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Abstract

In 2020, maternal mortality in India was estimated to be as
high as 130 deaths per 100K live births, nearly twice the
UN’s target. To improve health outcomes, the non-profit AR-
MMAN sends automated voice messages to expecting and
new mothers across India. However, 38% of mothers stop lis-
tening to these calls, missing critical preventative care infor-
mation. To improve engagement, ARMMAN employs health
workers to intervene by making service calls, but workers can
only call a fraction of the 100K enrolled mothers. Partnering
with ARMMAN, we model the problem of allocating limited
interventions across mothers as a restless multi-armed bandit
(RMAB), where the realities of large scale and model un-
certainty present key new technical challenges. We address
these with GROUPS, a double oracle–based algorithm for ro-
bust planning in RMABs with scalable grouped arms. Ro-
bustness over grouped arms requires several methodological
advances. First, to adversarially select stochastic group dy-
namics, we develop a new method to optimize Whittle indices
over transition probability intervals. Second, to learn group-
level RMAB policy best responses to these adversarial en-
vironments, we introduce a weighted index heuristic. Third,
we prove a key theoretical result that planning over grouped
arms achieves the same minimax regret–optimal strategy as
planning over individual arms, under a technical condition.
Finally, using real-world data from ARMMAN, we show that
GROUPS produces robust policies that reduce minimax re-
gret by up to 50%, halving the number of preventable missed
voice messages to connect more mothers with life-saving ma-
ternal health information.

1 Introduction
Maternal mortality, the death of a mother1 during pregnancy
or within 42 days after childbirth, is an ongoing global health
crisis. In India, the maternal mortality rate is particularly
stark, estimated between 99 and 130 deaths per 100K births

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We recognize that the term “mother” is imperfect, most no-
tably by not reflecting transgender and non-binary identities. We
highlight alternative language with discussion in Appendix A.

Figure 1: Mothers enrolled with ARMMAN receive life-
saving preventative care information via voice messages
throughout their pregnancy, childbirth, and neonatal period.
Photo courtesy of ARMMAN.

in 2020 (Meh et al. 2021; Gates Foundation 2021), signif-
icantly higher than Sustainable Development Goal 3.1 tar-
get of 70 per 100K births (United Nations 2021). Tragi-
cally, most maternal deaths are preventable (WHO 2023),
but lack of finances and awareness prevent mothers from
seeking care, particularly in low-income communities (Car-
valho, Salehi, and Goldie 2013).

To improve maternal health outcomes, we work with
ARMMAN, an India-based non-profit that provides free
preventive care to millions of mothers by sending auto-
mated health voice messages, specifically targeted towards
low-income communities (similar to MAMA (Johnson &
Johnson 2017)). Mothers enrolled in the program receive
weekly automated voice messages during pregnancy and
up to one year after childbirth. Randomized control trials
showed that ARMMAN’s messaging program significantly
improves key indicators including treatment-seeking during
complications, infant breastfeeding, and post-infancy weight
(Murthy et al. 2019). However, ARMMAN found that nearly
38% of mothers disengage, missing critical health informa-
tion. To improve engagement, ARMMAN employs health
workers to provide service calls, but there are only tens of
health workers compared to hundreds of thousands of moth-
ers in a given service area — so interventions must be care-
fully targeted to maximize engagement.

Working with ARMMAN, we model this resource-limited
intervention planning problem as a restless multi-armed
bandit (RMAB), where each mother (arm) changes their
weekly engagement (state) according to a stochastic Markov
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decision process. RMABs are PSPACE-hard to solve ex-
actly (Papadimitriou and Tsitsiklis 1999) and even the more
tractable, asymptotically optimal “Whittle index policy”
(Whittle 1988) is challenging to compute at scale.

To improve the scalability of real-world RMAB plan-
ning, Mate et al. (2022) proposed to organize arms into
a small number of groups, infer transition dynamics from
each group’s data, then compute the Whittle index policy
per group. While the scalability of their method is desirable
for ARMMAN’s problem setting, it ignores a key reality of
model uncertainty: learning transition probabilities from his-
torical data leads to imprecise and imperfect estimates which
must be accounted for in planning. Computing RMAB poli-
cies that are robust to model uncertainty has only recently
been studied. Existing methods achieve robustness to inter-
val uncertainty over model dynamics by planning against a
model-controlling “nature” adversary to yield policies that
minimize max regret (Killian et al. 2022; Xu et al. 2021).
Robustness is desirable for ARMMAN’s setting, but these
methods require training deep reinforcement learning (RL)
agents for each arm, so unfortunately do not scale past hun-
dreds of arms.

To enable large-scale, robust intervention planning for
ARMMAN, we bridge the gaps in previous works by in-
troducing robust grouped RMAB. Our model achieves scala-
bility by considering a grouped-arm paradigm and optimiz-
ing for minimax regret over the uncertain model dynamics
per group. Unfortunately, the grouping abstraction breaks
key assumptions used in previous robust RMAB work: that
(1) policies improve by collecting samples of regret by
evolving a joint state of all arms, and (2) the nature adversary
controls the transitions of each arm individually. We over-
come (1) by decomposing regret per arm, freeing the planner
from relying on a cumbersome joint state to enable efficient
group-abstracted planning. For (2), we prove that restricting
the adversary to control dynamics only over groups does not
change the equilibrium strategy, allowing us to leverage the
scalable robust grouped model to find policies over hundreds
of thousands of arms without sacrificing quality.

Our contributions are as follows. First, we introduce
robust grouped RMABs with a minimax regret objective
and propose a solution that employs the double oracle
framework (McMahan, Gordon, and Blum 2003). The ap-
proach we propose is GROUPS: Group RMAB Oracles for
Uncertainty-robust Planning at Scale. Second, we develop
novel methods designed for robust grouped RMABs to im-
plement the two oracles, the planner and adversary. Planning
over groups of arms allows large scale-up but presents sev-
eral new algorithmic challenges as we detail above. Third,
we prove that the minimax regret–optimal strategy is the
same whether the planner and adversary play at the individ-
ual or group level. Our proof enables massive scale-up as
it is now sufficient to compute robust strategies over groups,
instead of over individual arms. Finally, we demonstrate em-
pirically on real data that GROUPS reduces worst-case re-
gret up to 50% compared to baselines, representing po-
tentially thousands of additional engagements with life-
saving information. We are working with ARMMAN to de-
ploy GROUPS to positively impact maternal health.

2 Related Work
Mobile-based maternal health services are effective and af-
fordable in low- and middle-income communities (Watter-
son, Walsh, and Madeka 2015; Tamrat and Kachnowski
2012). Successful programs include MatHealth in Uganda
(Musiimenta et al. 2021), Aponjon in Bangladesh (Alam
et al. 2017), ARMMAN in India (Murthy et al. 2019), and
text4baby in the United States (Evans, Wallace, and Snider
2012). Our work is designed to support such programs.

Whittle (1988) introduced RMABs and proposed the
Whittle index policy, which computes indices estimating
each arm’s “return on investment” then acts on arms with
the top K. Weber and Weiss (1990) showed this policy is
asymptotically optimal under a technical condition. Many
RMAB studies assume known transition dynamics, although
some recent works design methods to learn policies online
(Wang, Huang, and Lui 2020; Nakhleh et al. 2021; Biswas
et al. 2021; Killian et al. 2021; Wang et al. 2022). However,
these online approaches require collecting a prohibitively
large number of samples, limiting their real-world applica-
bility in scenarios where the time horizon is short.

Most robust planning papers consider single-MDP (one
arm) settings (Pinto et al. 2017; Lanctot et al. 2017; Li
et al. 2019), rather than the budget-coupled N-MDP setting
of RMAB. Even for single MDPs, optimizing criteria such
as minimax regret (Braziunas and Boutilier 2007) requires
searching massive strategy spaces; double oracle (McMa-
han, Gordon, and Blum 2003) is one approach to do so effi-
ciently. Recent work combines double oracle with deep RL
to solve for minimax regret–optimal robust policies for sin-
gle MDPs (Xu et al. 2021). Killian et al. (2022) extended the
idea to solve larger RMABs. Both Xu et al. (2021) and Kil-
lian et al. (2022) use deep RL which, if applied to a group
setting, would need to explicitly account for the size of each
group and state of each arm within each group, limiting their
methods’ ability to scale beyond hundreds of arms. For the
large problem size that ARMMAN faces, our methods must
scale to hundreds of thousands of arms.

Finally, robust planning for stochastic bandits is well
studied (Maillard 2013; Huo and Fu 2017) However,
stochastic bandits are stateless and lack passive rewards, and
so are not expressive enough to model ARMMAN’s setting.

3 Model
We consider grouped RMABs whereN arms (enrolled moth-
ers) compriseM groups. Each arm n ∈ [N ] follows an MDP
⟨S,A, Pn, r, γ⟩ where s ∈ S := {0, 1} is the state space
indicating whether a mother is engaging (sn = 1) or not en-
gaging (sn = 0) with automated voice messages; r(s) = s
is the reward function; a ∈ A := {0, 1} is the action space,
i.e., {not intervene, intervene}; Pn(s, a, s′) is the probabil-
ity that arm n transitions from state s to s′ given action a;
γ ∈ [0, 1] is the discount factor. Let s ∈ SN and a ∈ AN be
the combined state and action vectors of all arms. At each
timestep t, the task is to choose K mothers to intervene on
(deliver service calls to) given the state st at time t.

Formally, we compute RMAB policies π : SN → AN

that respect a budget constraint ∥π(st)∥1 = K for all
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t. For a given policy π and a fixed environment P :=
{Pn}n∈[N ] representing a matrix of transition probabilities
of all arms, the average discounted reward is G(π, P ) :=
E[
∑∞

t=0 γ
tr(st) | π, P ]. Given P , the optimal policy which

maximizes reward is π⋆
P := maxπ G(π, P ). An asymp-

totically optimal RMAB policy is the Whittle index pol-
icy (WIP), which computes the Whittle index Wn

P (s) for
each arm n and state s, then intervenes on the arms with
the greatest K indices. The Whittle index represents “re-
turn on investment,” interpreted as a charge for acting
that makes no intervention equally valuable as interven-
tion in the long term. Let Qn

P (s, a, λ) = r(s) − λa +
γEs′∈S [maxa′∈AQ

n
P (s

′, a′, λ)] be the long-term expected
value of action a on arm n in state s. Then, for a given P ,
the Whittle index for arm n at state s is Wn

P (s) = min{λ :
Qn

P (s, 1, λ) = Qn
P (s, 0, λ)}.

Grouped RMAB For scalability, we organize arms into
groups, extending the concept from Mate et al. (2022)
to our more challenging robust setting, e.g., by cluster-
ing based on historical engagement patterns. We then esti-
mate uncertainty intervals over transition probabilities per
group. However, note that our robust policy computation
steps in Section 4 are agnostic to the particular grouping
and interval estimation methods. Let ϕ : [N ] → [M ]
be a surjective mapping of arms to groups and ϕ−1(m)
be the set of arms in group m. The uncertainty intervals
are P

m

s,a,s′ := [Pm
s,a,s′ , P

m

s,a,s′ ] for all m, s, a, s′. Then let
P

m
:= {Pm

s,a,s′}s,a,s′ be the interval uncertainty matrix for
group m across all states and actions. Importantly, though
arms in the same group have the same uncertainty intervals,
they may not have the same instantiated probabilities within
those intervals.

Minimax regret We define regret for grouped RMAB as:

R(π, P ) := G(π⋆
P , P )−G(π, P ) , (1)

where P instantiates Pm ∈ P
m

for all groups m ∈ [M ].
Our objective is to learn a policy π that minimizes max re-
gret:

min
π

max
P

R(π, P ) . (2)

We choose minimax regret as our robust objective since it
does not require probability distributions over the uncer-
tainty intervals (Braziunas and Boutilier 2007). Such distri-
butional information is scarce in our setting where K ≪ N ,
giving us few samples of transitions for action a = 1.

4 Methodology
We introduce GROUPS (Group RMAB Oracles for
Uncertainty-robust Planning at Scale), a four-step approach
visualized end-to-end in Fig. 2. Step (3) is our key algo-
rithmic contribution. In step (1), similar arms (mothers) are
mapped into groups. In step (2), we combine data from
arms in each group with historical engagement data, us-
ing bootstrapping to estimate uncertainty intervals P

m
for

each group (Schomaker and Heumann 2018). In step (3),
we compute a minimax regret–optimal policy over groups,
where arms in a given group are treated as having the

same transition probabilities, greatly improving computa-
tional efficiency. Critically, we show in Section 5 that this
group-level planning is lossless — i.e., the policies we
compute are the same minimax regret–optimal policies as
would be computed if grouped arms were allowed differ-
ent transition probabilities (within the same uncertainty in-
tervals). In step (4), we map group-level policies back to
individual-level policies by computing Whittle indices for
each group m ∈ [M ], then assigning an index to each arm n
within that group based on its current state sn. Our policy is
to intervene on mothers with the top K indices.

Double oracle In step (3), we adopt a double oracle (DO)
framework (McMahan, Gordon, and Blum 2003), solving
Eq. 2 by formulating the problem as a two-player zero-
sum game between the RMAB planner and nature adver-
sary, where the players aim to minimize and maximize re-
gret respectively. The planner’s pure strategy space is the
finite set of all feasible RMAB policies π; the adversary has
the continuous space of transition probabilities P within the
uncertainty intervals P

m
for all m ∈ [M ]. The algorithm

maintains a finite pure strategy set for each player. For each
iteration, we compute a mixed strategy Nash equilibrium
(MSNE) on the game over the finite strategy sets. A mixed
strategy is a probability distribution over pure strategies. In
each iteration, the planner oracle computes a best response
pure strategy π against the adversary’s mixed strategy; π is
added to the planner’s finite strategy set. We follow a sym-
metric approach to compute a best response P for the adver-
sary. Upon termination, we return the final planner mixed
strategy, which is guaranteed, under mild conditions, to be
an ϵ-optimal minimax solution (Xu et al. 2021). In practice,
we terminate after T iterations (Lanctot et al. 2017). The key
technical challenge of using the double oracle approach is
designing planner and adversary oracles for group RMABs.

4.1 Planner Oracle: WI for Mixed Strategy
An adversary mixed strategy β contains tuples (Pi, βi)
where βi is the probability of playing pure strategy Pi. Sim-
ilarly, a planner mixed strategy α contains tuples (πi, αi)
where αi is the probability of playing pure strategy πi.

The planner oracle must compute an intervention pol-
icy π that minimizes regret with respect to a given adver-
sary mixed strategy β over environment settings Pi. Since
β and thus all Pi are fixed, and only the second term of re-
gret in Eq. 1 depends on π, minimizing regret is equivalent
to maximizing reward, to ensure that mothers engage with as
many voice messages as possible. However, existing reward-
maximizing RMAB algorithms assume a single environment
Pi, versus a mixed strategy β over multiple Pi. To address
this combinatorially hard problem, we develop a new heuris-
tic approach that computes well-performing policies π based
on strategically weighted combinations of Whittle indices.

Unfortunately, optimizing exact regret is at least
PSPACE-hard (Papadimitriou and Tsitsiklis 1999). Previous
work optimized regret of the Lagrange relaxation (Killian
et al. 2022), but relied on joint arm states which does not
scale. We introduce a decomposed notion of regret, allowing
us to optimize regret of the full RMAB in a far more scalable
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Figure 2: GROUPS pipeline for robust grouped RMABs. (1) Assign enrolled mothers (arms) to groups. (2) Estimate uncertainty
intervals over transition probabilities. (3) Novelty of this work: Compute robust minimax regret–optimal policy via double
oracle, where each oracle efficiently searches the large-scale strategy spaces by using the group abstraction. (4) To execute
policies, translate group-level indices Ĩms to arm-level intervention policy.

way. We call this Whittle index regret: the sum of Whittle
indices played by a policy π compared to the optimal WIP.
The key is that the Whittle index is a measure of “reward
if played” — so agents who play arms with low Whittle in-
dexes in lieu of arms with high Whittle indexes will incur
large regret. As a further advantage, this regret notion natu-
rally extends to groups — since the Whittle index is a func-
tion only of transition probabilities and rewards, all of which
are shared in a group under Pi — improving scaling.

Given states s, denote the set of arms pulled by policy π as
Φπ(s) = {n ∈ [N ] : πn(s) = 1} where πn(s) is the action
on arm n. The planner’s Whittle index regret Rplanner

W (s) is:∑
(Pi,βi)

βi

[
max
κ⊆[N ]
|κ|=K

{∑
n∈κ

(Wn
Pi
(sn))

}
−
∑

n∈Φπ(s)

Wn
Pi
(sn)

]
. (3)

The first term in Eq. 3 corresponds to a planner’s optimal
mixed strategy which plays the WIP corresponding to each
setting of transition probabilities Pi in β. To minimize re-
gretRplanner

W , we seek a policy π that plays Whittle indices as
close as possible to the WIPs in the first term, which equiv-
alently maximizes the second term. How to produce a pure
strategy π that closely follows the mixed WIP policies of
the first term is the key challenge. We start by making the
first term more closely computable as a pure strategy with a
relaxation that leads to relaxed regret, by moving the expec-
tation over βi inside the max over indices:

max
κ⊆[N ]
|κ|=K

∑
n∈κ

∑
(Pi,βi)∈β

βiW
n
Pi
(sn)

 . (4)

We replace the first term of Rplanner
W (s) (from Eq. 3) with

Eq. 4 to get R̃planner
W (s). This illuminates a heuristic for the

planner oracle. Specifically, Eq. 4 can be computed exactly
by a single policy π, meaning we can make R̃planner

W (s) = 0
by finding a π equivalent to Eq. 4. To do so, we compute
Whittle indices for each pure strategy Pi, compute the βi–
weighted average index Ĩms for each group m and state s,

Algorithm 1: WI4MS (Planner Oracle)
Input Adversary mixed strategy β

1: for (Pi, βi) ∈ β do // environment and probability i
2: for {m = 1 to M} and {s ∈ S} do
3: Ĩ[m, s] += βi × COMPUTEWI(m, s, Pm

i )

4: π = WIP(Ĩ) // implements Whittle index policy
5: return π // planner pure strategy

then follow the greedy strategy of a WIP. Since the expec-
tation over βi is pushed through the max (Eq. 4) we have
R̃planner

W (s) ≤ Rplanner
W , but we show in appendix Fig. 4 that

this weighted index policy performs well, despite this relax-
ation. We call this approach Whittle Index for Mixed Strat-
egy (WI4MS), given in Alg. 1. Whittle indices are com-
puted via COMPUTEWI described in Alg. 4 in the appendix.

4.2 Adversary Oracle: RegretMax Whittle Index
The adversary oracle must find one environment P that max-
imizes regret for the planner’s current mixed strategy α over
policies πi to maximize the number of missed calls. To guide
the search, we must address challenges both in maximizing
regret of RMAB policies and in searching over a continu-
ous strategy space P

m
. Our insight is to maximize regret

by manipulating the optimal RMAB policy (a Whittle index
policy) to simultaneously minimize the values of Whittle in-
dices acted on by the planner and maximize indices that are
not.

We utilize again the notion of Whittle index regret, re-
defined for the adversary oracle:

Radversary
W = E

s

 ∑
n∈Φπ⋆

P (s)

Wn
P (s

n))
∣∣∣ π⋆

P , P


−

∑
(πi,αi)∈α

αi

(
E
s

 ∑
n∈Φπi (s)

Wn
P (s

n))
∣∣∣ πi, P

) . (5)
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Algorithm 2: RegretMaxWI (Adversary Oracle)

Input: Mixed strategies (α,β), intervals P
m

,
group-mean budget KM , P = []

1: {Lm
s }m∈[M ]

s∈S = MONTECARLO(α, β) // simulation
2: KTH = FINDTHRESH(L,KM ) // returns action count

of ⌈KM⌉th group-state
3: for {m = 1 to M} and {s ∈ S} do
4: obj[m, s] = min if (Lm

s ≥ KTH) else max
5: for m = 1 to M do
6: Pm = MINMAXWHITTLEBQP(obj[m], P

m
)

7: return P // Adversary pure strategy

Given an environment, Pi, Eq. 5 captures the difference in
the Whittle indices collected by the optimal policy π⋆

Pi
ver-

sus the Whittle indices collected by the policies of the agent
mixed strategies πi. The WIP is a proxy for finding the most
effective arms on which to intervene; intuitively, this means
the adversary oracle should find Pi which maximizes the
Whittle indices of arms played by the optimal policy but
not played by the planner, and simultaneously minimizes the
Whittle indices of arms played only by the planner policies.

The first challenge is to determine which arms the plan-
ner will act on in expectation. We propose a simple but ef-
fective solution which counts the number of times the arm-
state pairs are acted on during Monte Carlo simulation of the
planner’s mixed strategy. Since the adversary operates at the
group level, we then aggregate arm-state counts into group-
state counts, denoted Lm

s for each group m and state s. The
next question is which group-state indices to minimize or
maximize. Intuitively, if we reduced all indices an equal
amount, we would reduce reward but not regret since the
optimal policy, i.e., the first term of Eq. 5, would reduce the
same as the second. Thus, we need to strategically minimize
some indices, but maximize others to induce an optimal pol-
icy that plays different arms. Specifically, we choose to min-
imize the indices of the top KM = K

N/M — i.e., the budget
normalized by average group size — entries of Lm

s , approx-
imating the top K choices of the agent mixed strategy in
expectation. Then we maximize the Whittle indices of all
group-state pairs below that threshold.

The second challenge is to find transition probabili-
ties P that minimize or maximize the Whittle indices of
a group over its transition probability intervals. This prob-
lem has general implications, e.g., for optimistic or pes-
simistic search over uncertainty sets in online learning. We
derive a novel binary-quadratic program that, given a group
and objective for each state (min, max, or null), computes
a Pm that optimizes the indices for all states simultane-
ously, detailed in the appendix as MINMAXWHITTLEBQP
(Eq. 18). We give the full adversary oracle algorithm, RE-
GRETMAXWI, in Alg. 2 and empirically demonstrate its
good performance in the appendix Fig. 5.

5 Theoretical Regret Guarantee
In Section 4, we proposed an approach to compute a mini-
max regret–optimal strategy against an adversary choosing

the same transition probabilities for all arms in the same
group from their corresponding intervals. However, arms
within the same group may not have identical transition
probabilities. Also, it is not intuitive that a minimax regret–
optimal policy, when the adversary chooses the same transi-
tion probabilities for all the arms in a group, also minimizes
max regret when the adversary chooses different transition
probabilities for the arms in a group from their correspond-
ing intervals. In this section, we show this is true under mild
assumptions. In particular, the minimax regret–optimal strat-
egy of the planner is the same against an adversary choosing
transition probabilities at the group level as against an adver-
sary choosing transition probabilities at the individual level.

Let Π be the planner’s pure strategy space of all
individual-level policies, i.e., all choices of subsets of arms
with cardinality K. Then we define mixed strategy sets
for the planner at individual-level, ∆I(Π), and group-level,
∆M (Π), where ∆M (Π) ⊆ ∆I(Π) is a restricted set of
mixed strategies in which the planner is indifferent between
arms in the same group and state (see Appendix D.2 for def-
inition). Next, let P be the adversary’s pure strategy space,
containing all individual-level policies, i.e., choices of tran-
sition probabilities {Pn}n∈[N ] respecting the given uncer-

tainty intervals P
ϕ(n)

. Similarly, we define mixed strat-
egy sets for the adversary at individual-level, ∆I(P), and
group-level, ∆M (P), where ∆M (P) ⊆ ∆I(P) is a re-
stricted space that assigns same transition probabilities to all
arms within a group.

For X,Y ∈ {I(individual),M(group)}, the regret game
with X-level planner and Y -level adversary is noted as
X/Y . The X/Y regret of a planner’s mixed strategy α ∈
∆X(Π) against an adversary’s mixed strategy β ∈ ∆Y (P)
is:

R(α, β) :=
∑

i∈[|∆X(Π)|]

∑
j∈[|∆Y (P)|]

αiβjR(πi, Pj) ,

where αi is the ith pure strategy of the X-level planner and
βj is the jth pure strategy of the Y -level adversary. Let α⋆

X,Y

be the planner’s mixed strategy of a X/Y game, defined:

min
α∈∆X(Π)

max
β∈∆Y (P)

R(α, β) = max
β∈∆Y (P)

R(α⋆
X,Y , β)

which holds since the regret game is a two-player zero sum
game, making minimax regret equal to maximin reward. We
call this the worst-case regret for α⋆

X,Y .
We first show in Theorem 12 that, when all arms within

the same group have the same transition intervals, the mini-
max I/I regret is equal to the minimax M/I regret.
Theorem 1. The worst-case regrets of α⋆

I,I and α⋆
M,I

against an adversary operating at the individual level is
equal:

max
β∈∆I(P)

R(α⋆
I,I , β) = max

β∈∆I(P)
R(α⋆

M,I , β) .

Similarly, in Theorem 2, we show that, when all arms within
the same group have the same transition intervals, the mini-
max I/M regret is equal to the minimax M/M regret.

2Proofs of Theorem 1, 2, and 3 are given in Appendix E.
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Theorem 2. The worst-case regrets of α⋆
I,M and α⋆

M,M
against an adversary operating at the group level are equal:

max
β∈∆M (P)

R(α⋆
I,M , β) = max

β∈∆M (P)
R(α⋆

M,M , β) .

Finally, we use these results to establish our main result in
Theorem 3 that the worst-case regret of α⋆

M,M is equal to
the worst-case regret of α⋆

I,I when (1) all arms in the same
group have the same intervals and (2) there exists a surjec-
tive function ψ that maps ∆I(P) to ∆M (P) that preserves
the regret ordering of planner and adversary strategies (for-
mal definition and example ψ given in Appendix E.1).
Theorem 3. If there exists an order-preserving map, then
the worst-case regret of α⋆

M,M is equal to that of α⋆
I,I ,

against an individual-level adversary, that is,

max
β∈∆I(P)

R(α⋆
M,M , β) = max

β∈∆I(P)
R(α⋆

I,I , β) .

Theorems 1, 2, and 3 together establish that the minimax
regret–optimal strategy is the same whether the planner
and adversary play at individual or group level. In partic-
ular, this result ensures that, under some conditions, the
minimax regret–optimal strategy obtained by our algorithm
GROUPS, which implements group-level planner and adver-
sary, is also minimax regret–optimal against an individual-
level adversary.

6 Experiments
6.1 Experiment Setup
ARMMAN maternal health domain Every week, ARM-
MAN’s automated system delivers prerecorded health mes-
sages to each enrolled mother with information tailored to
the mother’s gestational age. If mothers stop listening to
the messages, healthcare workers can deliver interventions
to try to improve mothers’ engagement. We evaluate the in-
crease in number of health messages mothers listen to using
GROUPS to target interventions compared to existing base-
lines. To construct a simulation environment, we use a real
anonymized dataset from ARMMAN’s records of weekly
program engagement data for 15,336 mothers (though we
note that ARMMAN’s larger service areas operate on the
scale of hundreds of thousands). A mother is “engaged” if
they listen to at least 30 seconds of a message that week.
Thus, states are {not engaged,engaged} with rewards
0 and 1, respectively. To create an arm–group mapping,
we run K-means clustering on the engagement data and
compute uncertainty intervals via bootstrapping followed by
multiple imputation to compute standard deviations of the
means (Schomaker and Heumann 2018). Statistics on the
uncertainty intervals and group sizes are shown in appendix
Figs. 9 and 10. For details on the dataset and consent for
collection, see appendix K.

In the experiments, the default parameters match the in-
tervention setup used by ARMMAN, i.e., budget K = 100,
N = 15,320 mothers, and M = 40 groups. For sensitivity
analysis, we vary the budget, horizon, and number of moth-
ers. Additional analysis varying uncertainty interval width,
number of groups, and distribution of group sizes are in-
cluded in appendix Fig. 7.

Additional domains To demonstrate wider applicability,
we include results from two additional domains. The TB
domain is constructed from an anonymized dataset of daily
adherence to tuberculosis medication (Killian et al. 2019).
States, rewards, and groups were derived analogously to the
maternal health setting; complete details are in appendix L,
including group statistics in Figs. 11 and 12. In our exper-
iments, the default setting has N = 8,350 arms, M = 60
groups, budget K = N/10, and Aσ = 3, i.e., interval
width of 3 standard deviations. We vary the budget, num-
ber of groups, and Aσ . Finally, we use the Synthetic bench-
mark domain from recent robust RMAB work (Killian et al.
2022). This domain considers three “arm types” [U, V,W ]
with different intervals, designed so that non-robust policies
incur greater regret than robust ones. We augment the do-
main to allow homogeneous groups of each arm type, where
the size and proportion of groups of each type may vary. In
our experiments, the default setting has N = 18,000 arms,
M = 36 groups, where 1/3 of groups are composed of each
of the arm types, and budget K = 100. We run sensitivity
analysis on K, the proportion of groups made up of each
arm type, and a “block group” setting which joins all arms
of a given type into a single group.

Evaluation To evaluate performance, we plan at the group
level but simulate individuals within groups independently,
where each individual undergoes state transitions based on
their own state, action, and transition probabilities. All ex-
periments use horizon H = 10 and report the average
of 30 seeds. We measure total reward with discount factor
γ = 0.9. In Fig. 3, we evaluate each approach in terms of re-
gret (Eq. 1), computed by simulating each planner strategy
against the full set of adversary pure strategies and selecting
one that maximizes regret. Note, there is no actual deploy-
ment of the proposed algorithm; all results are simulated.

Baselines First, we compare against the state-of-the-art ro-
bust RMAB method, DDLPO, for small settings in which
DDLPO can complete (Killian et al. 2022). For larger-scale
experiments with tens of thousands of arms, no other robust
methods are tractable, so we compare against several scal-
able non-robust baselines. Mate et al.’s non-robust baseline
assumes all environment parameters take the median of their
uncertainty intervals then computes a reward-maximizing
WIP; this strategy was employed in a recent real-world pilot
(Mate et al. 2022). We consider two additional non-robust
variants which assume that all parameters take the lower
bound of the uncertainty interval (pessimist) or the upper
bound (optimist), then compute a WIP strategy. Finally, ran-
dom plans a WIP strategy against an environment that is uni-
formly randomly sampled from the uncertainty intervals.

6.2 Results
Fig. 3 shows GROUPS outperforms baselines in terms of
max regret across several settings. Fig. 3(a–c) shows results
for the maternal health setting of ARMMAN. In particu-
lar, Fig. 3(c) shows that GROUPS scales past 300,000 arms,
representing more than a 1000× increase over the robust
state-of-the-art to meet a key need of real-world deploy-
ment settings. Moreover, across experiments, the max re-

14300



100 500 1000
0

500

1,000

1,500

(g) Budget K

M
ax

re
gr

et

0.17 0.33 0.5
0

20

40

(h) Arm type distributions
U V W

0

20

40

(i) Varying block group

418 835 1253
0

500

1,000

(d) Budget K

M
ax

pr
e v

en
ta

bl
e

m
is

se
d

do
se

s

30 60 90
0

500

1,000

1,500

(e) Number of groups M
2 3 4

0

500

1,000

(f) Uncertainty interval size

100 500 1000
0

500

1,000

(a) Budget K

M
ax

pr
ev

en
ta

bl
e

m
is

se
d

m
es

sa
ge

s

GROUPS [Mate et al., 2022] pessimist optimist random

5 10 20
0

100

200

300

400

(b) Horizon H
15320 153200 306400

0

2,000

4,000

(c) Number of mothers NMaternal health

TB

Synthetic

Figure 3: Max regret (lower is better) incurred by GROUPS, our robust solution approach, compared to non-robust baselines
across various settings. (a–c) Maternal health. For (c), the number of arms is increased by multiplying each group size by a
constant factor, i.e., 1, 10, and 20, but M is constant. (d–f) TB. For (d), budgets are 5%, 10%, and 15% of N . (g–i) Synthetic.
For (h), the x-axis is the fraction of groups of arm type U — the fraction of type V is always 0.33, and the remaining fraction are
type W. For (i) the x-axis denotes the arm type that has been combined into a single group of 6000 arms, where the other two
types are split across 12 groups each of size 500. In the maternal health and TB settings, regret can be interpreted, in real-world
terms, as the maximum preventable missed health messages and doses, respectively, across the uncertainty space.

gret of GROUPS is nearly half that of the non-robust strat-
egy used in Mate et al. (2022). In other words, our simula-
tions demonstrate that compared to the best non-robust strat-
egy GROUPS could prevent mothers from missing thou-
sands of pregnancy-related health messages, each con-
taining potentially life-saving care information.

On the TB domain (Fig. 3(d–f)), we see again that
GROUPS performs well across various strategies for group-
ing and computing uncertainty, even with very imbalanced
group sizes. On the synthetic domain (Fig. 3(g–i)), across
various budgets and grouping strategies, the non-robust
baselines vary in performance and are sometimes worse
than random, demonstrating the need for reliable robust
policies. Moreover, Table 1 shows that GROUPS even
outperforms the state-of-the-art DDLPO in terms of regret
on the synthetic benchmark dataset for problems sizes
small enough for DDLPO to complete (i.e., N < 100). The
superior performance of GROUPS is due to our Whittle-
based policies which specialize to two-action settings, in
contrast to the more general but highly stochastic deep
learning–based policies of DDLPO.

Supported by Theorem 3, GROUPS scales significantly
without incurring additional regret. In Appendix I,
we demonstrate the significant runtime improvement of
GROUPS as M decreases, holding N constant. The scala-
bility of our approach is critical for robust RMAB solutions

GROUPS DDLPO

N = 6 0.64± 0.05 1.00± 0.06
N = 9 0.47± 0.06 0.98± 0.05
N = 12 0.45± 0.06 0.88± 0.05

Table 1: Regret of GROUPS vs. robust method DDLPO on
Synthetic. We set M = N and K = 1 to match the evalua-
tion in Killian et al. (2022). GROUPS incurs less regret.

to actually be deployed in real-world, low-resource settings.

7 Conclusion

The GROUPS algorithm we introduce presents several key
advances to make RMABs more useful in practice, enabling
simultaneous scaleup and robustness to uncertainty. We are
working with ARMMAN to deploy GROUPS to positively
impact maternal health, demonstrating the real-world capa-
bilities this work enables. Most notably, our simulation ex-
periments demonstrate that our robust planning method
could help ARMMAN prevent mothers from missing
thousands of health messages, a promising result that we
hope to translate into practice to help deliver life-saving
health information to otherwise under-served mothers.
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