
SARAS-Net: Scale and Relation Aware Siamese Network for Change Detection

Chao-Peng Chen1, Jun-Wei Hsieh1*, Ping-Yang Chen2, Yi-Kuan Hsieh1, Bor-Shiun Wang2

1College of Artificial Intelligence and Green Energy, National Yang Ming Chiao Tung University, Taiwan.
2Department of Computer Science, National Yang Ming Chiao Tung University Taiwan.

f64051041@gmail.com, [jwhsieh, pingyang.cs08, khjhsnaughty.ai10, eddiewang.cs10]@nycu.edu.tw

Abstract

Change detection (CD) aims to find the difference between
two images at different times and outputs a change map to
represent whether the region has changed or not. To achieve
a better result in generating the change map, many State-of-
The-Art (SoTA) methods design a deep learning model that
has a powerful discriminative ability. However, these meth-
ods still get lower performance because they ignore spatial
information and scaling changes between objects, giving rise
to blurry or wrong boundaries. In addition to these, they
also neglect the interactive information of two different im-
ages. To alleviate these problems, we propose our network,
the Sacale and Relation-Aware Siamese Network (SARAS-
Net) to deal with this issue. In this paper, three modules are
proposed that include relation-aware, scale-aware, and cross-
transformer to tackle the problem of scene change detec-
tion more effectively. To verify our model, we tested three
public datasets, including LEVIR-CD, WHU-CD, and DS-
FIN, and obtained SoTA accuracy. Our code is available at
https://github.com/f64051041/SARAS-Net.

Introduction
Change detection is a critical and challenging research topic
in computer vision and remote sensing. This issue aims to
find the difference between two images at different times
and output a change map to represent whether the region
has changed or not, as shown in Figure 1. The change detec-
tion task has been widely used in many applications, such
as urban expansion (Lu, Moran, and Hetrick 2011), dam-
age assessment (Xu et al. 2019), and land cover monitor-
ing (Hulley, Veraverbeke, and Hook 2014). To generate a
change map, most traditional methods focus on detecting the
changed pixels and classifying them. However, these results
often come with low accuracy because of some noise, in-
cluding different light intensity and surface colors. Hence,
designing a good network with powerful discrimination to
solve these problems is crucial.

With the development of deep learning, most existing
methods have been proposed with powerful CNN models to
tackle change detection. They have better performance than
traditional methods because their outstanding discriminative
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Figure 1: Result of our model for change detection in the
LEVIR-CD dataset. (a) and (b) input remote sensing images,
(c) ground truth, and (d) prediction result of our model.

ability can extract more useful features from images. How-
ever, these methods still face some problems when analyz-
ing the change region. For example, FCN (Jaturapitpornchai
et al. 2019) uses the U-net model to detect the region that
constructs new buildings. Although it can roughly indicate
the position of newly built constructions, it gets low per-
formance because it ignores spatial information and differ-
ent scale changes between objects. Although SNUNet (Fang
et al. 2022) focuses on processing multi-scale features to
tackle the scaling changes of objects through an ECAM (En-
semble Channel Attention Module). However, this ECAM
considers only channel attention and ignores the spatial re-
lations between pixels to generate the change maps, so many
unexpected regions with seasonal changes in vegetation are
also detected. To punish attention to unchanged feature pairs
and increase attention to changed feature pairs, some meth-
ods (Liu et al. 2021a; Zhang et al. 2020; Peng et al. 2021)
have used attention mechanisms, such as channel attention
and spatial attention, to improve the detection result. How-
ever, these networks emphasize each pixel’s channel im-
portance to make the extractor more effective; it still ne-
glects the cross-relation between features that are gener-
ated by two remote sensing images. In contrast to these
networks, BIT (Chen, Qi, and Shi 2022a) uses the trans-
former (Vaswani et al. 2017) to encode high-level concepts
of the change of interest by a set of semantic tokens and
then fuses them with the original deep features to generate
the expected binary change map. Though it applies attention
mechanisms and considers the relationship between two fea-
tures, it does not consider performing some convolution op-
erations to fine-tune change maps after feature subtraction.

From the above discussions, we summarize the problems
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Figure 2: Overview of the proposed scale- and relation-aware siamese network.

they encountered, including multi-scale objects, the relation
between two images, and focusing on important channels.
In addition, we find that there is another factor that influ-
ences their effectiveness. That is, all of them perform convo-
lution before or after the distance of features. The first type
of methods, for instance, FCN and SNUNet, initially con-
catenates two input images and then uses some convolution
operations on the concatenated map to output the change re-
sult. The second type of methods, like DASNet (Chen et al.
2021) and BIT, initially performs some convolution opera-
tions on input images and subsequently subtracts their fea-
ture maps through a few convolution layers to generate the
change map. However, in our experiments, we find that per-
forming all operations before and after feature subtraction
can obtain more information and result in a better result.

This paper proposes a new network with some mecha-
nisms to solve the disadvantages of the above methods, as
shown in Figure 2. First, our network performs both oper-
ations before and after feature subtraction, respectively, us-
ing the relation-aware module before subtraction and using
the scale-aware and cross-transformer modules after sub-
traction. The goal of the relation-aware module is to en-
hance the interactive relationships between feature maps ex-
tracted from two input images to improve the discrimina-
tion ability of features for change detection. Then after fea-
ture subtraction, the scale-aware attention module computes
cross-scaling attention on subtraction maps to deal with the
problem of scene change caused by objects with multiple
sizes. Finally, the cross-transformer module, which fuses the
multi-level features, aims to pay more attention to spatial in-
formation and separate foreground and background easily,
thus reducing false alarms.

To solve the change detection problem and improve fea-
tures’ discrimination abilities, our model contributions in
this paper are as follows:
• We propose a siamese network that performs both oper-

ations before and after feature subtraction on two input
images to detect the change region and obtain state-of-
the-art performance on the remote sensing datasets.

• We propose the relation-aware module to make the fea-

tures, which are extracted before subtraction, have more
information exchanges to improve their discrimination
ability for change detection.

• We propose the scale-aware module, which makes the
features focus on more important channels by comput-
ing cross-scaling attention on subtraction maps, to more
effectively detect changes caused by different scaled ob-
jects.

• We propose the cross-transformer module to easily sep-
arate changed pixels from unchanged ones by a self-
attention mechanism.

Related Work
Change Detection
In the literature, many frameworks have been proposed for
change detection. According to the processed units, they
can be further divided into two classes, respectively, pixel-
based (Cao et al. 2014; Celik 2009; Wu et al. 2017) and
object-based methods (Gil-Yepes et al. 2016; Zhang, Li, and
Cui 2018). The first one generates a change map by compar-
ing two coregistered images captured at different time pixel
by pixel and then using a threholding or clustering method to
determine the locations of changed regions. However, many
false detections will be produced due to many irrelevant
changes such as lighting, weather, atmosphere, changes in
road conditions, or seasonal changes in vegetation. To alle-
viate the above problems, some image preprocessing tasks
should be performed, such as radiation correction, geomet-
ric correction, brightness normalization, and so on. Object-
based methods (Gil-Yepes et al. 2016; Zhang, Li, and Cui
2018) typically use structural and textural features to seg-
ment raw images into objects and then obtain their change
maps. Although object-based methods consider spatial in-
formation to improve change detection performance, they
are sensitive to registration errors, objects’ shadows, lighting
conditions, and the performance of their adopted segmenta-
tion algorithms.

Using a convolutional neural network (CNN) to extract
deep features for change detection has become more popular
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in recent years and performs much better than hand-crafted
features. Basically, CNN-based methods adopt an encoder-
decoder-like (or U-Net) architecture to generate the desired
change map, where the encoder converts the image pairs to
various feature pyramids from which the decoder generates
the final change map. For example, FCN (Jaturapitpornchai
et al. 2019) uses two SAR images to detect regions that
include new buildings. Furthermore, an improved UNet++
architecture (Peng, Zhang, and Guan 2019) was proposed
to obtain the final binary change map by concatenating co-
registered image pairs as inputs. In addition to UNet-based
methods, more Siamese architectures with various attention
mechanisms were proposed for change detection. For exam-
ple, FC-Siam-diff (Caye Daudt, Le Saux, and Boulch 2018)
uses a symmetric network to extract two temporal features
and subtract them to obtain the change map. The difference
map is the most intuitive feature to reveal the changes in
bitemporal images, although the existence of spectral and
position errors will produce many false alarms. Thus, more
frameworks are proposed for change detection based on the
difference in images. For example, in (Chen et al. 2021), a
dual-attentive fully convolutional Siamese Networks (DAS-
Net) was proposed to obtain more discriminant features
by focusing both channel and spatial attention together for
change detection. In (Zhang et al. 2020; Peng et al. 2021), at-
tention maps were calculated not only from raw image pairs
but also from their difference maps to assign changed pix-
els with higher importance but unchanged pixels with lower
importance. BIT (Chen, Qi, and Shi 2022a) proposed an ef-
fective transformer-based change detection architecture and
paid more attention to the changed regions.

Transformers

Transformer (Vaswani et al. 2017) is a new attention-based
method for machine translation and has achieved promis-
ing performance in computer vision (Rezatofighi et al. 2019;
Chi, Wei, and Hu 2020). For example, with the Vision Trans-
former (ViT) (Dosovitskiy et al. 2021) as the backbone,
more informative features can be extracted than using spatial
convolution layers networks, such as ResNet (Ramachan-
dran et al. 2019). ViT outperforms and achieves better accu-
racy than CNN-based methods (Ramachandran et al. 2019;
Liu et al. 2016; Bochkovskiy, Wang, and Liao 2020) in
several vision tasks including object detection (Rezatofighi
et al. 2019) and image segmentation (Chi, Wei, and Hu
2020). It splits the original image into non-overlapping
medium-sized patches and computes their self-attentions to
get more discriminant features. Although it performs well, it
is very time-consuming. To alleviate this inefficiency, Swin
transformer (Liu et al. 2021b) uses a smaller window size
and patch interaction mechanism to achieve better speed-
accuracy trade-off in image classification. This paper will
employ this self-attention mechanism to strengthen feature
maps not only at the same scales but also cross scales to
well detect areas of changed pixels with various sizes.

Methodology
Overview
Most SoTA methods (Chen, Qi, and Shi 2022b; Chen and
Shi 2020a; Chen et al. 2021) used the attention module to
enhance features before image subtraction from image pairs
or fewer methods (Bai et al. 2022) enhanced the difference
map after subtraction. More importantly, the above meth-
ods calculated attention from features layer by layer only
at the same scales. Many miss predictions to small change
areas and false alarms to large irrelevant changes will be
produced. Two key ideas are proposed in this paper to al-
leviate the above scaling problems. The first one is to cal-
culate attention for enhancing features from image pairs not
only before subtraction but also from the difference map af-
ter subtraction. The second one is to calculate attention from
deep features layer by layers not only at the same scales but
also cross scales to well detect change areas even with var-
ious sizes. Our model is shown in Figure 2 and its details
are shown in Algorithm 1. To compare two temporal high-
resolution remote sensing images, we design a Siamese net-
work model to extract their features. Firstly, a relation-aware
model is proposed and applied to image pairs before subtrac-
tion to fuse feature maps and enhance their discriminant ca-
pabilities for change detection. After subtraction, we use the
scale-aware module tocalculate channel attentions on fea-
ture maps to not only at the same scale, but also other scales
to deal with the scale-aware problem in change detection.
After channel weighting by the scale-aware module, we use
the cross-transformer to further cross-fuse features from dif-
ferent layers to captures more spatial and semantic infor-
mation for detecting regions with change caused by objects
with various sizes. Our model obtains SoTA performance on
three public remote sensing datasets, including LEVIR-CD,
WHU-CD, and DSFIN.

Relation-Aware Module
Let X and Y be the two input images. To compare X and Y ,
a backbone such as ResNet (He et al. 2016) is first adopted to
extract two feature pyramids FX and FY , respectively. Let
Fn
X and Fn

Y denote the feature maps of FX and FY at the nth
layer. To better detect changed pixels, Fn

X and Fn
Y will be

improved by two mechanisms, respectively, cross-attention
and cross- self-attention. Detailed operations, shown in Fig-
ure 3, are composed of sequentially connected encoder lay-
ers. The input features Fi and Fj initially produce queries
Qi and Qj , keys Ki and Kj , and value Vi and Vj , then they
are passed to the attention layer. After generating the atten-
tion weight by the dot product between the query Qi and the
key vector Kj , the attention information is retrieved by the
product of the value vector Vj and the attention weight. The
attention layer is denoted as:

A(Qi,Kj , Vj) = softmax(QiK
T
j )Vj . (1)

When the attention vector is obtained, we concatenate it and
the input feature Fi to get a new feature Fi,j as follows.

Fi,j = Fi +A(Qi,Ki, Vi) +A(Qi,Kj , Vj). (2)
Similarly, we can also obtain Fj,i. In the end, the output vec-
tor is computed by a 3 × 3 convolution and normalization.
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For the cross-attention module, Fi and Fj have the same
size. As to the cross-self-attention module, Fi is generated
by the cross-attention module, while Fj is from the original
image. Both two modules can strengthen the features with
more discriminant capabilities for change detection.

Scale-Aware Module
After the relation-aware module, the enhanced feature maps
{F̄n

X} and {F̄n
Y } can be obtained from Fn

X and Fn
Y . By sub-

tracting F̄n
X with F̄n

Y , the subtraction result Dn can be ob-
tained, i.e. Dn = abs(F̄n

X−F̄n
Y ). Given the set of difference

maps {Di}, this section will propose a scale-aware module
to enhance their discriminant capabilities for change detec-
tion. Different from other attention methods which only con-
sider attention on feature maps at the same scales, this mod-
ule calculates attention on feature maps not only at the same
scale but also on other scales to deal with the scale-aware
problem in change detection.

First, a global average pooling is applied to Dn to form a
1×C vector. It is then followed by a 1× 1 convolution and
activated a Sigmoid function to form a 1× C attention vec-
tor Un. For all {Dn}, they will be resized to have the same
size as Dn with a bilinear interpolation operation which is
followed by a 1× 1 convolution. For each resized Dm, their
channels are then weighted by Un to form a new feature map
Dn

m. For the nth layer, all {Dn
m} are then sent to the cross-

transformer to generate a scale-aware feature map.

Cross Transformer Module
After the scale-aware module enhances each difference
feature maps Dn, this section proposes a CTB(Cross-
Transformer Block), as shown in Figure 7, to generate a
scale-aware feature map for better scene detection. Let the
inputs of CAB be Da, Db, Dc, and Dd which are the subtrac-
tion results from different scales. Given Da, we train three
matrices W a

Q, W a
K , and W a

V to map it to the query Qa, the
key Ka, and the value Va, respectively. Similarly, given Db,
Dc, and Dd, we can train the linear matrices W b

K , W b
V , W c

K ,
W c

V , W d
K , and W d

V to get Kb, Vb, Kc, Vc, Kd, Vd, respec-
tively. Then, based on Qa, we can train the cross-scale at-
tentions βm between it and all keys Vm for m = a, b, c, d,
where βm is obtained as follows:

βm =
Sum(Qa ⊗Km)∑

m=a,b,c,d

Sum(Qa ⊗Km)
. (3)

(a) LEVIR-CD

(b) WHU-CD

(c) DSIFN-CD

Figure 4: Using visualization results to compare our model
with other methods on three open datasets. The images from
left to right: image1, image2, ground truth, FC-EF, FC-
Siam-DI, FC-Siam-Conc, STANet, IFNet, SNUNet, BIT,
DASNet and Ours.

Then, all the Vm will be combined to form Sa as follows:

Sa = Da +
∑

m=a,b,c,d

βmVm, (4)

where a skin connection is used to avoid the problem of
vanish gradient by adding Da to Eq.(5). For the nth layer,
by taking {Dn

m} as the inputs, CTB will output Sn. All
{Sn}n̸=1 will be normalized to have the same size to S1

with a bilinear interpolation operation. They are further con-
catenated together and followed by a 3 × 3 convolution to
form the change classifier, G : RH×W×4C → RH×W×2.
With G, the final predicted change probability map P can
be generated via a Softmax function as follow:

P = Softmax(G(S1©S2©S3©S4)), (5)

where © is a concatenation operation. Algorithm 1 shows
the details of our SARAS-Net for change detection.

Network Details
To extract useful features from two input images, we use
two modified backbones, ResNet18 and ResNet50 (He
et al. 2016), respectively. Unlike the original ResNet18 and
ResNet50, we use four feature maps that are extracted from
the last four stages and replace the convolutions used the
last two stages with stride 2 to 1 to achieve a speed-accuracy
trade-off. In our modified ResNet50, the channel sizes for
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LEVIR-CD WHU-CD DSIFN-CD
Model Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA
FC-EF 84.82 77.55 81.02 68.11 97.99 77.24 68.88 72.82 57.26 97.82 61.80 57.75 59.71 42.56 86.77
FC-Siam-Di 86.73 77.52 81.87 69.31 98.11 71.61 73.40 72.49 56.86 97.64 68.44 58.27 62.95 45.93 88.35
FC-Siam-Conc 79.85 83.00 81.39 68.62 97.90 76.94 69.74 73.17 57.69 97.83 59.08 62.80 60.88 43.76 86.30
STANet 89.47 83.31 86.28 75.88 98.54 90.62 86.26 88.38 79.19 99.04 51.48 36.40 42.65 27.11 83.38
IFNet 83.12 79.58 81.31 68.51 97.98 75.92 71.53 73.66 58.31 97.83 63.75 55.36 59.26 42.11 87.08
SNUNet 89.43 87.72 88.57 79.48 98.75 91.88 84.57 88.07 78.69 99.03 64.15 57.09 60.41 43.28 87.30
BIT 89.35 89.56 89.46 80.92 98.83 89.40 90.03 89.72 81.35 99.12 56.36 62.79 59.40 42.25 85.43
DASNet 90.60 91.38 90.99 83.47 99.09 88.23 84.62 86.39 76.04 95.30 60.10 56.53 58.26 41.10 86.25
SARAS-Net (V1) 91.48 89.35 90.40 82.49 98.95 91.41 89.58 90.48 82.62 98.96 64.48 64.98 64.73 47.85 88.05
SARAS-Net (V2) 91.97 91.85 91.91 84.95 99.10 92.94 89.12 90.99 83.47 99.25 67.65 67.51 67.58 51.04 89.01

Table 1: Compare our model with other methods on LEVIR-CD, WHU-CD, and DSIFN-CD dataset

Figure 5: Results of visualization of features enhanced by
different modules. (a) Subtraction result without using any
module. (b) Result after adding the relation-aware module.
(c) Result after adding the scale-attention module. (d) Result
after using the cross-transformer module.

the four features are 256, 512, 1024, and 2048, respec-
tively. To save GPU computation, we reduce the channels
of four feature maps to 64/128/256/512 by 1 × 1 convolu-
tion. We call our model SARAS-Net (V1) and SARAS-Net
(V2) when using ResNet18 and ResNet50.

Loss Function
We use the cross-entropy loss function to optimize our net-
work parameters and minimize loss value in the training
stage. The loss is formulated as follows:

L =
1

N

N∑
n=1

l(Pn, Yn), (6)

where Yn is the class value, which is 0 or 1, representing
whether this pixel changes or not, N is the number of pixels,
Pn is the prediction value generated by our network, and
l(Pn, Yn) = -Ynlog(Pn) - (1 − Yn)log(1-Pn) is the cross-
entropy loss.

Experiments and Results
Three datasets, LEVIR-CD (Chen and Shi 2020b), DSIFN-
CD (Zhang et al. 2020), and WHU-CD (Ji, Wei, and Lu
2019) were used to evaluate the performance of our model.

Algorithm 1: SARAS-Net for change detection
Input: Two temporal remote sensing images (X , Y )
Output: Change map M

1: Step1: Feature Extraction
2: FX = CNN (X); FY = CNN (Y );
3: Step2: Relation-aware
4: for layer n do
5: (F̄n

X , F̄n
Y ) = Relation-Aware-module(Fn

X ,Fn
Y );

6: Dn = abs(F̄n
X − F̄n

Y );
7: Step3: Scale-aware adn Cross-Transformer
8: for layer n do
9: Un = Scale-Aware-Attention(Dn);

10: for layer m (m ̸= n) do
11: Dn

m = Channel-wise(Un, Resize(Dm));
Sn = CTB(Dn

1 , Dn
2 , Dn

3 , Dn
4 );

12: Step4: Change Map Generation
13: P = Softmax(G (S1©S2©S3©S4));
14: return P

Datasets
• LEVIR-CD: It contains 637 pairs of remote sensing im-

ages with the size 1024 × 1024 pixels. To reduce the
computation and argument training data, the original im-
age was cut into small patches that have 256×256 size.
Finally, we obtained 7120/1024/2048 pairs of patches for
training/validation/test datasets.

• WHU-CD: It contains only one pair of aerial images with
an image size of 32507 × 15354 pixels. Then, this im-
age is divided into small non-overlaped patches with the
same 256 × 256 size. In the end, there are 6690/744/744
pairs of patches for the training / validation / test dataset.

• DSIFN-CD: Its contains changes in roads, buildings, and
water. For each pair of images, their sizes are 512×512
pixels and cut into small non-overlaped patches with
256× 256 sizes to obtain 14400/1360/192 pairs for train-
ing/validation/testing.

Implementation Details
In the training stage, we use three NVIDIA Tesla V100
GPU to implement our model and stochastic gradient de-
scent (SGD) to optimize our model parameters. We set the
momentum to 0.9 and the weight decay to 0.0005. Initially,
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Figure 6: Example of SARAS-Net visualization by Gradcam. Red denotes higher attention values and blue denotes lower
values. (a) Two input images. (b) Feature maps generated by the relation-aware module. (c) Subtraction results after adding the
scale-aware module. (d) Subtraction results after using the cross-transformer module. (e) Prediction and ground truth.
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Transformer Block)

the learning rate is set to 0.05 and decays 0.1 times for ev-
ery 50 epochs. For each epoch, we use data augmentation
to obtain higher accuracy, including rescale, crop, flip, and
Gaussian blur during training and use the validation dataset
to choose the best training weight. Finally, we evaluate our
model accuracy on the test dataset.

Experiments on Dataset
We compared our model with eight SoTA methods, includ-
ing FC-EF (Caye Daudt, Le Saux, and Boulch 2018), FC-
Siam-Di, FC-Siam-Conc, SNUNet, STANet (Chen and Shi
2020b), IFNet (Zhang et al. 2020) , ISNet (Cheng, Wang,

and Han 2022), BIT, and DASNet (Chen et al. 2021).
Table 1 illustrates performance comparisons with the

SoTA methods in the three data sets, respectively. The met-
rics contain precision, recall, F1 score, intersection over
union (IoU) of the change category, and general accuracy.
Clearly, our model outperforms all SoTA methods. To visu-
alize the prediction results, the results of different methods
on the above three datasets are shown in Figure 4. Here, the
white color is for true positive, the black color is for true
negative, the red color is for false positive, and the green
color is for false negative.

To evaluate the performance of each module, we projected
high-dimensional features onto 2D maps with two colors to
represent the class of pixels (see Figure 5). First, the subtrac-
tion result between two input images, shown in Figure 5(a),
illustrates the changed and unchanged pixels are mixed to-
gether. Second, after the self-attention and cross-attention
modules, points with the same class become closer (see Fig-
ure 5(b)). Third, as shown in Figure 5(c), the scale-attention
module makes points with different classes become farther.
Finally, as shown in Figure 5(d), the cross-transformer block
fuses feature from different layers to make changed and un-
changed pixels more easily separated.

In order to better understand our model, we use grad-
cam (Gildenblat and contributors 2021) to visualize each
module. Figure 6(a) shows the two input images. Figure 6(b)
shows the feature map after adding the relation-aware mod-
ule. Figure 6(c) shows the subtraction results after using the
scale-aware module. From Figure 6(d), we observe that the
noise in features is alleviated through the cross-transformer
module. The final prediction map is shown in Figure 6(e).

Ablation Study
SARAS-Net analysis. We performed an ablation study for
our model on LEVIR-CD data set and changed different
modules in sequence to evaluate the performance of each
module. First, from Table 2, we can conclude that when we
remove the relation-aware (RA) module, the number of pa-
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rameters is reduced by nearly half and the FLOPs also de-
crease. However, the performance after removing the RA
module is worse than after removing other modules. Thus,
if we want a light network, we will remove the RA mod-
ule. Second, we observe that the cross transformer module
has higher performance since it can perfectly fuse different
scale features. Figure 8 shows the changes in the loss value
at each epoch during training. We observe that our model
without removing any module is easier to converge.

Figure 8: Ablation study of training loss. Each line repre-
sents an ablation study from Table 2.

Model RA SA CT Param.(M) FLOPs.(G) F1
SARAS-Net(v1) ✕ ✕

√
32.33 60.64 90.63

SARAS-Net(v2) ✕
√

✕ 37.02 92.57 90.49
SARAS-Net(v3)

√
✕ ✕ 47.46 76.91 90.48

SARAS-Net(v4) ✕
√ √

42.94 111.77 91.26
SARAS-Net(v5)

√
✕

√
52.36 108.83 91.11

SARAS-Net(v6)
√ √

✕ 53.16 128.03 90.92
SARAS-Net

√ √ √
56.89 139.9 91.91

Table 2: Ablation study of the effects when different mod-
ules are added to our model, where RA is the relation-aware
module, SA is the scale-aware module, and CT is the cross-
transformer module.

self-attention

Relation Aware V1 Relation Aware V2

cross-attention cross-attention

Figure 9: Ablation study of relation-aware module.
Relation-aware V1 only uses cross-attention. Relation-
aware V2 uses cross-attention and self-attention.

Relation-aware module analysis. To evaluate the abla-
tion study of the relation-aware module, we performed dif-
ferent attention mechanisms. As shown in Figure 9, the first
relation-aware version only uses cross-attention, and the sec-
ond uses cross-attention initially and then replaces cross-
self-attention with self-attention. From Table 3, we can ob-

FA FB

FC FDFC FD

FA FB

FC FD

 Input 

 Scale  Aware V1  Scale  Aware V2  Scale  Aware 

GT

FA FB

Figure 10: Ablation study of the relation-aware module. V1
uses only cross-attention and V2 uses both cross-attention
and self-attention.

Model CA CSA SA Param.(M) FLOPs.(G) F1
SARAS-Net

√
✕ ✕ 49.22 131.77 91.54

SARAS-Net
√

✕
√

56.89 139.90 90.56
SARAS-Net

√ √
✕ 56.89 139.90 91.91

Table 3: Ablation study of the relation-aware module, where
CA denotes cross-attention, CSA the cross-self-attention,
and SA the self-attention.

serve that the first version is lighter but has a worse perfor-
mance. To better understand this ablation study, we visualize
the different scale features using the relation-aware module
by Gradcam in Figure 10. Compared to other ablation stud-
ies of the relation-aware module, we observe that the orig-
inal relation-aware module pays more attention to regions
with changes. For example, as shown in Figure 10, the red
circle in the original module feature FC performs better.

Conclusion
This paper proposed a scale- and relation-aware siamese net-
work for change detection to achieve SoTA accuracy on the
LEVIR-CD, WHU-CD, and DSIFN-CD datasets. More ac-
curately, our model obtains significant improvements in F1
scores in these datasets, respectively, 2.45, 1.27, and 4.63
points. Our method can solve the key problems of change
detection encountered with most existing methods. For ex-
ample, the relation-aware and scale-aware modules can re-
solve boundary noise generated by objects of different scales
and enhance the features of interactive information. In ad-
dition, we fuse the different scale features using the cross-
transformer module to get a better representation for change
detection. Except for these, our main contribution is to pro-
pose a new model, which performs operations before and af-
ter feature subtraction. Through experimental evidences, our
model structure has been proven to be useful in this issue.
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