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Abstract

The concept of walkable urban development has gained in-
creased attention due to its public health, economic, and en-
vironmental sustainability benefits. Unfortunately, land zon-
ing and historic under-investment have resulted in spatial in-
equality in walkability and social inequality among residents.
We tackle the problem of Walkability Optimization through
the lens of combinatorial optimization. The task is to select
locations in which additional amenities (e.g., grocery stores,
schools, restaurants) can be allocated to improve resident ac-
cess via walking while taking into account existing ameni-
ties and providing multiple options (e.g., for restaurants).
To this end, we derive Mixed-Integer Linear Programming
(MILP) and Constraint Programming (CP) models. More-
over, we show that the problem’s objective function is sub-
modular in special cases, which motivates an efficient greedy
heuristic. We conduct a case study on 31 underserved neigh-
borhoods in the City of Toronto, Canada. MILP finds the
best solutions in most scenarios but does not scale well with
network size. The greedy algorithm scales well and finds
high-quality solutions. Our empirical evaluation shows that
neighbourhoods with low walkability have a great potential
for transformation into pedestrian-friendly neighbourhoods
by strategically placing new amenities. Allocating 3 addi-
tional grocery stores, schools, and restaurants can improve the
“WalkScore” by more than 50 points (on a scale of 100) for 4
neighbourhoods and reduce the walking distances to ameni-
ties for 75% of all residential locations to 10 minutes for all
amenity types. Our code and paper appendix are available at
https://github.com/khalil-research/walkability.

1 Introduction
The concept of walkability in urban planning has gained in-
creased attention as research has shown that good walkabil-
ity contributes to physical health, economic development,
and environmental sustainability (Zapata-Diomedi et al.
2019). Highly walkable neighbourhoods allow for residents
to easily access amenities such as retail and food in the vicin-
ity, giving rise to the concept of the “15-minute city” (Whit-
tle 2020). However, the zoning regulations introduced in
the early 20th century that separate industrial, commercial,
and residential areas have prevented walkable development
and contributed to automobile-reliant communities (Levine
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2005; Fischel 2003) – residents have to travel outside their
local communities in order to meet their daily needs. More-
over, historic disinvestment in segregated neighbourhoods
including low-income groups and racial minorities has led
to spatial inequality in walkability. Evidence shows that dis-
advantaged groups live in neighbourhoods with less accessi-
ble physical infrastructure and services (Massey 1990). With
the COVID-19 pandemic reshaping the relationship between
cities and the quality of life, addressing inequities and im-
proving access to services and amenities such as healthcare
and green spaces for vulnerable groups has also accelerated
the need for walkable development (Mouratidis 2021).

Improving walkability is also a powerful way to reduce
greenhouse gas emissions (GHG) and tackle climate change.
Dense and walkable neighbourhoods encourage active trans-
port (walking, cycling), thus reducing automobile depen-
dence (McIntosh et al. 2014; Brand et al. 2021). Research
shows that technological measures (e.g., increasing the use
of electric vehicles) alone will not be sufficient in reducing
GHG, whereas a shift to a more sustainable mode of trans-
portation can result in a quicker and more significant reduc-
tion of emissions from vehicles, particularly in urban areas
(Creutzig et al. 2018; Neves and Brand 2019). Shifting from
motorized transport to active transport is considered one of
the most promising ways to reduce GHG. A study shows
that active walking as a lifestyle change of residents can sig-
nificantly reduce emissions related to private vehicles, even
in European cities that are already highly walkable (Brand
et al. 2021). Building inclusive, safe, resilient, and sustain-
able cities has been highlighted in the Sustainable Develop-
ment Goal 11 of the United Nations.

Towards this goal, researchers have been interested in im-
proving walkability in cities by converting certain underused
spaces into easily accessible amenities. For instance, some
urban planning research relies on simulation and inspection,
such as converting high-density regions into amenities and
straightening busy routes (Yang, Samaranayake, and Dogan
2020). On the other hand, one common optimization-based
approach is to use a Genetic Algorithm (GA) that encodes
the potential allocation locations (e.g., empty lots where a
grocery store can be built) as fixed-sized vectors and itera-
tively generate child solutions from a population of candi-
date solutions (Cichocka 2015; Rakha and Reinhart 2012;
Sonta and Jain 2019; Nagy, Villaggi, and Benjamin 2018;
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Indraprastha 2019). However, genetic algorithms lack con-
vergence guarantees and tend to lead to suboptimal solutions
(Kim, Kim, and Oh 1997). Moreover, GAs do not handle
constraints directly (Yang 2020), making them less applica-
ble in the context of modern city planning, given the existing
city layout and property ownership. Despite this interest in
walkability optimization, there have not been robust and ef-
ficient methods for this problem.

Contributions: To our knowledge, the problem of Walka-
bility Optimization has not yet been examined from an algo-
rithmic perspective, particularly one that considers the prob-
lem’s realistic aspects. In this paper, we contribute to this
question along multiple axes:

1. We formulate Walkability Optimization as the combina-
torial optimization problem of selecting the locations of
new amenities to maximally improve residents’ access to
basic necessities (Section 2). Our formulation extends the
standard facility location problem and models residents’
behaviour realistically – we consider multiple facility
types, multiple potential choices for the same type, and
an objective function with respect to the travel distances
that represent the proximity to residents. Also, compared
to existing work on Walkability Optimization, our formu-
lation takes into account existing amenities rather than
designing a layout from scratch and is flexible in captur-
ing additional constraints on allocation.

2. We analyze the complexity of the problem, showing that
(a) its decision version is NP-Complete in general and
that (b) the objective function is submodular in special
cases (Section 3). The latter property motivates an effi-
cient greedy algorithm presented in Section 4.

3. We derive Mixed-Integer Linear Programming (MILP)
and Constraint Programming (CP) models (Section 4).

4. We perform a case study of 31 underserved neighbour-
hoods identified by the City of Toronto, Canada (Sec-
tion 5). In most neighborhoods, significant reductions
in walking distances can be obtained by optimizing the
placement of several new amenities. MILP outperforms
CP and the simple greedy algorithm achieves a good
tradeoff between running time and solution quality.

2 Problem Formulation
At a high level, the Walkability Optimization problem
(WALKOPT) is defined as follows. Given a set N of resi-
dential locations, a set M of candidate allocation locations,
and a set L of existing amenities, we seek a set of locations
where new amenities of different types A are allocated so
that the average “Walkability Score” fi for residential lo-
cations i ∈ N is maximized. fi is a function of walking
distances and can be interpreted as the proximity of A to
residents. The maximum number of instances to be allo-
cated for each amenity type a ∈ A is denoted as ka. The
set of locations M , N , and L correspond to nodes on a net-
work where edges represent the walkable paths in the neigh-
bourhoods. The walking distances between these locations
are the shortest-path distances, which we denote as dij for
i ∈ N ,j ∈ M ∪ L. Note that our formulation improves
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Figure 1: Distance (meters) v.s. WalkScore.

walkability by introducing amenities instead of other poten-
tial approaches such as improving network connectivity by
adding edges. The latter is a challenging intervention since
road networks are resistant to change compared to the speed
of city expansion (Rakha and Reinhart 2012).

Building Blocks
Walkability Score To quantify walkability, we adopt the
WalkScore methodology (Walk Score 2011), used in prior
quantitative analyses (Duncan et al. 2011; Verbas et al.
2015), that assigns a score fi for each residential loca-
tion i based on the weighted walking distances, denoted
as li, from i to different amenity types. The WalkScore as-
signs a near full score (100) for distances within 400m with
scores decreasing with respect to li after 400m. Distances
above 2400m (about a 30-minute walk) are not rewarded
any points. The WalkScore fi is originally a smooth func-
tion that models this nonlinear decay with respect to li; see
Fig. 2 (left) in (Reyer et al. 2014). For computational pur-
poses, nonlinear functions can be approximated with Piece-
wise Linear functions (PWLs) (Ngueveu 2019): fi is repre-
sented as a PWL that is parameterized by breakpoints t̄ (Fig.
1). The parameters t̄ are shown in Appendix E.

Weighted Walking Distances The weighted walking dis-
tance li is a linear combination of distances to multiple
amenity types a ∈ A. Each type is given a weight wa based
on its level of necessity, e.g., grocery stores are given the
highest weight as they are the most frequent walking desti-
nation (Lee and Moudon 2006). For most amenity types, we
assume that residents at location i will walk for Di,a meters
to the nearest instance of the amenity a; we denote ameni-
ties of this type with Aplain. For amenity types for which
variety and options are important (e.g., restaurants, coffee
shops), we account for the resident’s “depth of choice” by
considering a weighted combination of the distances to the
top-r nearest instances (e.g., r = 10 for restaurants): the pth
nearest instance (e.g., of a restaurant) has distance Dp

i,a and
weight wp

a. We denote such amenities with Adepth. We have
Aplain ∪Adepth = A. Finally, li is expressed as

li =
∑

a∈Aplain

waDi,a+
∑

a∈Adepth

∑
p∈Pa

wp
aD

p
i,a, ∀i ∈ N, (1)
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where Pa is the set of top-r nearest instances of amenity
type a ∈ Adepth. Note that not all r options in Pa may be
available in the network, as the sum of the number of ex-
isting and allocated instances may be smaller than r. For
example, there may be 2 existing restaurants and a budget
of 3 additional restaurants to be allocated, but the number of
choices being considered is 10 > 3 + 2. The set of avail-
able choices of type a is denoted as PY

a , where |PY
a | =

min(ka + |La|, |Pa|). The set of choices that we consider
but are not available is denoted as PN

a = Pa \ PY
a . Choices

p ∈ PN
a have distances Dp

i,a = D∞, where D∞ = 2400m
(i.e., WalkScore is zero), so that a neighbourhood with no
amenity has fi = 0.

Objective Function We maximize the average WalkScore
across all residential locations

F =
1

|N |
∑
i∈N

fi. (2)

fi is a PWL function of li parameterized by breakpoints t̄:
fi = PiecewiseLinear(li, t̄), ∀i ∈ N. (3)

Existing and Candidate Amenity Locations We intro-
duce new amenities to built neighbourhoods with considera-
tion of existing amenities, instead of allocating from scratch.
The set of locations with existing instances of amenity type
a is denoted as La. For candidate allocation locations M ,
we set a capacity on the number of amenity instances that
each candidate location j can accommodate (denoted as cj ,
j ∈ M ) to represent potential physical constraints. Given
the context of built cities, M can be underused spaces such
as parking lots, as freeing up parking spaces and converting
them into amenities has been recognized as an urban renewal
model that reduces air pollution and improves the quality of
life (Natalie Marchant 2020; Eric Reguly 2020). However,
our framework can accommodate various types of locations.

3 Theoretical Properties
Computational Complexity
We prove that WALKOPT is computationally hard even with
a single amenity type and without depth of choice. This is
achieved through a reduction from the widely studied and
NP-Complete k-median problem to the decision version of
WALKOPT. The proof is deferred to Appendix A.

Submodularity
Seeking a polynomial-time approximation algorithm for
WALKOPT, we analyzed its objective function for submod-
ular structure. Formally, a set function F : 2V → R is sub-
modular if it satisfies the diminishing returns property: for
every S ⊆ T ⊆ V and e ∈ V \ T it holds that ∆F (e|S) ≥
∆F (e|T ), where ∆F (e|S) := F (S ∪ {e}) − F (S) is the
discrete derivative of F at S w.r.t. e.

We show that the objective (2) is indeed submodular when
depth of choice is not considered. This motivates the use of
a greedy algorithm as a (1− 1

e )-approximation (Nemhauser,
Wolsey, and Fisher 1978) when there is a single amenity type
and no depth of choice, and as a heuristic (with no guaran-
tees) otherwise. We also show that submodularity does not
hold when considering depth of choice.

Submodularity in the SingleChoice Case
Theorem 1. Objective (2) is submodular when Adepth = ∅.

Proof. First, we represent a solution as a set of actions S
where each element e = (a,m) ∈ S consists in allocat-
ing an instance of amenity type a to a candidate location
m. Note that it is feasible to have more than one instance
of type a allocated to the same location, which can intro-
duce identical (a,m) pairs. Since sets cannot contain du-
plicates, we construct an equivalent set M̄ by duplicating
each node j ∈ M for cj times. Then, the ground set is
V = {(a,m) : a ∈ Aplain,m ∈ M̄} and objective (2)
is a set function, F : 2V → R. Let S and T be solution sets
such that S ⊆ T ⊆ V , and let e = (a′,m′) ∈ V \ T . We
show that ∆F (e|S) ≥ ∆F (e|T ).

We denote the weighted walking distances at i under so-
lution set S as lSi and express ∆F (e|S) in terms of lSi :

∆F (e|S) =
1

|N |
∑
i∈N

(f(l
S∪{e}
i )− f(lSi )). (4)

In this SingleChoice case, we have A = Aplain and we con-
sider the nearest choice for each a. Then, the distances are:

l
S∪{e}
i = wa′ min

j∈JS
a′∪La′∪{m′}

dij + u, (5)

lSi = wa′ min
j∈JS

a′∪La′
dij + u. (6)

u is the weighted distance to types a ∈ A \ {a′}, which is
not affected by e = (a′,m′):

u =
∑

a∈A\{a′}

wa min
j∈JS

a ∪La

dij .

JS
a′ is the set of locations allocated for type a′ under solution

set S. La′ is the set of existing instances for a′. For simplic-
ity, we denote the minimum distance to a′ under S as DS

ia′ :

DS
ia′ = min

j∈JS
a′∪La′

dij .

Then, from Eqn. (6) we have lSi = wa′DS
ia′ + u. From Eqn.

(5), when the new location m′ does not reduce the distance
to a′ under S (i.e., dim′ ≥ DS

ia′ ), we have l
S∪{e}
i = lSi

and thus f(l
S∪{e}
i ) = f(lSi ). When m′ results in a new

minimum distance (i.e., dim′ < DS
ia′ ), we have l

S∪{e}
i =

wa′dim′ + u. Therefore, ∆F (e|S) in Eqn. (4) is:

∆F (e|S) =
1

|N |
∑

dim′≥DS
ia′

(f(l
S∪{e}
i )− f(lSi ))+

1

|N |
∑

dim′<DS
ia′

(f(l
S∪{e}
i )− f(lSi ))

which simplifies to

∆F (e|S) =
1

|N |
∑

dim′ < DS
ia′

(f(wa′dim′+u)−f(wa′DS
ia′+u)).
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Similarly, for solution set T , we have

∆F (e|T ) =
1

|N |
∑

dim′ < DT
ia′

(f(wa′dim′+u)−f(wa′DT
ia′+u)),

where JT
a′ is the set of locations allocated for type a′ under

T . Since S ⊆ T , we have JS
a′ ⊆ JT

a′ , which leads to DT
ia′ ≤

DS
ia′ . ∆F (e|S) can then be further grouped into two cases:

∆F (e|S) =

1

|N |

[ ∑
dim′<DT

ia′

(f(wa′dim′ + u)− f(wa′DS
ia′ + u))+

∑
DT

ia′≤dim′<DS
ia′

(f(wa′dim′ + u)− f(wa′DS
ia′ + u))

]
.

We compute and re-arrange ∆ = ∆F (e|S)−∆F (e|T ):
∆ =

1

|N |

[ ∑
dim′<DT

ia′

(f(wa′DT
ia′ + u))− f(wa′DS

ia′ + u))+

∑
DT

ia′≤dim′<DS
ia′

(f(wa′dim′ + u)− f(wa′DS
ia′ + u))

]
.

We know that (wa′DT
ia′ + u) ≤ (wa′DS

ia′ + u) from S ⊆ T
and that (wa′dim′ + u) ≤ (wa′DS

ia′ + u) by definition of
the second summation. Since WalkScore f() is monotoni-
cally decreasing, we have ∆ ≥ 0. We’ve thus proved that
∆F (e|S) ≥ ∆F (e|T ), as desired.

No Submodularity with Depth of Choice We show that
the objective function is not submodular by providing a
counter-example in Appendix B.

4 Models and Algorithms
Mixed-Integer Linear Programming (MILP)
Variables Our MILP model has four sets of variables.
First, for allocation, integer variable yja indicates the num-
ber of amenities of type a allocated to location j. Second, bi-
nary variables are used to indicate the assignment of ameni-
ties to residents. For amenity types where only the nearest
instance is considered, xija = 1 indicates that residents at
location i visit location j for type a. For types where depth
of choice is considered, a fourth index is used and xp

ija = 1
indicates that residents at location i visit location j for the
pth nearest instance of type a. There are also two sets of con-
tinuous variables: li and fi represent the weighted distance
and WalkScore for i, respectively. The number of discrete
decision variables in the model is O(|M ||N |(|Aplain| +
|Adepth|h)), where h = maxa∈Adepth |PY

a |.
Constraints First, we enforce the requirements on the
maximum number of amenities to be allocated and the ca-
pacity of each candidate allocation location:∑

j∈M

yja ≤ ka, ∀a ∈ A,

∑
a∈A

yja ≤ cj , ∀j ∈M.

Second, we describe the assignment of amenities to res-
idents. We ensure that each resident is assigned to one in-
stance for types a ∈ Aplain and to one instance for each
available choice for types a ∈ Adepth:∑

j∈M∪La

xija = 1, ∀i ∈ N, a ∈ Aplain,

∑
j∈M∪La

xp
ija = 1, ∀p ∈ PY

a , ∀i ∈ N, ∀a ∈ Adepth.

Note that for a ∈ Adepth, each choice p ∈ PY
a should

be a different instance of a. When the choice is assigned to
an existing instance of an amenity type (j ∈ La), we en-
sure that the instance appears only once among all choices
for each resident. When the choice corresponds to candidate
locations (j ∈ M ), we ensure that the number of choices
provided at j does not exceed the number of instances allo-
cated to j:∑

p∈PY
a

xp
ija ≤ 1, ∀j ∈ La, ∀i ∈ N, ∀a ∈ Adepth,

∑
p∈PY

a

xp
ija ≤ yja, ∀j ∈M, ∀i ∈ N, ∀a ∈ Adepth.

Additionally, we ensure that all the amenities are allocated
before they are assigned:

xija ≤ yja, ∀i ∈ N, ∀j ∈M ∪ La, ∀a ∈ Aplain,

xp
ija ≤ yja, ∀i ∈ N, ∀j ∈M ∪ La, ∀p ∈ PY

a , ∀a ∈ Adepth.

Finally, we describe the weighted walking distances based
on Eqn. (1) and the PWL WalkScore:

li =
∑

a∈Adepth

( ∑
p∈PY

a

wp
a

∑
j∈M∪La

xp
ijadij +

∑
p∈PN

a

wp
aD

∞
)

+
∑

a∈Aplain

wa

∑
j∈M∪La

xijadij , ∀i ∈ N.

For the PWL in Eqn. (3), commercial MILP solvers provide
the functionality for linearizing PWL functions (Gurobi Op-
timization 2022).

Objective The objective is to maximize F in Eqn. (2).

Constraint Programming Model (CP)
We also provide a CP model for WALKOPT. CP allows for
an index-based formulation in which decision variables in-
dicate the index of the location of each instance of a ∈ A.
This significantly reduces the number of discrete variables
compared to the binary formulation in MILP, particularly in
the case without depth of choice. Specifically, the number of
discrete decision variables is O(k|A|+h|N ||Adepth|) where
k = maxa∈A ka and h = maxa∈Adepth |PY

a |. The model is
deferred to Appendix C.
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Algorithm 1: Greedy Algorithm

1: S ← ∅.
2: na ← 0 for all a ∈ A. {na: Number of allocated in-

stances for type a}
3: c[j]← cj for all j ∈M .
4: while ∃na < ka and maxj∈M (c[j]) > 0 do
5: (a, j)← argmax a∈A

na<ka,j∈M
c[j]>0

∑
i∈N f(l

S∪{(a,j)}
i )

6: S ← S ∪ (a, j)
7: na ← na + 1
8: c[j]← c[j]− 1
9: end while

10: return S

Greedy Algorithm (Greedy)
Motivated by the submodularity in the SingleChoice case,
we use a greedy algorithm that iteratively selects the
(amenity type, location) pair that maximizes the increase in
the objective. We also use Greedy as a heuristic when con-
sidering depth of choice and multiple amenity types. Greedy
runs in time O((

∑
a∈A ka)|M ||N ||A|h) and is shown in Al-

gorithm 1. The solution set S contains (a, j) pairs that repre-
sent the action of allocating an instance of type a to location
j. We denote the weighted walking distance of i under solu-
tion set S as lSi . The WalkScore function is denoted as f().

5 Case Study
We perform a case study for 31 underserved neighbourhoods
in Toronto, Canada. The City of Toronto has identified 31 of
its 140 neighbourhoods as Neighbourhood Improvement Ar-
eas (NIAs) that are facing the most inequitable outcomes
under the Toronto Strong Neighbourhood Strategy (TSNS)
2020 (City of Toronto 2022). TSNS aims to provide eq-
uitable social, economic, and cultural opportunities for all
residents by partnering with agencies to invest in services
and facilities in neighbourhoods that face historic under-
investment, and the NIAs capture areas of the city with a sig-
nificant concentration of disadvantaged and equity-seeking
groups, particularly visible minorities. Low walkability and
limited access to amenities in the physical surroundings are
important criteria in the selection of the NIAs (Social Policy
Analysis and Research, City of Toronto 2014).

Data
Neighbourhood Improvement Areas (NIAs) We create
instances of WALKOPT from each NIA. The geographical
boundary of the NIAs is publicly available from The City of
Toronto’s Open Data Portal (Social Development, Finance
and Administration, City of Toronto 2019).

Pedestrian Network To obtain the network of walkable
paths, we use a publicly available Pedestrian Network (Ped-
Net) of Toronto which includes various pedestrian assets
such as sidewalks, crosswalks, and pedestrian-controlled
crossings that are topologically consistent (City of Toronto
2019a). We precompute the shortest-path pairs based on

PedNet for each NIA. An alternative to PedNet is Open-
StreetMap which provides walking routes data worldwide,
which may enable case studies in other cities in the future.
We use PedNet in our case study since it undertook quality
assurance and has been used in a walking time assessment
report by the Transportation Services and Information and
Technology Division (City of Toronto 2019b).

Residence and Candidate Locations The locations of
residential areas and potential allocation candidates are ob-
tained from OpenStreetMap (OpenStreetMap contributors
2017) and mapped to the nearest nodes in the PedNet. Resi-
dential nodes N are the set of nodes that map to at least one
residential address. As mentioned in Section 2, our candi-
date allocation nodes M are parking lots. For this case study,
the capacity of each candidate node cj is the number of park-
ing lots mapped to the node j.

Amenity Weights In this case study, we consider 3 types
of amenities: grocery stores, restaurants, and schools, for
which the locations of existing instances are also obtained
from OpenStreetMap. These 3 types are chosen because they
are the major categories that the WalkScore methodology
considers (Walk Score 2011) and the data provided by Open-
StreetMap is relatively rich for these 3 types based on our
visual inspection. The weights wa (for different types) and
wp

a (for different choices) are obtained from the WalkScore
methodology documentation (Walk Score 2011), and the
values are listed in Appendix D.

Computational Setup
We perform experiments under two scenarios. In the first
(MultiChoice), the distance to the nearest instance is con-
sidered for groceries and schools, while the distances to the
top 10 nearest choices are considered for restaurants. In the
second (SingleChoice), the distance to the nearest instance
is considered for all 3 amenity types. MultiChoice is consis-
tent with the original WalkScore methodology (Walk Score
2011), while the SingleChoice scenario helps assess the ef-
fect of depth of choice on walkability and solving difficulty.

Instances Throughout the case study, we use the same up-
per bound for the 3 amenity types considered: ka = k, ∀a ∈
A. We create 9 instances for each NIA with k ∈ {1, 2, ..., 9}.
The 31 NIAs are split into 4 groups according to the size
(|M | + |N |). The number of NIAs (# NIA) and the number
of instances (# Inst.) for each NIA group are shown in Table
1.

Setup All methods are implemented in Python. MILP and
CP models are solved with Gurobi and CP Optimizer, re-
spectively, and 8 threads. Experiments were run on Intel E5-
2683 v4 Broadwell at 2.1GHz CPUs and a memory limit of
32GB. Each solving run is limited to 5 hours. We use a rel-
atively large time limit since a few hours of computation is
tiny compared to the service time (in years) of an amenity.

6 Results
Comparison of Solution Methods
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Group Network Size
|M |+ |N | # NIA # Inst. Groceries Restaurants Schools

1 [0,200) 11 99 1.45 5.73 3.18
2 [200,400) 13 117 2.00 11.85 5.46
3 [400,600) 4 36 4.50 14.50 9.25
4 [600,1200) 3 27 6.67 19.00 14.33

Table 1: Instance statistics. The last 3 columns are averages.
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Figure 2: Shifted Geometric Mean in seconds across k ∈
{1, 2, ..., 9} in SingleChoice (left) & MultiChoice (right).

Solving time We first study how the computational run-
ning times scale with increasing network size (|M | + |N |).
For each NIA, we measure the Shifted Geometric Mean of
the solving time across k ∈ {1, 2, ..., 9} (see (ACHTER-
BERG 2007), section A.3, for a definition of this widely
used summary statistic). Fig. 2 shows the results for each
NIA group. Greedy is orders of magnitude faster than MILP
and CP and scales well in both scenarios. The solving times
for CP and MILP in the two scenarios show that the diffi-
culty of the problem significantly increases when consider-
ing depth of choice. In SingleChoice, the solving time for
MILP is shorter than CP in medium and small instances but
increases rapidly for large instances, performing worse than
CP in Group 4. A possible explanation is that the number
of discrete variables of the CP formulation does not depend
on |M | or |N | in this scenario, as discussed in Section 4. In
MultiChoice, MILP scales better than CP overall.

Solution Quality Next, we compare the methods in terms
of three metrics: the Mean Relative Error (MRE), the num-
ber of instances for which the method found a feasible so-
lution, and the number of instances for which the method
proved optimality (Table 2). MRE measures the gap between
the best solution found by a method and the best solution
found across all methods, normalized by the latter. MILP
has the lowest MRE for all groups in both scenarios. How-
ever, MILP struggles to find feasible solutions for large in-
stances in MultiChoice (Group 4), while CP and Greedy find
feasible solutions to all instances. The MRE of Greedy is
lower than 0.7% for all groups in both scenarios and is sig-
nificantly lower than CP for medium and large instances in
MultiChoice. This shows that Greedy produces high-quality
solutions as a heuristic even when submodularity does not
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Figure 3: Change in average WalkScore with Multi-
Choice WALKOPT (k = 3). NIAs are labeled by their IDs
(neighborhood names in Appendix F).

hold.

Empirical Evaluation

What is the effect of solving WALKOPT on the WalkScore
and travel distances from residents to amenities, in terms
of different neighborhoods and residential locations? To an-
swer this question, we use solutions of MILP for instances
where it is feasible since MILP has the lowest MRE on av-
erage. For instances where MILP did not find a feasible so-
lution, Greedy’s solutions are used.

Impact on WalkScore Fig. 3 shows the change in the
average WalkScore for each NIA when additional ameni-
ties are introduced by optimization. Most NIAs lie in the
mostly-industrial northwest and the suburban/rural northeast
of Toronto, where infrastructure is limited. In contrast, few
NIAs lie in the urban core in the south where amenities
are dense, which is consistent with the reported walkabil-
ity of Toronto (Toronto Public Health 2012; City of Toronto
2019b). The change in WalkScore varies across NIAs.
Adding 3 amenities of each type improves the WalkScore
by more than 50 for 4 NIAs. We observe that NIAs with low
current WalkScore show greater improvement after alloca-
tion; current WalkScore for each NIA in Appendix G.

Additionally, we show how the average WalkScore across
all NIAs changes w.r.t. the value of k (Fig. 4). The objec-
tive exhibits diminishing returns as k increases in the Sin-
gleChoice scenario but not in MultiChoice; this agrees with
the submodularity analyses of Section 3. Looking at the
travel distances, we see that the framework effectively re-
duces walking distances for all types/choices considered.
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SingleChoice MultiChoice

Group Method MRE (%) Feas Opt MRE(%) Feas Opt

MILP 0.00 99 99 0.00 99 97
1 CP 0.00 99 59 0.43 99 14
(99) Greedy 0.29 99 N/A 0.66 99 N/A

MILP 0.00 117 116 0.00 117 29
2 CP 0.01 117 31 3.34 117 1
(117) Greedy 0.34 117 N/A 0.51 117 N/A

MILP 0.00 36 33 0.00 36 0
3 CP 0.04 36 9 12.41 36 1
(36) Greedy 0.38 36 N/A 0.57 36 N/A

MILP 0.00 27 1 0.05 21 0
4 CP 0.91 27 3 26.13 27 0
(27) Greedy 0.51 27 N/A 0.20 27 N/A

Table 2: Mean relative error (MRE), number of instances for which the method found a feasible solution (Feas) and proved
optimality (Opt) for each NIA group. The total number of instances in each group is shown in brackets.
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Figure 4: Average WalkScore and travel distances to differ-
ent amenity types w.r.t. k in SingleChoice (left) & Multi-
Choice (right). For MultiChoice, distances to the 1st and 2nd
restaurants are shown.

Individual Residential Locations We analyze the impact
of WALKOPT on individual residential locations using a his-
togram of walking times to the 3 amenity types for all resi-
dential nodes in all 31 NIAs (Fig. 5). Distance-to-time con-
version is done using a walking speed of 1.2m/s (Traffic
Management, City of Toronto 2018). In the MultiChoice
case, an allocation with k = 3 reduces the walking distances
of the 75th percentile of all individual residential locations to
10 minutes for all amenity types. According to Toronto Pub-
lic Health (2012), a residential preference survey reveals that
a 10-minute walking distance to stores and services charac-
terizes a walkable neighbourhood. For grocery stores, this
reduction in distance, of up to half relative to the current
state, is significant. For schools, we do not observe a large
improvement in the mean or the 75th percentile; most resi-
dents can walk to a school within 10 minutes currently. As
schools are non-commercial, their locations may have been
well-optimized historically. However, we do observe a large
reduction in the maximum walking times to schools.

Visualization of allocated amenities Fig. 6 illustrates
a WALKOPT solution for NIA Victoria Village along with

existing residential locations, candidate allocation locations,
and existing amenities. Allocated amenities seem to fall at
the heart of residential clusters. Perhaps more interestingly,
some newly allocated amenities are very close to the loca-
tions of other types of amenities (existing or allocated) and
seem to form an urban center with a mix of different types.

7 Related Work
Walkability Optimization
The Introduction already discusses some of the most rel-
evant work that uses genetic algorithms. To further elabo-
rate, Cichocka (2015) optimizes for each different amenity
type independently, which may hinder optimality. More-
over, existing works suffer from unrealistic assumptions that
limit the applicability of the framework and the quality of
empirical evaluation such as designing street grid patterns
from scratch (Lima, Brown, and Duarte 2022) and allocat-
ing amenities to empty street layout (Rakha and Reinhart
2012). Sonta and Jain (2019) perform a case study in an ex-
isting city but only use randomly sampled residential units
and ignore current amenity locations, generating solutions
that override existing infrastructure.

k-Median and Facility Location Problem (FLP)
Compared to the FLP, WALKOPT considers multiple facil-
ity types and depth of choice. Without these, WALKOPT is
equivalent to the Submodular FLP defined in (Lindgren, Wu,
and Dimakis 2015), and previous work has shown that ob-
jective (2) is submodular in this case (Frieze 1974).

Moreover, the objective function WalkScore does not sat-
isfy the properties of a metric space, in contrast to the closely
related k-median problem. Algorithms for k-median that
provide better approximation ratios than standard greedy in-
clude reverse greedy (Chrobak, Mathieu, and Young 2005),
local search (Arya et al. 2001), LP relaxation (Charikar et al.
1999; Charikar and Li 2012), and Lagrangian relaxation
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Figure 5: Histogram of walking times to different amenity types across all residential nodes in all neighbourhoods. Adding k =
3 amenities shifts the histogram of walking times to the left (in orange), which also translates into smaller mean/maximum/75th
percentile walking times relative to not adding any amenities (in blue).

Figure 6: Allocated amenities at Victoria Village: 2 newly
introduced groceries, restaurants, and schools.

(Jain and Vazirani 2001; Jain et al. 2003). However, these
algorithms assume that the objective function is defined on
a metric space and are not applicable to our problem.

8 Conclusion and Discussion
Automobile-reliant communities with limited access to
amenities in their vicinity have a great potential for trans-
formation into more walkable and sustainable neigbhbour-
hoods. We formulate the problem of Walkability Optimiza-
tion where amenities are introduced at strategic locations to
improve the proximity to residents. Our WALKOPT formu-
lation realistically models residents’ behaviour by integrat-
ing multiple amenity types, depth of choice, and an objec-
tive function representing the proximity to amenities. We
also take into account existing amenities in the context of
built cities. We provide MILP and CP formulations and
an efficient greedy algorithm motivated by the submodu-

lar structure of the WALKOPT objective (without depth of
choice). An experimental evaluation on high-quality data
from Toronto shows that MILP and Greedy are effective at
producing high-quality solutions, with a scalability advan-
tage for the latter. Our framework produces solutions that
significantly improve the walkability in underserved neigh-
bourhoods on average and reduce the walking distances for
individual residential locations.

While we have prioritized incorporating realistic facets of
walkability optimization into our formulation, more can po-
tentially be done by: considering the population at each resi-
dential location, the construction cost at each candidate allo-
cation location, the area/size of candidate locations, and the
service capacity of amenities. If the data is available, these
can be easily integrated into the objective and constraints. In
addition, WALKOPT quantifies walkability in terms of travel
distances without considering other factors that may affect
accessibility such as the safety/quality of walking paths,
which can potentially be incorporated into the formulation
by applying penalties appropriately. Lastly, our experiments
were based on neighbourhood-scale instances; testing our
methods at full city-scale might be of future interest.
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