summary, and the
mutual dependence between location embedding and loca-
tion attributes. HGMI (Li et al. 2022) maximizes the mutual
information among three variables. To the best of our knowl-
edge, existing work (Xue and Salim 2021) only explores the
advantage of self-supervised learning on COVID-19 Cough
Classification, aiming at learning robust representations of
respiratory sounds. Our work is the first study that models
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Figure 1: An example of the COVID-19 mobility prediction. The geometric graph records the distance information (two points
are connected if they are within a Euclidean distance). The diffusion illustrates a location history of the COVID-19 case.

the mutual information among the graph, nodes and diffu-
sions in COVID-19 diffusion prediction domain.

Preliminaries
Problem Definition
A set of nodes V = {v1, v2, . . . , vN} is used to rep-
resent real-world locations or areas in COVID-19 trans-
mission. In this work, locations and nodes are used inter-
changeably. An N × N adjacency matrix A is used to
describe a geometric graph G = {V ,A} for nodes in
V . Aij ∈ {0, 1} represents whether there is an edge be-
tween nodes vi and vj or not, e.g., nodes connected by near-
est neighbors in COVID-19 transmission. Let a set of dif-
fusions D = {d1, d2, . . . , dM} represent the COVID-19
cases, in which a diffusion di is an ordered sequence of lo-
cation visit histories in ascending order of time denoted by
di = {vi1 , vi2 , . . . , vik}. The kth visited location of di is
recorded as vik .

Given the pair {G,D}, our problem is defined as learning
a prediction model f(G,D) to estimate the probability of
visiting an unvisited location v: p(v|di) ∃ v ∈ V −{vi}Kk=1.
Due to a large number of potential unvisited locations, we
formulate our prediction as an information retrieval prob-
lem. For example, for d1 in Figure 1, given the observed vis-
ited locations (i.e., hotel, park, and mall), the model ranks
the probability of visiting unvisited locations (i.e., school,
canteen, flat).

Framework
In our problem setting, we have two information sources: a
geometric graph G and a set of diffusions D. Our purpose
is to learn diffusion representations H = {hi}Mi=1 and lo-
cation representations U = {ui}Ni=1, where hi denotes the
derived diffusion representation for di and ui denotes the
derived location representation for location vi. These repre-
sentations can be retrieved and used to compute a visit like-
lihood p(v|di).

We seek to maximize mutual information for two sub-
systems: the graph joint distribution (G,U) to model the
geometric information and the diffusion joint distribution

(D,H) to model the COVID-19 cases, namely,

argmax I((G,U); (D,H)), (1)

Intuitively, this target enforce consistency between the ge-
ometric information and the COVID-19 cases, which is
named Deep Graph Diffusion Infomax (DGDI).

We consider the geometric graph G, the location repre-
sentations U , the diffusions D and the diffusion represen-
tations H as four random variables and forming a proba-
bilistic graphical model, as illustrated in Figure 1. As the
figure makes clear, the diffusion di is assumed to be sam-
pled once from the geometric graph G; the location repre-
sentation ui directly depends on the graph G; the diffusion
representation H directly depends on the diffusion D. As
the joint distribution in Eq. 1 makes the data appearances
more sparse, we seek to find a marginal distribution lower
bound to relieve the data sparsity issue.

Based on the above assumptions, we have the following
decomposition theorem to make the computation of DGDI
feasible.

Theorem 1 The graph diffusion mutual information
I((G,U); (D,H)) can be lower bounded by a sum of
univariate mutual information, namely,

I((G,U); (D,H)) ≥ 1

4
I(G;H) +

1

4
I(H ;U) (2)

here I(G;H) is the mutual information between graph in-
put and diffusion representations, I(H ;U) is the mutual
information between diffusion representations and location
representations.

To prove Theorem 1, we first introduce one lemma.

Lemma 1 For an arbitrary set of three random variables R1,
R2, R3, we have

I(R1;R2, R3) ≥
1

2
(I(R1;R2) + I(R1;R3)) (3)

here I(R1;R2, R3) is the mutual information between vari-
able R1 and the joint distribution of R2 and R3 .
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To prove Lemma 1, we make use of the chain rule for mutual
information.

I(R1;R2, R3) = I(R1;R3) + I(R1;R2|R3)

≥ I(R1;R3)
(4)

The last inequality holds as mutual information is non-
negative. Accordingly, we have

I(R1;R2, R3) ≥ I(R1;R2) (5)

Based on Eq. 4 and Eq. 5, we complete the proof of Lemma
1.

We then prove Theorem 1,

I((G,U); (D,H)) ≥ 1

2
I((G,U);H) +

1

2
I((G,U);D)

≥ 1

4
I(U ;H) +

1

4
I(G;H) +

1

2
I((G,U);D)

=
1

4
I(U ;H) +

1

4
I(G;H) +

1

2
I(G;D) +

1

2
I(U ;D|G)

=
1

4
I(U ;H) +

1

4
I(G;H) +

1

2
I(G;D) + 0

≥ 1

4
I(U ;H) +

1

4
I(G;H)

(6)

The first and second inequalities hold according to Lemma
1; the third equality holds because of the chain rule for mu-
tual information; I(U ;D|G) = 0 holds as U and D are con-
ditional independent given G (under the proposed graphical
model); the last inequality holds as I(G;D) is positive and
irrelevant with our optimization variables. Thus, we com-
plete the proof of Theorem 1.

Model
In this section, we first introduce our method to compute the
location, diffusion and graph representations, then describe
how to maximize DGDI in details.

Representation Model
The goal of our representation model is to produce fixed-
length embedding vectors of locations, diffusions and graph.
We first obtain location embeddings U from random initial-
izing and then propose a simple yet effective way to compute
graph and diffusion representations.

Diffusion representation To capture the graph character-
istics and the diffusion temporal influence, the diffusion rep-
resentation part takes the geometric graph G and a set of dif-
fusions D as inputs. Accordingly, our model consists of two
major components: (1) a Graph Neural Network (GNN) that
smooths each location representation according to the graph
topology; and (2) a self-attention layer that quantifies the
varying effect of previous visited locations. Our objective is
to encode the graph information into location embeddings
in GNN and then feed them into the temporal self-attention
layer.

We use GNN model to encourage locations that are close
in the geometric graph G to share similar latent representa-
tions, which may benefit the predicted task in the absence

of explicit location attributes. For example, in the COVID-
19 spread, locations that are close in geometric space may
be visited by the same cases. We empirically test Graph
Convolutional Network (GCN) (Kipf and Welling 2017),
Graph Attention Network (GAT) (Velickovic et al. 2018),
and Graph Isomorphism Network (GIN), and find that GCN
performs best. Its update rule is:

Z(l) = ReLU(ÂZ(l−1)W (l−1)), (7)

where Â is a normalized adjacency matrix and Z(l) (Z(0) =
U ) denotes the output representations of l-th layer GCN.

The latent embedding Z is then utilized to compute the
diffusion embedding. In the COVID-19 predictions, one ob-
servation is that the true spread processes may not strictly
follow the sequential assumption, e.g., a location can be vis-
ited depending on any of the previous visited locations. To
capture such dependency, a self-attention layer followed by
a Multi-Layer Perceptron (MLP) is adopted. Specifically,
given a diffusion di = {vi1 , vi2 , . . . , vik}, the k-th location
is represented by z′k (we omit the subscript i for simplicity):

z′k = zk + PE(k) (8)

where PE(k) is the positional-encoding (Vaswani et al.
2017) that only depends on the position k. The even and
odd elements are sin(k/10000i/L) and cos(k/10000i−1/L)
respectively (L is the dimension of encoding). Then the dif-
fusion representation hi for the diffusion di can be computed
by:

hi = MLP

 k∑
j=1

αjkfv(z
′
j)

 , (9)

αjk =
exp(< fq(z

′
k), fk(z

′
j) >)∑k

j=1 exp(< fq(z′k), fk(z
′
j) >)

, (10)

where < ·, · > denotes the inner product of two vectors. z′k
denotes the last location of di and attention weight αjk ∈
R denotes the j-th node’s contribution to the final diffusion
representation. Following the previous work (Vaswani et al.
2017), we apply three linear transform functions fk, fq , and
fv (i.e., f(z) = zW ) on latent embeddings.

Graph representation The representation of the entire
graph can be obtained by aggregating the output of GNN,
which is termed as graph pooling (Ying et al. 2018). The
pooling function transforms arbitrary-sized location embed-
dings to a fixed-length representation, which can be a sim-
ple mean or a more sophisticated graph-level pooling func-
tion such as Attention Pooling (Li et al. 2019; Lee, Lee, and
Kang 2019). Here we use mean pooling for simplicity:

g =
1

N

N∑
i=1

zi, (11)

where g denotes the graph representation.

Maximization of DGDI
Training objective According to Theorem 1, DGDI is
lower bounded by two univariate mutual information: mu-
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Figure 2: Overview of the proposed DGDI. The graph em-
bedding is obtained via pooling the latent embeddings, and
the diffusion embedding is calculated via self-attention with
the input of location embeddings. Finally, we compute the
MI between the location embedding and diffusion embed-
ding, and the MI between the diffusion and graph embed-
ding.

tual information between graph input and diffusion repre-
sentations and that between diffusion representations and lo-
cation representations. Accordingly, our training objective
becomes:

L = λ1LG + λ2LU (12)

Following existing work (Peng et al. 2020), λ1 and λ2 are
set to tunable parameters for better performance. LG and LU

are the training losses for I(G;H) and I(H ;U) maximiza-
tion respectively. Figure 2 illustrates the overall framework
of DGDI. During our experiments, we found that deep graph
infomax (DGI) (Velickovic et al. 2019) and InfoNCE (Oord,
Li, and Vinyals 2018) are simple but effective methods to
estimate I(G;H) and I(H ;U). They share a similar idea
which encourages the consistency between the representa-
tions of positive pairs and the divergence between that of
negative pairs. Although there exist other estimators (e.g.,
GMI (Peng et al. 2020) or InfoGraph (Sun et al. 2020a)),
we empirically show that DGI and InfoNCE have already
achieve state-of-the-art performance in Section . Thus, we
leave the testing of other choices for future work.

I(G;H) computation MI between global graph embed-
ding g and representations of local parts are maximized un-
der the framework of DGI (Velickovic et al. 2019). Since
diffusions are assumed to be sampled from the graph, we
treat diffusions as the local parts and maximize MI between

global graph embedding g and diffusion embedding h. A
negative sampling strategy is then leveraged to generate neg-
ative graph ĝ. More specifically, we randomly shuffle the lo-
cation embedding matrix and get Û ; we let Û go through
the GNN module and the graph representation module and
get ĝ. A discriminator is then utilized to distinguish the dif-
fusion representation and graph representations. Formally,
the loss is defined as follows:

LG =
∑
h∈H

E[log fd(h, g)] + E[log (1− fd(h, ĝ))], (13)

where fd denotes the inner-product discriminator:

fd(h, g) = σ(< h, g >), (14)

where σ denotes the sigmoid activation function and
fd(h, ĝ) is calculated in the same way.

I(H ;U) computation I(H ;U) is maximized between
diffusion representation H and location representation U .
We use InfoNCE (Oord, Li, and Vinyals 2018) to maximize
the MI of these two representations. In terms of sampling
strategies, a diffusion and its next visited location are con-
sidered as a positive pair while a diffusion and uninfected
locations are as negative pairs. To summarize, LU is com-
puted by:

LU = −
M∑
i=1

K∑
k=1

log
exp(< hik , u > /τ)∑

u′∈U exp(< hik , u
′ > /τ)

, (15)

where hik denotes the diffusion representation of di’s sub-
diffusion ending at the position k and τ is the hyper-
parameter, known as the temperature. Inner-product is em-
ployed as the similarity function of InfoNCE.

For model inference, we formulate the predicted task as
an information retrieval problem. Given an input diffusion,
our model ranks a location list according to the possibility of
being visited. And the possibility equals to the inner product
of the diffusion representation and the location representa-
tions.

Time Complexity
The cost per training iteration of DGDI contains the com-
putation of GCN (i.e., Eq. 7) and the self-attention layer
(i.e., Eq. 9 and Eq. 10). The graph convolution operations
take O(|E|F 2) (Kipf and Welling 2017) where |E| denotes
the number of edges and F is dimension of latent embed-
dings. The time complexity of the self-attention layer is
O(|D|K2F ) where |D| denote the size of observed cas-
cades and K is the length of the longest cascade. Thus, the
overall complexity of DGDI is O(|E|F 2 + |D|K2F ). We
compare DGDI with Inf-VAE (Sankar et al. 2020) and one of
our baselines SNIDSA (Wang, Chen, and Li 2018). The core
operations of Inf-VAE are GCN with inner-product and a co-
attention layer which take O(|E|F 2 + |V |2F + |D|K2F ).
SNIDSA is a recurrent model with a structural attention net-
work whose complexity is O(|D|KF 2 + |V |F 2 + |E|F ).
Since Inf-VAE requires the computation of each node pair,
its time complexity is highest among these three models.
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Dataset # Nodes # Links # Diffusions

COVID-HK 3,274 603,667 2,536
COVID-MLC 4,091 58,079 1,887

Table 1: Dataset statistics.

Experiments
Experimental Settings
Datasets Two public available datasets are employed to
evaluate our proposed model in COVID-19 transmission
scenarios: COVID-HK and COVID-MLC. To better serve
our problem, imported cases are excluded and we retain
cases who have at least 2 locations. In terms of the geomet-
ric graph, two locations are connected if their distance is
less than 3 kilometers. Note that all data are published by
the government and do not contain sensitive information
(i.e., anonymous).
• COVID-HK. The COVID-HK dataset is released by the

Hong Kong government 4, which records locations vis-
ited by the COVID-19 cases from Jan 28, 2020 to Sep 1,
2021.

• COVID-MLC. The COVID-MLC dataset is provided by
Beijing Advanced Innovation Center for Big Data and
Brain Computing5, which records locations from Jan 1,
2020 to March 22, 2020 and involves twelve provinces
of Mainland, China.

Baselines We compared our proposed model with several
methods. The first group focuses on diffusion modeling and
contains FMC (Zhang, Chow, and Li 2014), LSTM (Hochre-
iter and Schmidhuber 1997), GRU (Cho et al. 2014) and
DeepMove (Feng et al. 2018a). The second group focuses
on geometric graph modeling and includes GCN (Kipf and
Welling 2017) and GIN (Xu et al. 2019). It makes use of ge-
ometric graph information and represents diffusions by their
last location representations. The third group uses both ge-
ometric graph and diffusion information and includes Topo-
LSTM (Wang et al. 2017a), SNIDSA (Wang, Chen, and Li
2018), FOREST (Yang et al. 2019) and Inf-VAE (Sankar
et al. 2020). These methods are the state-of-the-art in dif-
fusion prediction tasks.

Implementation details For Topo-LSTM6, DeepMove7,
SNIDSA8 and Inf-VAE9, we use the code provided by au-
thors. We implement FOREST and our model by PyTorch.

Evaluation metrics According to the timestamp, the
dataset is split to 70%, 10% and 20% for training, validation
and testing. As stated in Section , we consider our prediction
task as a ranking task. Specifically, the unvisited locations

4https://chp-dashboard.geodata.gov.hk/covid-19/en.html
5https://github.com/BDBC-KG-NLP/COVID-19-tracker
6https://github.com/vwz/topolstm
7https://github.com/vonfeng/DeepMove
8https://github.com/zhitao-wang/Sequential-Neural-

Information-Diffusion-Model-with-Structure-Attention
9https://github.com/aravindsankar28/Inf-VAE

are ranked based on their predicted visit probabilities. Two
widely used ranking metrics are adopted: Recall@K which
denotes the fraction of infected locations among the top-k
predicted locations, and MAP@K which jointly measures
the existence and position of the target location in the rank
list.

Setup For fair comparison, all models are trained by
Adam optimizer (Kingma and Ba 2015) with a learning rate
of {0.001, 0.0005, 0.0001} and mini-batch size of 16. The
dimension for representations and hidden states in all mod-
els are 32. For DGDI, we set λ2 to 1 and tune λ1 and τ
within the ranges of {0.1, 0.2, ..., 0.5} and {0.5, 0.6, ..., 1}.
We use GCN as our graph model and its layer number is
searched within 2. For FOREST, we use recommended set-
tings in their papers (Yang et al. 2019). We run each method
5 times and report its average accuracy.

Overall Performance Comparison
Table 2 lists the performance for all methods where K is set
to 3, 5, and 10. We can observe:
• Sequence Models that only utilize diffusions (i.e., FMC,

LSTM, and DeepMove) perform worst in most cases, in-
dicating that simply modeling the diffusion information
is not sufficient. Although graph models (i.e., GCN and
GIN) ignore previous visited locations to make predic-
tions, they outperforms LSTM and DeepMove under all
circumstances. One possibility is that most people only
have a limited circle of activities (e.g., near their home or
workplace) . Thus, integrating the geometric information
allow the model to provide a better predictions.

• The integration of sequence models and the graph struc-
ture results in performance improvements. Topo-LSTM,
SNIDSA, FOREST, Inf-VAE, and DGDI beat models
based on pure sequence (i.e., FMC, LSTM, and Deep-
Move) in most cases, indicating the importance of jointly
modeling the diffusion and graph information.

• DGDI significantly outperforms all the baselines on both
MAP and Recall, which indicates that more to-be-visited
locations are found and their ranks are higher in the pre-
dicted list. For example, our model beats the second best
model Inf-VAE by 1.18 w.r.t. MAP@3 on COVID-HK and
0.93 w.r.t. MAP@10 on COVID-MLC. These improve-
ments are owed to both the model architecture and the
contrastive loss.

Comparison w.r.t. data sparsity To investigate the model
performance w.r.t. data sparsity of location appearance,
we divide the frequency of location appearance into three
groups which are {< 7(547), 7 − 13(30), > 13(10)} on
COVID-HK and {< 8(912), 8 − 17(44), > 17(17)} on
COVID-MLC, e.g., < 7(547) indicates that there are 547 lo-
cations appears less than 7 times in training diffusions. We
can see that most locations only have limited appearances
and only a small number of locations appear frequently. The
recall@10 of DGDI and the two strongest baselines (i.e., Inf-
VAE and FOREST) are displayed in Figure 3. Specifically,
the results of each group indicate how much they contribute
to the overall results of the entire test set (i.e., the sum of
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Metric (%) Recall MAP

Model Covid-HK Covid-MLC Covid-HK Covid-MLC
@3 @5 @10 @3 @5 @10 @3 @5 @10 @3 @5 @10

FMC 1.10±0.0 1.10±0.0 1.10±0.0 4.40±0.0 4.63±0.0 5.39±0.0 0.79±0.0 0.79±0.0 0.79±0.0 3.78±0.0 3.83±0.0 3.93±0.0
LSTM 0.73±0.2 0.88±0.3 1.18±0.2 2.73±0.2 3.24±0.2 4.03±0.2 0.56±0.2 0.59±0.2 0.63±0.2 2.17±0.2 2.26±0.2 2.37±0.1

DeepMove 0.94±0.2 1.15±0.2 1.39±0.2 3.29±0.2 3.64±0.2 4.55±0.2 0.77±0.2 0.82±0.1 0.85±0.1 2.82±0.2 2.90±0.2 3.02±0.2
GCN 1.77±0.2 2.17±0.3 3.15±0.3 4.20±0.5 4.83±0.5 6.17±0.6 1.19±0.2 1.28±0.2 1.40±0.2 3.10±0.3 3.25±0.3 3.42±0.2
GIN 1.92±0.2 2.46±0.4 3.42±0.9 4.95±0.2 6.28±0.4 8.15±0.3 1.26±0.2 1.39±0.2 1.51±0.2 4.12±0.2 4.42±0.2 4.67±0.2

Topo-LSTM 1.78±0.2 2.25±0.3 3.30±0.4 4.66±0.1 5.58±0.2 7.17±0.1 1.28±0.1 1.40±0.1 1.54±0.1 3.17±0.2 3.38±0.2 3.58±0.2
SNIDSA 1.44±0.2 2.26±0.1 3.40±0.1 2.11±0.3 5.36±0.2 7.13±0.1 1.10±0.2 1.29±0.2 1.43±0.2 1.53±0.2 2.25±0.1 2.51±0.1
FOREST 1.77±0.3 2.53±0.4 3.50±0.3 4.55±0.2 5.32±0.4 6.48±0.4 1.14±0.1 1.32±0.2 1.45±0.2 3.88±0.3 4.06±0.3 4.21±0.3
Inf-VAE 2.03±0.2 2.54±0.2 3.73±0.2 6.39±0.2 7.33±0.1 8.64±0.3 1.56±0.1 1.66±0.1 1.80±0.1 5.02±0.2 5.20±0.2 5.44±0.2

DGDI 3.76±0.3 4.89±0.4 6.95±0.9 7.04±0.3 8.88±1.1 12.19±1.1 2.74±0.2 2.99±0.2 3.25±0.2 5.52±0.2 5.94±0.3 6.37±0.3

Table 2: MAP@K and Recall@K comparison of different methods on two datasets: our model (denoted by bold) significantly
outperforms the strongest baseline.
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Figure 3: Recall@10 of COVID-HK and COVID-MLC on
the frequency of location appearances. DGDI outperforms
baselines on all groups.

Method COVID-HK COVID-MLC
Recall@10 MAP@10 Recall@10 MAP@10

Remove GNN 2.28±0.3 1.18±0.1 8.79±0.4 4.58±0.1
λ1 = 0 6.56±0.5 2.75±0.3 11.12±1.1 5.82±0.5
Default 6.95±0.9 3.25±0.2 12.19±1.1 6.37±0.3

Table 3: The MAP@10 and Recall@10 of ablation study.
The results are average over 5 runs.

these three results is equal to the results of the entire test
set). As the figure shows, the model performs significantly
better on head nodes than tail nodes since the performance
of only a small number of head nodes is comparable to that
of tail nodes. Moreover, we can observe that DGDI outper-
forms Inf-VAE and FOREST in all groups, demonstrating
that DGDI is better than other models even under data spar-
sity.

Model Ablation Study
To investigate the contribution of our model design choices,
the ablation study is conducted including:

1. Remove GNN: This method removes the GNN of the
model design. Since I(G;H) depends on GNN to obtain
graph representations. If the GNN is removed, I(G;H)
is removed as well. Thus, this method only uses self-
attention to derive diffusion representations.

2. λ1 = 0: Only use LU to train the model and GNN is

used to derive diffusion representations.

Table 3 shows MAP@10 and Recall@10 of our model and
its variants. The last row denotes the performance of our
model in default settings.

Due to the lack of graph information, the performances
decrease on both datasets by a large margin after remov-
ing the GNN, which reflects the importance of geometric in-
formation when predicting COVID-19 diffusion. Maximiz-
ing LG enforces diffusion embeddings to encode the geo-
metric information. When setting λ1 = 0, the performance
drops in all cases, which demonstrates the effectiveness of
LG. Specifically, the relative improvement w.r.t. MAP@10
on COVID-HK and COVID-MLC is 18.18% and 9.45%,
demonstrating the effectiveness of DGDI.

Conclusion
In this work, we argue that human mobility modeling plays
an important role during the NPI design and propose to
predict case locations in the COVID-19 transmission. We
present a novel mutual information maximization frame-
work, named DGDI, to jointly learn the high-quality lo-
cation, geometric graph, and diffusion representations. A
lower bound of DGDI consists of the sum of two univari-
ate mutual information is derived to optimize the model.
Compared with other related works, DGDI can better han-
dle data sparsity of diffusion and location appearance. Two
COVID-19 datasets are proposed to facilitate the research
of COVID-19 mobility modeling. Experimental results on
these two real-world datasets show that DGDI outperforms
other competitors by a significant margin on both Recall and
MAP.
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