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Abstract

The networked-loan is major financing support for Micro,
Small and Medium-sized Enterprises (MSMEs) in some de-
veloping countries. But external shocks may weaken the
financial networks’ robustness; an accidental default may
spread across the network and collapse the whole network.
Thus, predicting the critical firms in networked-loans to stem
contagion risk and prevent potential systemic financial crises
is of crucial significance to the long-term health of inclusive
finance and sustainable economic development. Existing ap-
proaches in the banking industry dismiss the contagion risk
across loan networks and need extensive knowledge with so-
phisticated financial expertise. Regarding the issues, we pro-
pose a novel approach to predict critical firms for stemming
contagion risk in the bank industry with deep reinforcement
learning integrated with high-order graph message-passing
networks. We demonstrate that our approach outperforms the
state-of-the-art baselines significantly on the dataset from a
large commercial bank. Moreover, we also conducted empir-
ical studies on the real-world loan dataset for risk mitigation.
The proposed approach enables financial regulators and risk
managers to better track and understands contagion and sys-
temic risk in networked-loans. The superior performance also
represents a paradigm shift in addressing the modern chal-
lenges in financing support of MSMEs and sustainable eco-
nomic development.

Introduction
The networked-loans, a kind of understudied financial net-
work, increased their significant role in shaping the systemic
risk after the 2008 global crisis. The regulation and risk man-
agement attracted massive attention from the academic and
banking industry as MSMEs financing support is crucially
important for sustainable economic development. Thus, un-
der the economic stimulus program, they are encouraged
to guarantee each other to apply for bank loans (Mian and
Sufi 2009) and thereby form complex loan networks. This
networked-loans differentiates itself from each node repre-
senting a borrower company to that in the usual financial net-
works where each node presents a financial institute. Such
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Figure 1: Illustration of risk contagion from Node A.

operation can enhance financial security while introducing
more potential risks (Cheng et al. 2018; Wang, Zhang, and
Yang 2020). For example, when there is an inevitable nega-
tive shock to the nodes, the network structure may magnify
the defaults, resulting in large-scale or even systemic risk
(Dumitrescu et al. 2022). Only after the capital chain rup-
ture, the financial experts can analyze the cause.

In the banking industry, accidental default is tolerable in
most cases; large-scale default or systemic financial crisis is
to be firmly prevented. Figure 1 illustrates an example of risk
contagion in networked-loans. The default of node (Firm) A,
as can be seen, could spread to the whole network. Nodes B
and C need to repay the bank’s loan from Node A as the re-
sult of its default. Therefore, the risk spreads across with the
guarantee direction from Firm A to Firm B and C. The bank-
ing experts usually rely on the empirical research methodol-
ogy and have difficulty in foreseeing how to stem the con-
tagion risk effectively (Sui, Li, and Chen 2020; Cheng et al.
2019b). Therefore, in the post-pandemic era, monitoring and
mitigating the risk of contagion is more pressing than ever
for a healthy economic environment.

Previous work on credit risk modeling utilizes statistics
and regression methods as early as the 1950s (Baesens et al.
2003). Then, later in the 1980s, the Basel Committee issued
a series of recommendations on banking regulations (Basel
Capital Accord I, II, and III) to enhance the understanding
of critical regulatory issues and improve macro-prudential
oversight (Eubanks 2010; Acemoglu, Ozdaglar, and Tahbaz-
Salehi 2015; Georgios 2019). The principles have been
widely accepted by banks around the world (Montgomery
2005). Recently, machine learning and deep learning-based
approaches have gained success in various sectors (Tu et al.
2020; Zhang et al. 2022), which have also been employed
for risk assessment in the current financial situation (Addo,
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Guegan, and Hassani 2018; Chernyshev 2020) . (Niu et al.
2020; Cheng, Niu, and Zhang 2020) has shown the advan-
tages of utilizing deep models to understand the comprehen-
sive risk in complex financial networks through leveraging
graph learning methods to address the challenges for risk rat-
ing in networked-loans. The considerable potential of deep
graph learning in regulating systemic crises is also proved in
(Cheng et al. 2022). However, existing approaches for risk
management in networked-loans are targeted at individual or
group assessments. They are limited in providing construc-
tive insights to mitigate risk contagion.

Therefore, in this paper, we present a novel graph-based
deep reinforcement learning (DRL) approach to Stem Con-
tagion Risk by Predicting critical Firms (named SCRPF)
in networked-loans. In particular, we use the framework of
deep reinforcement learning to learn from historical traces
and train the policy network to generate critical firm lists.
To preserve contagion representations, SCRPF leverages a
high-order message passing graph neural network to encode
the graph-structured risk diffusion behavior directly on con-
tagion chains, which no longer requires expensive hand-
craft feature engineering or sophisticated financial knowl-
edge. Then, the DRL agent uses the policy of a trained
graph attentional neural network to predict a priority list of
critical firms for networked-loans. Finally, we demonstrate
remarkable performance improvements contrasted with the
baseline models through extensive experiments. By predict-
ing the critical firms more effectively, we enable financial
regulatory and loan managers with swifter preventive mea-
sures in advance against systemic financial crises. Empirical
studies on real-world loan management scenarios are also
carried out using the proposed approach. The results show
that SCRPF could significantly avoid the potential financial
losses for commercial banks with high efficiency. We sum-
marize our paper’s main contributions as follows:
1. To the best of our knowledge, this work is the first ap-

proach that provides a practical solution by identifying
critical firms to stem the contagion risk so that to miti-
gate systemic financial crises through graph-based deep
reinforcement learning.

2. We design and implement the DRL framework, named
SCRPF, which naturally represents the contagion process
by message-passing graph neural network. The model to
learn from networked-loan data directly demonstrates the
effectiveness in inferring the multi-level contagion stem-
ming, which is the primary cause of systemic loan risk in
the banking industry.

3. We thoroughly evaluate the proposed approach. We com-
pared our approach with existing baselines and reported
a state-of-the-art performance. We also conducted empir-
ical studies in real-world risk control applications. The
result demonstrates that our method could be invaluable
in offering constructive evidence to financial regulators.

Preliminaries
Networked-loan Background
In a number of countries, the networked-loan is a unique se-
cured financing model for MSMEs. In principle, the banks

Figure 2: Real-world Systemic Defaults by Risk Contagion.

prefer to approve loans to large businesses and unwillingly
to MSMEs, who usually lack securities like fixed assets.
Helping them to raise money is vital as they can increase the
employment rate and economic vitality. Under some simula-
tion programs, the MSMEs are allowed to find guarantors to
back their loan applicants. The guarantor takes a legal obli-
gation to repay the loan if its borrower defaults (fails to repay
the loan). When more and more firms are engaged, they form
complex networks, which bring significant risk management
challenges for both the regulatory and banks. A default may
spread across the network along the direction of guarantee
relationships (contagion risk) and lead to large-scale loan
defaults or even systemic financial crises.

Various rule-based risk evaluation tools were applied to
the borrowers. Such approaches are usually designed for
large businesses with the prerequisite that they are indepen-
dent. Thus, it is inaccurate and even error-prone to assess
the small and medium enterprises loan qualifications in the
networked-loans as they are interlinked together. They are
more secure during the economy’s rapid growth but more
fragile during business slowing periods.

Risk Contagion in Networked-loans

As illustrated in Figure 1, the default of Node A may dif-
fuse to B and C. Under the same circumstances, the default
of Nodes B and C causes the failure of Node D. The same
process is followed by E and is leading default for F. If most
firms in network-loans default their borrowing, a systemic
crisis would outbreak and cause massive financial damage
for the lending bank and even the national economy.

Figure 2 shows a real-world case where an accidental cor-
porate default leads to large-scale systemic crises. The red
nodes (firms) denote entities that failed to repay loans (i.e.,
defaulted), and the black nodes are healthy entities. It is clear
that in January 2013, all firms were in a healthy situation,
which repays loans regularly according to loan contracts. A
small number of firms (4 out of 86 firms in the entire net-
work) failed the repayments in July 2013. It caused another
13 firms failures in January 2014. Then, the risk diffused
across the loan network like wildfire, which caused 17 more
firms to default in July 2014, and another 14 firms in Jan-
uary 2015. Eventually, 83 firms failed to repay their loans in
July 2015, accounting for 96.5% of the default ratio in the
number of firms and 98.2% failing in the loan amount.
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Figure 3: The architecture of our proposed method SCRPF: stemming contagion risk by predicting critical firms in networked-
loans. (a) The original input of loan networks; (b) The illustration of deep reinforcement learning agent, which includes conta-
gion chain message passing (MP) process, the policy network with high-order MP graph attentional neural layer and the policy
output layer that produce the critical firm’s list; (c) display environment of our proposed framework which generates rewards
for different policies and simulates the financial status on networked-loans.

The Proposed Approach
Problem Formulation and Architecture Overview
Given the loan and guarantee relationship records, which
could be constructed as loan networks G = (V,E), each
node {vi ∈ V }, V = {v1, v2, · · · , v|V |}, denotes the
micro-, small and medium enterprise (MSME), which has
a probability p(vi) of loan defaults. The edges E =
{eij}, (i, j) ∈ V , represent the guarantee relationship from
node vi to vj , and the value of p(eij) denotes the probabil-
ity of risk contagion to node vj if vi default its loan. The
symbol |V | denotes the number of nodes, and |E| represents
the number of edges in the network. Then, the main purpose
of this work is to infer the most critical nodes, which have
a higher probability of defaults, and, simultaneously, cause
a larger cascade contagion failure across the network. The
detailed problem target computation mechanism is reported
in the agent’s reward design section.

The general architecture of SCRPF is based on the frame-
work of deep reinforcement learning. Figure 3 shows the
DRL agent, which is composed of high-order message pass-
ing (MP) layer and graph attentional neural network. During
the working process, SCRPF takes loan networks as inputs
and coverts them into deep graph representations. Then the
policy network produces a critical firms list as output and the
environment generates the reward for agent training. More
specifically, we construct the complex loan networks using
raw guarantee records. Our dataset includes the guarantor,
borrower, guarantee amount, the contract start time, and end
time in the guarantee contract. We create an edge directed
from the guarantor to the borrower and consequently con-
struct complex loan networks. Then, we extract contagion
chains from each network by a breadth-first search (BFS)
algorithm and construct the multi-level orders of message
passing networks, which will be introduced in the rest sec-
tion. The agent of SCRPF learns deep representations from
contagion chains by the proposed high-order message pass-
ing graph neural network and produces a priority list of crit-

ical firms. In each message passing layer, node features are
aggregated from their adjacent nodes, which are sources of
contagion risks, by graph convolution computation. With the
multiple message passing operation, the contagion risk is ad-
equately learned in the output representations.

DRL Training Framework
SCRPF utilizes the interaction tuple 〈S,A,R〉 to train the
policy network of the DRL agent.
• The State Space: S describes an agent’s perception of

the environment, which includes the status and features
of networked-loans G.

• The Action Space: A denotes the allowed actions an
agent can take, which is the critical firm probability list
in our task.

• The Reward: R calculates the quality of the action,
which evaluates the degree of risk mitigation.

In the training process, the agent interacts multiple steps
with environment and targets to maximize the cumulated
reward RT =

∑T
t=0 r(t), where T is the number of inter-

actions. At each step t, the DRL agent gets an observation
st ∈ S from the environment and produces an action at ∈ A
by the policy network at = µθ(st), where θ denotes the
parameters of policy network (the high-order MP graph at-
tentional neural network) and is updated by policy gradient
method. Particularly, we update θ based on the RT of each
episode and employ a gradient descend optimizer to guide
the policy to generate higher reward actions. The parame-
ters are updated by:

θ′ = θ + η
T∑
t=1

∇θ log µθ(st, at)

(
T∑
t′=t

rt′ − bt

)
(1)

where the η is the learning rate that controls the update speed
of θ during each episode. Following the advances in DRL
learning (Sutton et al. 1999; Greensmith, Bartlett, and Bax-
ter 2004; Schulman et al. 2017), we employ bt = E(Rt) as a
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Algorithm 1: DRL Training Framework of SCRPF
Input: Loan network G = (V,E) and its attributes
Parameter: θ of the policy network
Output: p(v), p(e) and critical firm list.

1: Orthogonal initialize network parameters;
2: Pre-train the policy network and output p(v) and p(e);
3: for epoch = 1 to max iteration do
4: Set episode length l = 32, ∆θ = 0 ;
5: Interaction with environment and collect trajectory:

(s1, a1, r1, · · · , sl, al, rl) ∼ µθ ;
6: for t = 1 to l do
7: Given p(v) and p(e), compute reward by:

Rt =
∑l
t′=t rt′ ;

8: Compute bt by: bt = E(Rt);
9: ∆θ = ∆θ +∇θ log µθ(st, at)

(∑l
t′=t rt′ − bt

)
10: end for
11: θ = θ + η∆θ
12: end for
13: Given st̂, compute action at̂ = µθ(st̂)
14: return p(v), p(e), at̂

baseline value to reduce the variance of policy gradient. We
utilize the recall memory to accelerate the training process
and use orthogonal parameter initialization for better gradi-
ent optimization. We employ supervised learning by ground-
truth loan default labels to pre-train the policy network and
generate the probability of nodes (firm default probability)
p(v) and edges (default contagion probability) p(e) in ad-
vance, which is utilized for reward calculation and will be
presented in the later section. The detailed learning process
of the DRL agent is reported in Algorithm 1.

Contagion Chain Message Passing
In the proposed DRL framework, we employ the basic pro-
file as state features, which does not require manual feature
engineering. In particular, node’s (MSMEs) attributes, de-
noted as repv̂ , include assets, liabilities, registered capital,
number of employees, etc. The edge’s (guarantee) attributes,
denoted as repê, include guarantee amount, loan amount,
loan interest, etc. It should be noted that the guarantee con-
tracts only take effect during the contract term, which will
impact the edge and the structure of the network – making
the guarantee loan networks temporal. Thus, we dynami-
cally update the network and the contagion chains in training
and predicting phase.

As the relationship is temporal, a temporary edge e
will be inserted into the loan network G when the guar-
antee is issued and removed when the contract expires.
Correspondingly, the contagion chains are also updated
C = {c1, c2, · · · , c|C|}, in which node vi’s contagion chain
cni is the node’s n-order risk diffusion scope. The edges
Diff(vi, G) that directed from vi across the network G
are denoted as cni = {(v, e)|v ∈ Diffn(vi, G) ∪ e ∈
Diffn(vi, G)}. To generate the contagion chains of each
node, we utilize a directed breadth-first search (BFS) algo-
rithm in practice. We then aggregate n adjacent nodes along

contagion chains and form nth-order message-passing net-
works, as illustrated in Figure 3b. For example, in 2-order
MP, we combine every two node diffusions and form nodes
(AB) and (BD) from contagion chain ABD. Meanwhile, we
new directed edges for diffused relations, such as (AB) to
(BD), while constructing undirected edges for paralleling
collections, such as (AB) and (AC). The feature of collected
nodes and edges in the MP layer is the combination of in-
dividual MSMEs within the collection. So long as we ini-
tialize the network and contagion chains, it is quite efficient
to update them. Moreover, our proposed method only lever-
ages the original attributes for the training without requir-
ing heavy feature engineering. Thus, with the high compu-
tational efficiency, the MP layer meets the low-legacy de-
mands in the financial industry.

Graph-based Policy Network
As shown in Figure 3b, the policy network of the DRL agent
takes the MP networks as inputs and produces MP embed-
dings for the downstream multi-head attention layer. As de-
faults diffuse across contagion chains in a cascade way (see
Figure 1), we develop a high-order MP network and HGA
layers to learn the cascade contagion process. In particular,
for each node collection v̂ in n-order contagion chain cn,
we introduce Nv̂ to denote neighbors of node collection v̂.
Then, the nth order message passing layer is denoted as:

hni,j = LeakyReLU
(
Wnrep

n
v̂i
‖Wnrep

n
v̂j

)
(2)

αnij =
exp

(
hni,j
)

∑
k∈Nv̂

exp
(
hni,k

) (3)

where LeakyReLU(·) denotes Leaky Rectified Linear Unit
serving as a nonlinear transformation. repnv̂i means the orig-
inal aggregated attributes of collection v̂i in nth-order MP
layer. Wn represents the learned weighted matrix and αnij
denotes each HGA layer’s attentional weights. Then, we
reach the representation of outputs of each HGA layer as:

repni =
∑
j∈Nv̂

αnijrep
n
v̂j

(4)

where the αnij denotes the trainable attentional weights of
HGA layers. repni means the output of each HGA layer.
We conduct the raw node attribute as the initial node fea-
ture and the edge attribute as the edge feature in the im-
plementation. Compared with the graph neural network that
mainly focuses on network structure learning, our proposed
message-passing layer learns the high-order representation
from both the structure and the feature transformation of
nodes and edges, as well as contagion chains. Therefore,
our proposed feature representative learning directly takes
attributes of loan behavior as input and no longer requires
expensive feature engineering in this process.

Then, the multi-head attentional prediction network takes
the HGA layers’ output as input. As different order of
MP contributes differently to the risk contagion, to ob-
tain sufficient expressive power to transform the represen-
tations into a high-level feature, we perform a shared lin-
ear transformation, parameterized with Wα, to every order
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of MP. We then perform a self-attention on the MP em-
beddings, which computes attention coefficient αij that in-
dicates the importance of repiv’s features to repjv . For the
brevity of notations, we utilize repi denotes the combina-
tion of {repi1, repi2, · · · , repi|v|}.

αij =
exp

(
σ
(
Wα

[
repi ‖ repj

]))∑|n|
k=1 exp (σ (Wα [repi ‖ repk]))

(5)

where σ denotes a nonlinear transformation like sigmoid.
Wα represents the learned weighted matrix and ‖ denotes
the concatenation operation. |n| denotes the number of or-
ders in the MP layer, which is a hyper-parameter.

Finally, the learned attention coefficients are employed to
compute the linear combination of the features correspond-
ing to the target output. Thus, we get the output of graph
attention embeddings as follows:

r̂epi = tanh

 1

K

K∑
k=1

|n|∑
j=1

αijWαrep
j


r̂ep =‖|n|i=1 r̂ep

i

(6)

whereK is the number of multi-head attention, which means
that K independent attention mechanism is deployed on the
final layer of the policy network, followed by the linear com-
bination of the output features. They are then aggregated as
the output feature representation for optimization.

Model Pre-train and Reward Function
As described above, critical nodes often have a higher de-
fault probability. We pre-train the policy network by ground-
truth node default label after obtaining the graph attention
embeddings form of representation r̂ep. The loss function
of the pre-training process is defined as follows:

L(θ) =− 1

N

|v|∑
v=1

[yv log (NNv(r̂epv; θv))

+(1− yv) log (1−NNv(r̂epv; θv))]

(7)

where r̂epv denotes the feature of the vth nodes which is
the output of the attentional prediction network. yv denotes
the ground-truth label of the vth sample, which is set to 1 if
the firm is default and 0 otherwise. NNv is a shallow neu-
ral network with one-layer ReLU (Rectified Linear Units)
(Nair and Hinton 2010) and one layer of sigmoid. Similarly,
we employ NNe as the edge probability prediction network,
which is trained by the ground-truth contagion label. Finally,
we introduce NNa as the action output layer that produces
the probability of critical nodes for policy gradient optimiza-
tion, which is trained independently and shares the same
structure with NNv.

a = NNa(r̂epv), p(vi) = NNv(r̂epvi)

p(eij) = NNe(r̂epvi , r̂epvj , repêij )
(8)

So far, given the probability of p(v), p(e) and action
a, the DRL framework evaluates the policy by calculating

the value of risk mitigation as rewards. For each episode
(s1, a1, r1, · · · , sl, al, rl) , the reward is computed as:

r =
l∑
i=1

avi

1− (1− p(vi))
∏

vj∈N (vi)

(1− p(eji)p(vi))


(9)

Finally, the proposed approach can be learned during the op-
timization process through standard SGD (Stochastic Gradi-
ent Descent) based algorithms (Zinkevich et al. 2010). We
employ the Adam method (Dozat 2016) with momentum
schedule as the optimizer.

Experiments
Experimental Settings
Datasets. We collect the dataset from a major commer-
cial bank with loan records from January 2004 to Decem-
ber 2015, containing monthly information about all loan re-
payments of MSMEs and the guarantee status. There are
around 0.83 million guarantee relationships, including ap-
proximately 0.57 million MSMEs. The data contains loan-
level information for each participant (both borrower and
guarantor, the amount of each loan, and period of validity)
as well as firm-level fundamentals (e.g., assets, liabilities,
registered capital) of the MSME with the total amount of
networked-loans over 3 trillion US dollars. Due to the non-
disclosure agreement (NDA), we can not introduce firms’
privacy information in the dataset.
Baseline Methods and Setting. To emphasize the effec-
tiveness of our proposed methods, we utilize three kinds of
methods as baselines: 1) the widely used approaches in the
financial industry: ScoreCard (Thomas, Crook, and Edel-
man 2017), GBDT (Ke et al. 2017), xgboost (Chen and
Guestrin 2016); 2) Graph-based methods: GNN (Battaglia
et al. 2018), GAT (Velickovic et al. 2018), HGAR (Cheng
et al. 2019a), SuperGAT (Kim and Oh 2020), SA-GAT (Gao
et al. 2021); 3) DRL methods: PPO+FC (Schulman et al.
2017),PPO+GAT, using full-connected (FC) layers and GAT
as policy network respectively, DeepWeave(Sun et al. 2021).
Our model has two variations: SCRPF-noRL, in which we
only employ the supervised pre-train model. SCRPF-noPRT,
in which we remove the pre-train process on the policy net-
work. SCRPF-ALL denotes the full model with all compo-
nents proposed in this paper. We set the attention head num-
ber K to 4, the hidden size of NNv to 128, the episode
length to 32, the learning rate to 0.001 and the batch size
to 200.
Evaluation Metrics. The performance of our approach is
evaluated by classification metrics, including F-Score and
AUC (area under the ROC curve). We set ground-truth labels
of each firm by the spread scope of real default contagion. In
particular, for each firm in contagion chains, if we observe
over 40% of MSMEs within the chain defaults spread by the
firm’s failure, we label it as a critical firm. We employ the
data of the year 2004 as the training set and slide the time
window by month for validation.
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Methods F-Score AUC N Features
ScoreCard 0.62351 0.79877 ∼250
GBDT 0.65972 0.82247 ∼250
xgboost 0.66037 0.83620 ∼250
GNN 0.68937 0.85336 17
GAT 0.70062 0.87025 17
HGAR 0.71351 0.88213 17
SuperGAT 0.71566 0.88319 17
SA-GAT 0.72891 0.88720 17
PPO+FC 0.68571 0.84951 ∼250
DeepWeave 0.73117 0.89149 17
PPO+GAT 0.74825 0.89922 17
SCRPF-noRL 0.73283 0.89031 17
SCRPF-noPRT 0.75006 0.89986 17
SCRPF-ALL 0.77493∗∗ 0.92830∗∗ 17

Table 1: The results of critical firm prediction.

Critical Firm Prediction
This section evaluates the critical firm prediction accuracy
in the networked-loans, which is the main task of this paper.
Table 1 shows the F-Score, AUC, and number of features
(N Features) of different baselines. The first eleven rows of
Table 1 report the result of baseline methods.

As we can see, xgboost performs better than the widely-
used ScoreCard method, indicating that the critical firm pre-
diction problem in complex loan networks is over com-
plicated for a shallow model to handle. By leveraging the
deep learning approach directed on the graph structure,
SuperGAT and SA-GAT improve both the F-Score and
AUC. Meanwhile, PPO+FC outperforms xgboost by utiliz-
ing a DRL mechanism with the same number of features.
PPO+GAT is considerably better than SA-GAT, demonstrat-
ing the effectiveness of the DRL framework in this task.
SCRPF-noRL outperforms all GNN-based baselines, which
shows the essence of our designed high-order MP graph net-
works. SCRPF-noPRT is better than PPO+GAT, proving the
importance of high-order MP in the DRL-based critical pre-
diction task. The proposed SCRPF significantly outperforms
all baselines in both F-Score and AUC, demonstrating the ef-
fectiveness of all sub-components of the proposed approach.
Our method’s significant advantages can also be proved by
the observation that SCRPF-ALL achieves remarkable im-
provements by only 17 original loan attributes, compared
with 250 handcraft features of classic methods.

Stemming Contagion Risk Experiment
In this experiment, we simulate the financial industry’s risk
mitigation process by manually securing the top 1% of crit-
ical firms from being defaulted by contagion risk. In real-
world scenarios, commercial banks or other financial institu-
tions usually refinance these critical firms to prevent cascade
defaults and systemic crises.

Figure 4 shows the averaged contagion risk reduction by
mitigating risk from the predicted critical firms. For brevity,
we select the best competitive baselines in each category. As
we can see, xgboost and SA-SAT are not satisfactory, while
DeepWave and PPO+GAT considerably outperform them by
averaging 4% improvements. Our proposed method is sig-

Figure 4: The contagion risk mitigation by securing the top
1% of critical firms predicted by our SCRPF and baselines.
The x-axis denotes the averaged values in ten years back test
and y-axis mean the ratio of contagion risk reduction.

Figure 5: Detailed experimental results of stemming the con-
tagion risk. (a) The top 1% of critical firms are secured to
simulate the ratio of risk shrinkage. (b) We increase the pro-
portion of secured firms from 0.1% to 1% and observe the
ratio of contagion risk shrinkage.

nificantly and constantly better than all baselines across the
ten years. In 2008 and 2013, stemming contagion risk’s ca-
pability improved near 7% compared with the best baseline.
We also observe that the improvements vary in a different
years. For example, the gap enlarges with the outbreak of
the global financial crisis in the year 2008. Over 30% of
MSMEs face a financial dilemma (Wang, Zhang, and Yang
2020) and the government implements an economic stimu-
lus program so that selected companies are refinanced in this
process. The superior performance of our method could sig-
nificantly reduce the systemic risk in the networked-loans.
With the same number of firms being secured, our method
reduces the risk by over 35%, which is almost twice the most
popular xgboost method.

In the risk mitigation simulation, we backtest the ratio of
risk shrinkage ten times and report the result in Figure 5.
Figure 5a presents the boxplot of reduction by mitigating
detected top 1% of critical firms. As we can see, the per-
formance reached a peak in the years 2008 and 2013. We
then employ empirical studies with financial experts and ob-
serve that the superior performance is in accordance with
the systemic risk ratio each year. In 2008, the global finan-
cial crisis outbroke and selected MSMEs were refinanced to
decrease from 2009 to 2012, which are required to repay in
five years, so default risks rose significantly in 2013. To our
best knowledge, SCRPF is especially optimal in these high-
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Figure 6: Empirical study on critical firms of contagion chains in networked-loans. (a) displays the risk view on loan networks.
(b) present critical firms located in the contagion effect matrix view. (c) The predicted critical firms in a typical GN547 network.

risk periods, stemming a risk of about 35% with mitigating
only 1% of firms. We then increase the proportion of secured
firms from 0.1% to 1% with the step size set to 0.1% and re-
port the risk reduction in Figure 5b. It is clear that with more
firms secured, the higher value of risk reduction. Neverthe-
less, the increase is becoming more gentle from 0.5% to 1%,
demonstrating the superior performance of our methods. In
practice, commercial banks could employ the elbow point
method to choose the best percentage to mitigate the risk
of MSMEs, as well as promote economic development and
secure job opportunities.

Case Studies
We integrate SCRPF in our collaborated bank’s loan man-
agement system and leverage empirical study on real-world
risk control scenarios. We report the predicted critical firms
in case studies. Figure 6b displays typical contagion patterns
and their locations in the risk effect matrix—the higher the
quadrant, the more risk of contagion. We colored the quad-
rant according to the risk level with Q.I green (lowest), Q.II
yellow, Q.III orange, and Q.IV red (highest). We mark pre-
dicted critical firms in each frequent contagion path by a
virus-shaped icon ( ). As we can see, 68.1% of critical
firms are located in most risk Q.IV and 84.6% of them in the
risk quadrant (Q.III and Q.IV). Besides, contagion chains
with predicted critical firms account for over 87.5% of all
patterns. Then, we visualize the contagion effect matrix in
loan networks as illustrated in Figure 6a. We mark the total
amount of default at risk as the circle size and divide their
contagion risk quadrants in a pie chart. For example, the de-
fault at risk of loan network coded as GN302 is very close
to GN 547. Thus, existing loan management methods are
likely to treat them as the same level of risk. However, in
the empirical study, they are significantly different in terms
of risk components. GN302 is more healthy than GN547 as
most of its risk consists of small-scale contagions. However,
the situation in GN547 is different; near 1/3 of defaults is
Q.IV (highest). In other words, these kinds of risks have a
higher probability of triggering contagion to healthy firms
and would cause systemic defaults.

Then, we leverage case studies on GN547 and display

their details in Figure 6c. The general amount of risk at de-
faults and each component of four quadrants are shown in
C.0. There are three leading contagion chains in GN547, and
we report them in C.1, C.2, and C.3 of Figure 6c. Our pro-
posed method reports F01 as a critical firm in C.1, F02 in
C.2, F03, F04, and F05 in C.3. It is clear that if F01 defaults,
the risk would diffuse along edges and cause four firms at
risk in first-level contagion, seven firms in second-level con-
tagion, and nine firms at risk with third-level contagion. Our
method successfully detects the most critical firm in conta-
gion chain C.1. A similar phenomenon is observed in chain
C.2 that F02 is the critical firm. Interestingly, our collabo-
rated financial experts find that F04 is among predicted crit-
ical firms in chain C.3, which is not observed by domain
knowledge. Only three nodes are connected to F04, while
more than four are connected to the most critical firms. After
in-depth analysis, we find that even though only three nodes
are in the first contagion of F04, 12 nodes are involved in its
second level contagion. Moreover, 17 firms would be at risk
by the third-level contagion if F04 defaults. Our proposed
method successfully predicts all critical firms in the case
study. It provides meaningful insight into risk management
in complex loan networks. These empirical studies and case
analyses demonstrate our method’s effectiveness in predict-
ing critical firms to stem contagion risk in networked-loans.

Conclusion
This paper proposes a novel graph-based deep reinforcement
learning method for critical firm prediction to stem conta-
gion risk in networked-loans. Our method leverages high-
order message-passing graph layers as the policy network
to directly learn representations from risk contagion over
complex financial networks. We thoroughly evaluate our
method compared with popular benchmarks on the histor-
ical datasets and achieve superior performance. The ability
of the proposed method in predicting critical firms for stem-
ming contagion risk is demonstrated. The empirical study
proves that our work could support financial authorities and
banks for more prompting prevention measures. The idea of
modeling risk based on contagion can be applied widely in
financing MSMEs for sustainable economic development.
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