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Abstract

Epidemic models are powerful tools in understanding infec-
tious disease. However, as they increase in size and com-
plexity, they can quickly become computationally intractable.
Recent progress in modelling methodology has shown that
surrogate models can be used to emulate complex epidemic
models with a high-dimensional parameter space. We show
that deep sequence-to-sequence (seq2seq) models can serve
as accurate surrogates for complex epidemic models with se-
quence based model parameters, effectively replicating sea-
sonal and long-term transmission dynamics. Once trained,
our surrogate can predict scenarios a several thousand times
faster than the original model, making them ideal for pol-
icy exploration. We demonstrate that replacing a traditional
epidemic model with a learned simulator facilitates robust
Bayesian inference.

1 Introduction
Epidemic models are an essential tool in the study of infec-
tious disease dynamics (Eaton et al. 2019; World Health Or-
ganization 2021; Djaafara et al. 2021). By modelling new
infections as a function of current infections, they lever-
age the fundamental dynamics to predict epidemic trajec-
tories accurately with relatively few parameters. Recently,
they have risen to unprecedented public prominence through
their use during the SARS-CoV-2 (coronavirus) pandemic
(Birrell et al. 2021).

In most cases, we do not observe these dynamics or model
parameters directly, so we must infer them from what data
we do measure (e.g. deaths, positive tests, etc.). In order to
produce a set of predictions, we need to infer the unknown
parameters in the model, a process that quickly becomes in-
feasible at the scale needed for methods like Hamiltonian
Monte Carlo (HMC) (Neal 2011) for even moderately com-
plex models. Further, because the current state of the model
is a function of all past states, complex correlation struc-
tures can arise between time-varying parameters, making
sampling difficult.

(Griffin et al. 2010) proposed an epidemiologically mo-
tivated Individual-Based Model (IBM) of malaria transmis-
sion. It simulates infection at an individual-level based on

*Corresponding Author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exposure to three species of infectious mosquito, immu-
nity and a variety of interventions. This model is invaluable
for projecting the effects of policy on malaria prevalence
, for example, (Winskill et al. 2017), projected the effects
of a 44% funding cut from a major global donor. Unfortu-
nately, run times for a single parameter set can take sev-
eral minutes making it unsuitable for parameter inference
where large numbers of repeated function evaluations are
required. (Griffin, Ferguson, and Ghani 2014) later showed
that a faster, reduced surrogate model can be used to infer
these parameters. This surrogate made simplifying assump-
tions, such as the effects of seasonality and existing interven-
tions being negligible. The observed data had to be carefully
curated to minimise those effects. In contrast to a surrogate
where a researcher arbitrarily chooses how to reduce model
complexity for inference, we will introduce a deep learning
solution.

Recent work has demonstrated the utility of learned sur-
rogate models reducing the computational cost of simulation
(Cameron et al. 2015; McKinley et al. 2018; Reiker et al.
2021). Data-driven methods could potentially learn more ex-
pressive, surrogates which allow researchers to relax their
assumptions in parameter inference and use a wider range
of data sets. (Cameron et al. 2015) proposed a functional re-
gression method to map the functional space between model
parameters and outputs using a library of pre-computed out-
puts. As the input space becomes large, more sophisticated
methods have been employed to explore the sub-spaces most
useful for the parameter inference task at hand, as reviewed
by (McKinley et al. 2018). (Reiker et al. 2021) showed that
a Bayesian optimisation workflow is effective in performing
parameter inference on IBM outputs. They proposed train-
ing a surrogate and simultaneously performing inference,
adaptively sampling parameter sets for training the surro-
gate which reduce the surrogate’s predictive uncertainty in
regions of the input space which are proximal to the best-fit
parameters.

However none of the above approaches have developed
surrogates designed for sequential inputs. Many epidemio-
logical models use sequences as input, such as transmissibil-
ity (Rahimi, Chen, and Gandomi 2021), intervention usage
(Griffin, Ferguson, and Ghani 2014) and contact matrices
(Watson et al. 2022), and produce sequential outputs such as
prevalence trajectories. This format makes them amenable
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to a sequence-to-sequence (seq2seq) modelling approach.
Advances in seq2seq models have been very promising in
machine translation (Vaswani et al. 2017) and time-series
forecasting (Wen et al. 2022), but it is yet to be seen if they
can be applied to the surrogate modelling of epidemiological
models.

We hypothesised that a seq2seq based surrogate architec-
ture could accurately predict IBM outputs for a combination
of scalar and sequential parameters. Such a surrogate would
make Bayesian inference feasible for long running observa-
tional data sets.

1.1 Contributions
We created a surrogate for a well known malaria model, al-
lowing researchers to parameterise the surrogate for an ar-
bitrary location and predict the malaria prevalence within
milliseconds. Previous approaches have either restricted the
input space to scalar parameters, or selected training samples
for a specific inference task. As far as we know, no other in-
fectious disease model surrogates are designed to take arbi-
trary sequence based parameters as input at prediction time.

We propose a formulation for the surrogate in section 3.
We outline a surrogate model structure and training method
in sections 3.3 and 3.4 where we use synthetic parameter
sets designed to explore the parameter space. We evaluated
the surrogate on two benchmark parameter sets, in section
4, to show that it generalises to longer parameter sequences
and parameter sets generated from real world data.

We then performed parameter inference using a Hamil-
tonian Monte Carlo algorithm on the learned surrogate. We
estimated a parameter for a location in Senegal, from an 18
year sequence of intervention statistics. This is the first ap-
proach which would allow for inference using sequential pa-
rameters over an arbitrary time horizon and/or location with-
out re-training the surrogate, which can reportedly take over
a week per inference task, see (Reiker et al. 2021).

2 Model of Malaria Transmission
We first introduce a malaria model to provide context for
the formulation of the surrogate model and to illustrate the
complexity of an infectious disease model.

We used an implementation of an Individual-Based
Model (IBM) of malaria originally published by Griffin
et al.. The IBM includes human, mosquito and Insecticide
Treated Net (ITN) models. The human model simulates in-
fectious bites, immunity, and the probability of detection
by diagnostic tests. This model is used to produce malaria
burden statistics and calculate the Force of Infection to-
wards Mosquitoes (FOIM), as explained in section 2.2. The
mosquito model simulates the size of the infectious and sus-
ceptible mosquito populations given the FOIM and a time-
series of rainfall. This model is used to calculate an Ento-
mological Inoculation Rate (EIR), explained in section 2.1,
which drives infections in the human model completing the
cycle of infection between humans and mosquitoes. The
bed net model modifies this cycle by reducing the number
of bites in the protected human population and increasing
mortality in the mosquito population. These effects are ex-
plained in section 2.3.

Figure 1: A human state transition diagram. Boxes represent
human states and arcs transitions between the states, simu-
lated with Bernoulli trials. Λ represents the EIR, ft the prob-
ability of treatment, b the probability of infection and φ the
probability of clinical disease.

2.1 Human Transmission

The human model, shown in figure 1, simulates five infec-
tion states: susceptible (S), clinical disease (D), treated (T),
asymptomatic infection (A), and subpatent infection (U).
Subpatent infections are those not detected using routine
malaria testing, instead requiring advanced diagnostic meth-
ods. At each time step, Bernoulli trials are simulated to tran-
sition individuals between these states at the parameterised
rates.

The Entomological Inoculation Rate (denoted Λ), is cal-
culated as the number of infectious mosquito bites the pop-
ulation experiences over time. However, each individual ex-
periences Λ differently. Older individuals are bitten more of-
ten, due to their increased surface area. The age ai of each
individual i is sampled from an exponential distribution with
mean µa.

After an individual i is bitten by an infectious mosquito,
we simulate a possible infection. bi(t) represents the proba-
bility of blood-stage immunity failing, determining whether
the individual will develop (at least) an asymptomatic in-
fection. φi(t) represents likewise probabilities for clini-
cal immunity and infection. For asymptomatic individuals,
qi(t, ai) represents the probability of detection by a rou-
tine diagnostic test, taking into account the individual’s age.
Each of these immunity functions are complex estimations
based on each individual’s previous exposures to bites and
infection.

The diagnostic prevalence of malaria in the model
PfPr(t, l, u) is the proportion of individuals who would test
positive in a routine diagnostic test, as defined in equation
1. This statistic is bounded between lower and upper age
ranges l and u, including all clinically diseased individuals
and asymptomatic individuals who would be detected.
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PfPr(t, l, u) =

∑
i detected(i, t)× 1l<ai≤u∑

i 1l<ai≤u

detected(i, t) =


1 state(i, t) = D

qi(t, a) state(i, t) = A

0 otherwise

(1)

2.2 Mosquito Modelling
Mosquitoes are modelled using a system of delay differential
equations with early larval (E), late larval (L), pupal (P), sus-
ceptible (Sm), incubating (Em) and infectious (Im) compart-
ments. Early (E) and Late (L) larval compartments represent
the number of larvae soon after hatching. The size of these
two compartments are dependent on a carrying capacity K
which can vary with rainfall R(t), see equation 3. The sur-
viving larvae develop into Pupae (P) and half of the surviv-
ing pupae will develop into susceptible female mosquitoes.

Kv = Kv
0

R(t)

R̄
(2)

R(t) = g0 +

3∑
i=1

gicos(2πti) + hisin(2πti) (3)

Susceptible female mosquitoes (Sm) are infected based on
FOIM. FOIM is a driver of infection in the mosquito popula-
tion, calculated by the number of bites each mosquito would
have made on an infectious human. Infected mosquitoes will
incubate in the (Em) state for a fixed period before them-
selves becoming infectious. If they survive, they will tran-
sition to the Infected (Im) state where they remain until
death. The number of new E state larvae introduced each
time step is proportional to the total number of adult female
mosquitoes in the simulation.

The mosquito model is replicated for each species of
mosquito in the simulation v. Users can parameterise the
proportion of adult female mosquitoes in each species κv by
setting proportional values of the carrying capacity param-
eter, Kv

0 . It is often convenient to parameterise Kv
0 using a

baseline EIR parameter, Λ0, or the expected EIR before in-
terventions. (Griffin 2016) explains in detail how to calculate
the carrying capacity from baseline EIR.

2.3 ITN Modelling
Insecticide treated bednets (ITNs) are an effective malaria
intervention which protect individuals while they are in bed.
They are treated with an insecticide which repels or kills
a mosquito when they attempt to feed on a human while
in bed. Mosquitoes which are repelled will take longer to
feed, indirectly affecting their mortality and reproduction
rates. These responses, for various species and insecticides,
have been examined in experimental hut trials, (Sherrard-
Smith et al. 2022). On the human side, EIR is reduced, since
mosquitoes which have been repelled or killed before feed-
ing no longer contribute towards infectious bites. We assume
that bed nets are retained for an average of 5 years before
being thrown away. The model can be parameterised with a

sequence, ν(t), describing the proportion of the population
who receive an ITN each year.

2.4 Model Fitting Considerations
Typically, malaria researchers would like to infer the un-
known Λ0 from observed prevalence data PfPr(t, l, u), given
known parameters about the transmission setting, such as
µa, κ

v, ν(t), g, h.... However, simulating each individual,
the mosquito population and ITN effects for several years
can take several minutes, making parameter inference chal-
lenging. We also note that the individuals simulated by this
model are synthetic and not measured directly by any real-
world data source. Any fitting or inference process for this
model will aggregate over individuals to predict population-
level averages which can be compared to data.

In the next section we will formulate a model to predict
these population-level aggregates directly from the IBM pa-
rameters, in order to eliminate a large amount of compu-
tation that is, for the purposes of fitting the model to data,
unnecessary.

3 Surrogate Model
Let f : X → Y be a model to be emulated. Assume that
X ⊂ Rk can be bounded to some set of plausible values.
Our goal is to train a model f̃θ : X → Y such that |f̃θ(x)−
f(x)| < ε for some suitably small ε > 0. We refer to f̃θ as a
surrogate model. Let L(x,y, f̃θ) be the loss of the surrogate
model with respect to y (where y = f(x)).

The goal of surrogate modelling is to find a parameter set
that replicates the original model accurately over the entirety
of X . That is, we want to find θ̂:

θ̂ = arg min
θ

∫
X
L(x,y, f̃θ)p(x)dx. (4)

We have included a prior distribution over X , but it is
not strictly necessarily. Here, p(x) serves as a measure of
the relative importance of emulating f(x) accurately. If p
is uniform, then we are ascribing equal importance to every
possible parameter set.

3.1 Input Domain
We can translate the malaria IBM framing described in sec-
tion 2 by first defining X .

To parameterise the surrogate for a particular location, we
set κv , µa, gi, hi and ν(t) parameters to capture mosquito
composition, demography, seasonality and ITN usage re-
spectively. We defined a range for µa as 14.8 to 55.4 years
based on the maximum and minimum average age statis-
tics per country from World Population Review (WorldPop-
ulationReview 2022). Ranges for Fourier coefficients gi, hi
are set between -10 and 10, to include the largest values
found by fitting to rainfall data in sub-national administra-
tive units in sub-Saharan Africa. Since κv are relative pro-
portions of three mosquito species, they are only valid in the
3-simplexes in R3.

A realistic range of ν(t) is between 0 and 0.8 for each
year, as it becomes operationally difficult to distribute to
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ITNs to all individuals. We chose not to constrain the re-
lationship between ν(t) and ν(t+ δ) as it could limit the the
effectiveness of the surrogate in exploratory settings. How-
ever, parameterisations of ν(t) based on real world statistics
are likely to have a gradual increase from 0 and plateau. In
summary, ν(t) is defined as a bounded step function with
n ≥ 0 annually spaced knots.

One of the main unknowns for a each location is, Λ0. An
accurate estimate of this parameter would allow us to sim-
ulate a population of humans and mosquitoes which would
recreate malaria transmission dynamics before any interven-
tions were implemented. Previous estimates for countries
in sub-Saharan Africa have ranged between 0.05 and 418
(Griffin, Ferguson, and Ghani 2014), and model outputs sug-
gest that higher values of Λ0 have diminishing marginal ef-
fects on PfPr. Therefore we set a range for Λ0 between 0
(exclusive) and 500.

To express X as a sequence, we formulated a sequence
of n vectors for each year, t, with time-invariant parame-
ters (κv, µa, gi, hi,Λ0) repeated at each time point, and the
ν(t) selected for the corresponding time point. Each vector
belongs to a subset of R13 bounded as described above.

3.2 Output Range
Let (1, . . . , T ) be the sequence of years at which we wish
to predict the prevalence of malaria. For any x ∈ X , let f
represent running the IBM with parameters x for T years
and evaluating PfPr(d, l, u) for each day d in each year t:

f(x) =
{
{PfPr(d, u, l)}365d=1

}T
t=1

(5)

Note that we have augmented the notation for the IBM
run to include parameter sets. With this notation, Y is easy
to define as the image of f :

Y = {f(x) : x ∈ X}, (6)

where X is defined as in the previous section. From in-
specting equation 1, we get Y as a space of T -length se-
quences of vectors R365 bounded between 0 and 1.

3.3 Surrogate Model Structure
With these definitions of X and Y , the surrogate modelling
task can be reduced to a sequence-to-sequence prediction
problem. Sequence-to-sequence prediction is supported by
a number of models, however we chose a recurrent neural
network (RNN) for simplicity. The RNN should be able to
exploit the relationships between time points to generalise
for unseen parameter sets and longer time horizons. We used
Mean Squared Error (MSE) as the loss function L. We im-
plemented a grid search select hyper-parameters which min-
imised MSE on the validation set, table 1 lists the considered
parameters.

Our RNN took each vector from the X sequence as in-
put to its recurrent cells and output the corresponding vec-
tor from Y . The parameters for gi and hi were expanded
to full rainfall data R(t) using equation 3. The resulting in-
puts were standardised, removing the mean and scaling to
unit variance. The final input layer had 383 recurrent cells,

Hyper-parameter Values
Optimiser Adam, RMSProp
Optimiser Loss MSE, Log cosh
Batch size 1000, 100, 50
Dropout 0, .1
RNN Layer LSTM, GRU

Table 1: Hyper-parameters used in the grid search. The se-
lected parameter is emboldened

feeding 365 latent recurrent cells followed by a dense output
layer of 365 cells.

3.4 Sampling Training Data
Training a surrogate for the malaria IBM requires a large li-
brary of simulations covering a wide area of input space. We
created training and validation data, with an 80/20 split for
the surrogate model using a sequence length of n = 16. This
would allow for the surrogate to learn the long term effects
of ITNs on prevalence. We sampled 10,000 values from a
28 dimensional latin-hypercube, 16 for ν(t) and 12 for the
remaining time-invariant parameters, and transformed the
margins of each dimension to fit the bounds listed in section
3.1. The IBM was run at the sampled points, setting aside
a warm-up period before activating the ITN parameters to
allow the simulation to reach an equilibrium. We set a large
population size for the IBM runs to minimise the stochastic-
ity in PfPr trajectories and treat them as deterministic out-
puts.

The simulation output was aggregated to calculate the
prevalence of malaria among children aged 5 to 59 months
for each year after a warm-up period. The age range of 5
to 59 months old was selected to align with statistics com-
monly found in observational data.

4 Surrogate Evaluation
We evaluated the surrogate on two benchmark parameter
sets. long contains 5,000 samples generated similarly to the
training set except for sequences with n = 30, testing the
surrogate’s ability to generalise to longer time horizons. his-
toric contains 5,000 samples where ν(t) was sampled from
historic statistics for a randomly selected country in sub-
Saharan Africa, published by (Bhatt et al. 2015), testing the
performance on parameters representative of global malaria
modelling studies. After 100 epochs of the Adam optimiser,
the MSE across the 2,000 out-of-sample simulations was
6.8 × 10−3 on un-normalised prevalence values. The pre-
diction error for these benchmarks is shown in figure 2.

We compared execution times for the original IBM, sur-
rogate training, single prediction and batch prediction. The
IBM executions were run on a cluster in batches of 10 on
1,000 dedicated cores with a 2GB memory reservation. The
surrogate was trained on an Nvidia A1000 GPU, which took
229 ± 34 seconds (n = 3). Both single and batch predictions
were made on an 8-core Intel CPU. While the IBM required
just under 24 hours to run 10,000 samples, the batch surro-
gate required just over 3 seconds (approximately a 25,000-
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Figure 2: True versus predicted prevalence of malaria in chil-
dren aged 5-59 months (PfPr5 59) for the long (left) and
historic (right) datasets where the true estimates come from
the IBM model and the predicted estimates come from the
surrogate. Each point represents the prevalence for one time
step (a year) of one sample in the corresponding benchmark.
Mean Squared Error (mse) was very low, as shown in the ti-
tles of the plots.

Task Seconds per run Std
IBM run 1.76× 103 7.69× 102

Prediction (single) 1.74× 10−3 2.84× 10−8

Prediction (batch) 3.74× 10−4 6.12× 10−2

Table 2: The timings per simulation for 10,000 simulations
on the training and validation parameter sets

fold improvement). The timing statistics for an each run are
listed in table 2.

5 Parameter Inference
We used Tensorflow Probability (TensorflowProbability
2022) to fit our model to observational data from the Demo-
graphic and Health Survey program (DHS 2022). The DHS
responses included geo-location, age, and outcome of Rapid
Diagnostic or Microscopy tests for respondents in Kolda,
Senegal between 2008 an 2018. We included responses for
respondents between 5 and 59 months old and weighted re-
sponses by population density data from World Bank data
(WorldBank 2022) to get a general picture of parasite preva-
lence over time in the region, DPfPr5−59.

To estimate a value of Λ0 which best explainsDPfPr5−59,
we used a binomial likelihood function, see equation 7. We
compared each participant’s infection status J i, an indicator
variable, to the average predicted prevalence for the month
in which they were observed, PfPr(ti). Our surrogate, pa-
rameterised with ν(t), gi, hi, κ

v values for Kolda, and ag-
gregated at month ti provides quick estimates for PfPr(ti).
We set a uniform prior for Λ0 between 0 and 500.

L(λ∗|DPfPr5−59) =
∏

PfPr(ti)J
i

(1− PfPr(ti))1−J
i

(7)

We performed Markov Chain Monte Carlo using the
HMC algorithm (Neal 2011) with 10 parallel chains, 2,000

Figure 3: A posterior predictive check plotting Λ0 samples
from 10 MCMC chains. A previous rough estimate of base-
line EIR in three Senegalese populations was 1, 20 and 200
(infectious bites per person per year) for the cities of Dakar,
Ndiop and Dielmo (Trape and Rogier 1996). This estimate
of 23.2 ± 13.7 would place Kolda’s baseline transmission
alongside Ndiop.

steps, 1,000 of which were discarded as warm-up, to sample
from the resulting posterior. This inference took just over 11
minutes to execute on an 8-core Intel CPU.

The original IBM was then run with the mean estimate
for comparison, see the posterior predictive check in figure
3 and resulting fit in figure 4. For this fit, there is a noticeable
error between the surrogate and the original model. The sea-
sonal cycle in prevalence is delayed and flattened, while the
average prevalence is underestimated. However, the relative
effects of ITNs appear similar between the models.

6 Discussion
We have demonstrated that it is feasible to perform inference
on a highly detailed epidemic model with complex temporal
dynamics. Seq2seq based surrogates can accurately predict
trajectories for models with large parameter spaces and gen-
eralise transmission dynamics to very long time horizons.
This opens up a wider range of data, including longitudinal,
from less controlled studies for use in parameter inference
in an epidemiological setting.

However, the inference in the previous section should not
be used to inform real policy. Simplifying assumptions have
been made which ignore the effects of non-ITN interven-
tions and different diagnostic methods. Also, the accuracy of
the surrogate varies for different types of model runs. Fur-
ther work needs to be done to add detail to the surrogate
model and ensure a high accuracy for the parameter space
which is used for inference.

6.1 A Surrogate for General Analysis
The surrogate could be used as an exploratory tool, allowing
researchers to begin modelling malaria transmission for ar-
bitrary locations in seconds. Selective approaches, such as
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Figure 4: A plot of the final fit including the surrogate tra-
jectory for the mean EIR (in orange). The IBM was then cal-
ibrated to the mean EIR using a root finding method and run
to simulate the ITN distributions for Kolda, the prevalence
for that run is plotted in green. Observations have been plot-
ted in blue with their 95% confidence interval, assuming a
Binomial distribution. The observational data included sam-
ples from low intervention periods (2008) as well as high
intervention periods (2013-2017) and was aggregated on a
monthly time scale.

(McKinley et al. 2018; Reiker et al. 2021), had designed
their training set for a particular inference task, thus more
training would be required to guarantee their published per-
formance for each use case. In the case of (Reiker et al.
2021), training can take between 7 and 12 days.

The benchmarks showed that the surrogate could emulate
the IBM for the vast majority of simulation scenarios. 99%
and 97% of predictions had an MSE of less than 1×10−2 for
the long and historic benchmarks respectively. On inspec-
tion, we could see that short-term seasonal and long-term
ITN transmission dynamics could be accurately re-created
(see Figure 5).

Despite the benchmarks showing a small risk in surro-
gate prediction error, many predictions significantly devi-
ated from the IBM outputs. Manual inspection reveals that
the worst predictions for the historic benchmark were in
scenarios with low or zero prevalence (see Figure 6). The
performance of the surrogate would likely be improved by
extending the training set with low transmission parameter
sets, i.e. samples with smaller values of Λ.

A more general approach to managing the risk in surro-
gate prediction error could be uncertainty estimation. Un-
like the approach in (Reiker et al. 2021), RNNs provide
point estimates of the IBM outputs. Recent advances have
shown that RNNs can be adapted to output probability densi-
ties, (MacKay 1992; Lakshminarayanan, Pritzel, and Blun-
dell 2017). Such outputs could be used at prediction time
to inform the researcher of the trust-worthiness of a predic-
tion. They could also be used at training time to find samples
which would reduce surrogate predictive uncertainty, (Bai
et al. 2021).

Figure 5: 16 trajectories with the lowest MSE from the
historic benchmark. The blue and orange trajectories show
daily prevalence in simulation over 16 years for the IBM and
surrogate models respectively.

Finally, sharing a surrogate model is more energy efficient
and equitable than an IBM. Low and middle income coun-
tries are disproportionately affected by infectious disease
and are less able to finance high performance computing.
Surrogate predictions require a small fraction of the IBM’s
computational requirements making analyses more feasible
in the settings where they are most needed.

6.2 Generality of the Workflow
Despite the overall input domain being large, the vectors for
each time point are low-dimensional. Over 50 malaria pa-
rameters were fixed to values sources from expert opinion
and previous parameter inference studies (Sinka et al. 2012;
Sherrard-Smith et al. 2022; Griffin, Ferguson, and Ghani
2014). If incorporated, it is unlikely that a latin-hypercube
sampling strategy would produce the samples sufficient to
learn the function f over the larger input space. Develop-
ing a strategies to more intelligently sample the input space
without sacrificing generality poses a challenging research
problem.

The sequence structure is also limited in granularity. This
surrogate has fixed time-step intervals to a year. However
many infectious diseases, including malaria, are seasonal
and so there is value in exploring the timing of interventions
on a monthly or daily timescale. Reducing the time-step in-
terval would increase the size of training sequences. For ex-
ample, training this malaria surrogate with the daily time-
step would increase the training sequences from n = 16 to
n = 5840. More advanced seq2seq architectures could be
considered here, such as those in (Cho et al. 2014; Vaswani
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Figure 6: 16 cases with the highest MSE from the historic
benchmark. The blue and orange trajectories show daily
prevalence in simulation over 16 years for the IBM and sur-
rogate models respectively.

et al. 2017), taking care to avoid the vanishing/exploding
gradient problems.

7 Conclusion
We believe that the model presented here can be a valuable
tool for guiding future malaria modelling, and serves as a
proof of concept for the utility of surrogate modelling in
infectious disease epidemiology. Given the limitations we
have explored, future work will focus on improving the sur-
rogate’s fit and generalising the surrogate structure to adapt
it to more varied prediction tasks.
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