
Counterfactuals for the Future

Lucius E.J. Bynum1, Joshua R. Loftus2, Julia Stoyanovich1

1 New York University, New York, NY, USA
2 London School of Economics, London, United Kingdom

lucius@nyu.edu, J.R.Loftus@lse.ac.uk, stoyanovich@nyu.edu

Abstract

Counterfactuals are often described as ‘retrospective,’ focus-
ing on hypothetical alternatives to a realized past. This de-
scription relates to an often implicit assumption about the
structure and stability of exogenous variables in the system
being modeled — an assumption that is reasonable in many
settings where counterfactuals are used. In this work, we con-
sider cases where we might reasonably make a different as-
sumption about exogenous variables; namely, that the exoge-
nous noise terms of each unit do exhibit some unit-specific
structure and/or stability. This leads us to a different use of
counterfactuals — a forward-looking rather than retrospec-
tive counterfactual. We introduce “counterfactual treatment
choice,” a type of treatment choice problem that motivates
using forward-looking counterfactuals. We then explore how
mismatches between interventional versus forward-looking
counterfactual approaches to treatment choice, consistent
with different assumptions about exogenous noise, can lead
to counterintuitive results.

1 Introduction
Counterfactuals are often described as retrospective, focus-
ing on hypothetical alternatives to a realized past. Here,
we explore how this view of counterfactuals as retrospec-
tive connects to implicit assumptions about how exogenous
(noise) variables behave in the system being modeled. We
frame our discussion in terms of graphical approaches to
causality (Pearl 2009; Spirtes et al. 2000; Peters, Janzing,
and Schölkopf 2017). We characterize assumptions about
such exogenous variables as being of two kinds: (1) assump-
tions about how a unit looks exogenously compared to it-
self over time, and (2) assumptions about how a unit looks
exogenously compared to other units. We refer to the first
kind as assumptions about ‘stability’ and to the second as as-
sumptions about ‘structure.’ In characterizing these assump-
tions, we explore how they lead us to a forward-looking
rather than a retrospective use of counterfactuals.

The questions we explore in this work are motivated by a
distinction between two types of approaches to maximizing
social welfare (or minimizing inequality) in a target popula-
tion by learning a treatment rule. We now contrast these two
approaches with an example.
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Suppose you want to allocate resources within a partic-
ular population to improve an outcome. For a concrete ex-
ample, consider allocating tutoring to students at a school
in order to improve test performance. Further, suppose that
unobserved external factors about the students (e.g., family
income, encouragement from parents) explain at least some
of the variation in the outcome across units. How should we
allocate resources to these students?

We frame this as a computational problem involving a few
steps. The input is a dataset describing units, in the style of
an observational study at one time step, along with assump-
tions about causal structure (which could also be learned
from the data). The output is a treatment assignment across
units, for example, which students get tutoring. The opti-
mization problem operates over an exponential space of pos-
sible treatment assignments and involves estimating the im-
pact of a given assignment on the outcome distribution. In
this work, we are agnostic to the particular optimization ob-
jective. However, we focus on objectives that would require
the entire outcome distribution, which is of particular inter-
est if we care about mitigating inequality rather than maxi-
mizing utility. Our work here concerns the following ques-
tion: Which approach — interventional or counterfactual —
should we use to estimate the outcome distribution? (See
Section 2 for precise definitions of interventional and coun-
terfactual distributions.)

Approach 1. We could use our model of the data to iden-
tify which subgroups of students to treat based on their co-
variate values only. After learning an optimal treatment rule,
we would apply it to our observed students. We could de-
scribe this as a treatment choice problem focused on in-
terventional distributions — a problem studied extensively
in econometrics. We may take an approach to tackling this
problem such as Empirical Welfare Maximization (EWM)
that, in short, maximizes the social welfare in a target popu-
lation using a sampled population to learn a treatment as-
signment rule (Kitagawa and Tetenov 2018). Notice that
here, in contrast to much work in econometrics, our sample
is our entire population of interest.

Approach 2. We could use our model of the data to iden-
tify which students to treat based on their covariate values
in addition to any student-specific idiosyncrasies not cap-
tured by the covariates we have measured. This gives rise
to a problem focused on counterfactual distributions, which
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are particular to the observed students and their modeled ex-
ogenous variables, i.e., noise.

Importantly, Approach 1 and Approach 2 will in general
produce a different estimate of the outcome distribution and,
crucially, lead us to tutor a different set of students. In other
words, these two approaches will result in two different poli-
cies. In this work, we characterize how accurate or inaccu-
rate each approach would be depending on our assumptions
about exogenous structure and stability (i.e., what do we as-
sume about family income and encouragement from parents
year-to-year?). We show how mismatched assumptions be-
tween interventional and counterfactual approaches to treat-
ment choice can lead to counterintuitive results.

Contributions.

• We make a case for using counterfactuals in an explic-
itly forward-looking rather than retrospective manner in
particular policy choice settings, and connect the use of
counterfactual (versus interventional) distributions to as-
sumptions about exogenous noise (Section 3).

• We introduce a distinct type of decision problem fo-
cused on inequality — counterfactual treatment choice
— that motivates the use of forward-looking counterfac-
tuals (Section 4).

• We study empirically the exogenous conditions under
which interventional approaches versus forward-looking
counterfactual approaches to treatment choice problems
are more appropriate (Section 5).

2 Background & Related Work
2.1 Structural Causal Models
Let capital letter X denote a random variable, where lower-
case letter X = x denotes the value it obtains. Let boldface
capital letter X = {X1, . . . , Xn} denote a set of random
variables, with value X = x. Capital PX denotes the cumu-
lative distribution function of variable X and lowercase pX
denotes the density (or mass) function. Let PY |X=x denote
the conditional distribution of Y given X = x and PY |X de-
note the collection of PY |X=x for all x, i.e., the conditional
of Y given X . Next we introduce the structural causal model
framework and associated notation.1

Definition 1 (Structural Causal Model (SCM)). An SCM
C is a four-tuple ⟨U,X,F, PU⟩ where U is a set of in-
dependent random noise variables U = {U1, . . . , Un}
with distribution PU, X is a set of random variables
X = {X1, . . . , Xn}, and F is a set of functions F =
{f1, . . . , fn}. For all i, Xi = fi(PAXi

, Ui), where
PAXi

⊆ X \ Xi is the set of parents of Xi in the causal
DAG G. The prior distribution PU and functions F deter-
mine the distribution PC.

An SCM entails an observational distribution PX as well
as distributions after interventions.

1Notation in this section is a combination of notation from Pe-
ters, Janzing, and Schölkopf (2017) with language and notation
from Buesing et al. (2019) and Oberst and Sontag (2019).

Definition 2 (Interventions). An intervention

I = do
(
Xi := f̃(P̃AXi

, Ũi)
)

corresponds to replacing the structural mechanism
fi(PAXi , Ui) with f̃i(P̃AXi , Ũi). This definition encom-
passes atomic interventions, denoted do(Xi = x). We
denote an SCM after intervention I as Cdo(I), and the
resulting interventional distribution as PC;do(I).

An SCM also entails counterfactual distributions.
Definition 3 (Counterfactuals). A counterfactual distribu-
tion is an interventional distribution specific to an observed
assignment X = x (over any set of observed variables).
The counterfactual distribution, denoted PC|X=x;do(I), is
the distribution entailed by the SCM Cdo(I) using the pos-
terior distribution PU|X=x instead of the prior PU, i.e., the
posterior distribution PU|X=x is passed through the modi-
fied structural mechanisms in Cdo(I) to obtain the counter-
factual distribution specific to assignment X = x. Note in
the continuous case, we would condition instead on X ∈ A
with P (X ∈ A) > 0 rather than X = x.

2.2 Welfare Maximization in Econometrics
Problems that assign treatment based on some function of
people’s outcomes (e.g., a measure of welfare) are often re-
ferred to as statistical treatment rules, policy choice, or pol-
icy learning problems, and relate to a large body of work
in econometrics and causal inference (Athey and Imbens
2017; Manski 2003). Typically in this literature, policies are
learned to maximize a utilitarian (additive) welfare criterion
rather than a criterion focused explicitly on inequality. How-
ever, a growing collection of works look at treatment choice
with a focus on inequality, such as Kitagawa and Tetenov
(2019) and Kasy (2016), and inequality research itself has a
long history. Though these and other related works on wel-
fare maximization have a similar focus on inequality, in this
work we show how econometric treatment choice problems
are often what we define as interventional treatment choice
problems, with a focus on estimating interventional rather
than forward-looking counterfactual distributions.

2.3 Algorithmic Fairness and Inequality
The distributional impacts of decisions, tensions between
fairness and inequality, and other questions of social welfare
are widely discussed in algorithmic fairness and algorithmic
decision-making literature (Barocas, Hardt, and Narayanan
2019; Bynum, Loftus, and Stoyanovich 2021; Green and
Chen 2019; Heidari, Ferrari, Gummadi, and Krause 2019a;
Heidari, Loi, Gummadi, and Krause 2019b; Hu and Chen
2020; Kannan, Roth, and Ziani 2019; Kasy and Abebe 2021;
Khan, Manis, and Stoyanovich 2021; Kusner, Russell, Lof-
tus, and Silva 2019; Liu, Dean, Rolf, Simchowitz, and Hardt
2018; Madras, Pitassi, and Zemel 2018; Mullainathan 2018;
Nabi, Malinsky, and Shpitser 2019). Specific examples of
“counterfactual treatment choice problems,” which we de-
fine generally here, have come up in different instances in
this literature, e.g., the “impact remediation problem” intro-
duced by Bynum, Loftus, and Stoyanovich (2021) and “dis-
criminatory impact problem“ introduced by Kusner et al.
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(2019). To the best of our knowledge, these or other types
of problems have not been discussed with connections to
forward-looking counterfactuals nor assumptions about ex-
ogenous variables.

3 Forward-looking Counterfactuals
We can demonstrate forward-looking counterfactuals
through an example. Consider a set of n schools for which
we observe data {Z(i)

0 , Y
(i)
0 }ni=1 for covariates Z, Y at time

t = 0, described by SCM C where

Z
(i)
0 = U

(i)
Z ,

Y
(i)
0 = Z

(i)
0 + U

(i)
Y ,

with exogenous noise variables U (i)
Z , U

(i)
Y ∼ N (0, 1). At

time t = 1, we can intervene on Z to determine the value of
Z1 with the goal of changing future outcomes Y1. Suppose
that our intervention is to add constant δ to the value of Z,
i.e., Z(i)

1 = Z
(i)
0 + δ · w(i), with w(i) ∈ {0, 1} indicating

the treatment decision for individual i.
Consider using an interventional distribution to character-

ize the distribution of Y1 after performing an intervention I
that determines which set of individuals to treat {i : w(i) =
1}. The following modified SCM Cdo(I),

Z
(i)
1 = Z

(i)
0 + δ · w(i),

Y
(i)
1 = Z

(i)
1 + U

′(i)
Y ,

with a sample from the prior U ′(i)
Y ∼ N (0, 1), induces our

interventional distribution of interest PC;do(I)
Y1

. This distri-
bution describes the distribution of Y1 for a group of indi-
viduals with the same post-intervention covariates Z1 as the
observed sample.

Now consider using a counterfactual distribution to char-
acterize the distribution of Y1 after performing intervention
I . Instead of using prior U (i)

Y ∼ N (0, 1) in Cdo(I), we have

Z
(i)
1 = Z

(i)
0 + δ · w(i),

Y
(i)
1 = Z

(i)
1 + Ũ

(i)
Y ,

with posterior Ũ (i)
Y = U

(i)
Y , where, rather than sample a new

value of UY for each individual, we set ŨY = UY during
abduction. The entailed distribution P

C|X ;do(I)
Y1

describes the
distribution of Y1 for this specific set of individuals using
their observed exogenous noise terms from time t = 0.

Which approach should we use to estimate PY1
? This de-

pends on what we assume about the structure and stability
of our exogenous noise term UY . Notice that from our mod-
eling perspective, ‘noise’ in the structural equation for Y
can also be described as unobserved factors outside of our
model that explain some of the variation in Y . Assumptions
about ‘noise,’ then, can also be framed as assumptions about
any variables we have not measured that explain some of the
variation in our outcome of interest.

In this work, we discuss how units ‘look exogenously’
with a focus only on an outcome of interest Y and ignore
exogenous variation in other variables for now. We also fo-
cus for now on just two time steps, with observation at time
t = 0 and intervention at time t = 1.

If we assume that a unit’s exogenous variables are con-
stant over time, e.g., that a unit will look exactly the same
next year as it does this year, then for that unit a counter-
factual estimate of Y would be appropriate to estimate Y1,
while an interventional estimate (if there is any variability in
exogenous variables across units) would not. By contrast, if
we assume that a unit’s exogenous variables change signifi-
cantly over time, a counterfactual estimate of Y might be an
appropriate retrospective estimate of Y0 after intervention,
but not an appropriate estimate of Y1. We refer to the use of
a counterfactual to predict a future rather than hypothetical
past outcome as a forward-looking counterfactual.

Whether or not assumptions about structure and stabil-
ity matter depends also on who our population of interest
is at time t = 1. If at time t = 1 we are concerned with
a new sample of individuals governed by the same SCM, it
does not matter how exogenous noise behaves for the origi-
nal sample — we would not use counterfactual distributions
anyway.

For what type of problem, then, would we want to use
forward-looking counterfactuals, and when would these as-
sumptions about exogenous noise matter? In Section 4, we
define a type of problem where a forward-looking counter-
factual approach would be a natural fit, and in Section 5, we
explore assumptions about exogenous stability and structure
in such settings empirically.

4 Counterfactual Treatment Choice
In this section, we define a type of inequality-focused treat-
ment choice problem that motivates the use of forward-
looking counterfactuals.

Consider a decision maker D who assigns interventions,
and a population at time t = 0 characterized by the joint
distribution of (Z(i)

0 , X
(i)
0 , Y

(i)
0 (0), Y

(i)
0 (1)) with covariates

X
(i)
0 ∈ X ⊂ Rdx , treatments/interventions Z

(i)
0 ∈ ΩZ ,

and potential outcomes Y
(i)
0 (0), Y

(i)
0 (1) ∈ R. The data are

a size n sample, {Z(i)
0 , X

(i)
0 , Y

(i)
0 }ni=1.2 Assume the vari-

ables {Z,X, Y } follow a data generating process described
by SCM C with corresponding causal graph (DAG) G. De-
note the set of endogenous variables V = {Z,X, Y }, the
set of exogenous variables U = {UZ , UX , UY }, and the
observed data X = {v(i)}ni=1. At time step t = 1, deci-
sion maker D performs an intervention, changing the values
{Z(i)

1 }ni=1 to affect the distribution of outcomes Y1 at time
step t = 1.

We define a counterfactual treatment choice problem as
a treatment choice problem characterized by the following
criteria:

1. The sample is the entire population of interest.

2Here we have used notation building on the setup of (Kitagawa
and Tetenov 2019).
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2. There are unobserved variables that are specific to each
unit and that explain some of the variation in outcomes.
These unobserved variables also exhibit some stability
over time.

In other words, individuals i = 1, . . . , n are the entire
population of interest, and exogenous variables UY are not
identical across units and exhibit some stability over time
(characterized more explicitly in Section 5). Thus, in a coun-
terfactual treatment choice problem, decision maker D fo-
cuses on the following counterfactual distribution:

p
C|X ;do(I)
Y1

≡ 1

n

n∑
i=1

p
C|V=v(i);do(I)
Y1

, (1)

with interventions of the form I = do(Z(1:n)
1 = #»z ), denot-

ing a vector of treatments across variables Z(1)
1 , . . . , Z

(n)
1 . D

wants to maximize a measure of welfare W (P
C|X ;do(I)
Y1

) as
a function of interventions #»z ∈×n

i=1 ΩZ .
By contrast, in an interventional treatment choice prob-

lem, we are instead focused on the following distribution:

p
C;do(I)
Y1

, (2)

where decision maker D wants to maximize a measure of
welfare W (P

C;do(I)
Y1

) in a target population different from
the current sample but whose data generating process fol-
lows the same SCM C, thus sharing the same interventional
distributions. Because the concern is an interventional rather
than counterfactual distribution in a target population differ-
ent from the current sample, the treatment assignment in the
interventional case is a decision problem based on covari-
ate values X rather than the specific units {1, . . . , n} in the
sample. As in Kitagawa and Tetenov (2018), this means that
the set of treatment rules can be indexed by their decision
sets G ⊂ X of covariate values, which determine the group
of individuals {X ∈ G} to whom treatment is assigned.

In other words, in a counterfactual treatment choice prob-
lem, we do not assign treatments for an individual based on
their covariate values X , because we are not learning a func-
tion that we can use to assign treatment to new individuals,
so we do not need to predict outcomes for unseen individu-
als. In a decision problem over the sample, two individuals
with the same covariate values X can have different values
for their outcomes Y and thus might receive different treat-
ments. The decision sets then are the units in the sample
rather than subsets of covariate values.

4.1 Sociological Implications for Fairness
A focus on counterfactuals rather than interventions also
has significant sociological implications for reasoning about
fairness as well as social categories like race and gender.
In general, operationalizing social categories in the context
of causal modeling is a nuanced technical and sociological
problem; see Bynum, Loftus, and Stoyanovich (2021) and
references therein for a detailed discussion. Were we to use
racial categories in an interventional treatment choice prob-
lem, we would be deciding to treat future individuals with
unseen outcomes based on their racial categories. Kitagawa

Unit X Z Y UX UZ UY Y (0) Y (1)
1 0 0 1 0 0 1 1 2
2 0 0 2 0 0 2 2 3
3 1 0 1 1 0 0 1 2
4 1 0 2 1 0 1 2 3

Table 1: Observed data (X,Z, Y ), inferred exogenous
variables (UX , UZ , UY ), and predicted potential outcomes
(Y (0), Y (1)) corresponding to the SCM in Equation 3.

and Tetenov (2019), for example, suggest legality issues in
assigning treatments in an econometric setting based on so-
cial categories such as race. By contrast, in a counterfac-
tual treatment choice problem, racial categories might reveal
disparate outcomes, but it is the realized, factual, already-
observed disparate outcomes that drive our treatment assign-
ment rather than assumptions or predictions about future dis-
parities based on racial categories. Such a problem would
aim to tackle “pre-existing bias” as discussed by Friedman
and Nissenbaum (1996). In short, a counterfactual treatment
choice problem focuses on whichever grouping of people
needs the most help as measured by their outcomes, regard-
less of what the grouping is.

4.2 Example: EWM as Interventional Treatment
Choice

To illustrate this distinction concretely, we draw a direct
contrast with Kitagawa and Tetenov (2019) as a representa-
tive interventional treatment choice problem, referred to as
EWM. We will refer to the counterfactual approach as CF.
Consider the following SCM C.

X = UX ,

Z = UZ ,

Y = X + Z + UY ,

(3)

where UX , UZ ∼ Bern(0.5) and UY ∼ U({0, 1, 2}) with
four observations — Units 1, 2, 3, and 4 — whose observed
X,Z, Y values are shown in Table 1, along with the poste-
rior values of the exogenous variables and predicted poten-
tial outcomes Y (0), Y (1) for possible treatments Z = 0 and
Z = 1. Assume for simplicity in this comparison that X,U
are constant over time, so we do not need to consider time
steps (we will relax this assumption in Section 5).

From the observed data, we infer a posterior PC
U|X=x and

(through ‘abduction, action, prediction’) compute counter-
factual outcomes for each individual for all treatment values
z ∈ {0, 1}. In this example, the exogenous variables can be
uniquely reconstructed from the observed data, so the corre-
sponding counterfactual distributions are point masses.3 For
example, pC|V=v2;do(Z=0)

Y (y) is a point mass at y = 2. The
two possible point masses for each unit correspond to poten-
tial outcome values Y (0) or Y (1), shown as two columns in
Table 1.

3Point mass posteriors are inspired by Example 6.18 from Pe-
ters, Janzing, and Schölkopf (2017).
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Assumption Model Interpretation
(A1) Exogenous factors are
constant over time.

σU = 0 Among the relevant variables we have not measured, each unit
looks exactly the same next year as it does this year.

(A2) Exogenous factors vary
over time.

σU > 0 Among the relevant variables we have not measured, each unit
looks somewhat the same next year as it does this year. Similar-
ities grow weaker with larger σU values.

(A3) Exogenous factors exhibit
unstructured variation.

σµ = 0 Among the relevant variables we have not measured, each unit
looks the same as any other unit, apart from random variability
with time.

(A4) Exogenous factors exhibit
structured (unit-specific) varia-
tion.

σµ > 0 Among the relevant variables we have not measured, there are
units that look unlike other units, in addition to random variabil-
ity with time. Units look less like each other with larger σµ.

Table 2: A table of different possible assumptions about the structure and stability of exogenous factors that influence the
outcome of interest. Each assumption is stated, along with its corresponding interpretation and parameterization in Equation 4.

Imagine that we can afford at most two interventions.
Given only one binary covariate X ∈ {0, 1}, three possi-
ble EWM decision sets we might consider are G∅ ≡ ∅,
G0 ≡ {0}, and G1 ≡ {1}, where we treat no units, units
with x = 0, or units with x = 1 respectively. In other words,
consider the set of feasible policies G ≡ {G∅, G0, G1}.

Equality-minded EWM aims to maximize a rank-
dependent social welfare function in the overall population
using the sample analog social welfare after treatment. Con-
sider the standard Gini social welfare function

W (PY ) =

∫ ∞

0

(1− PY (y))
2dy.

Assume we can perfectly recover the post-intervention
outcome distribution, so we can in turn perfectly estimate the
population social welfare function for each feasible policy.
From SCM C above, we can obtain the post-treatment cu-
mulative distribution functions PG∅(y), PG0(y), PG1(y) for
each policy G ∈ G and compute the corresponding post-
treatment population social welfare values: W (PG∅) =

35
36 ;

W (PG0
) = 56

36 ; and W (PG1
) = 46

36 .4 Thus, our social-
welfare-maximizing treatment policy from EWM is

G∗
EWM ≡ sup

G∈G
W (PG) = G0.

Now consider this problem from a perspective focused in-
stead on the sample at hand. We are now interested in the
potential distributions of outcome Y after different sets of
interventions across these four individuals rather than the
wider population. We can think of the distribution (prob-
ability mass function) of outcome Y after intervention on
each of these units as an average of the four correspond-
ing point masses, given by Equation 1. Our optimal treat-
ment rule according to EWM, treatment rule G0, would treat
Unit 1 and Unit 2, giving us cumulative distribution function

P
C|X ;do(Z(1:4)=[1,1,0,0])
Y and post-intervention social welfare

in the sample W (P
C|X ;do(Z(1:4)=[1,1,0,0])
Y ) = 26

16 .

4See Technical Appendix A for a more detailed exposition of
this example with additional calculations shown.

Now consider instead treating Unit 1 and Unit 3. Observe
that this treatment rule does not determine treatment assign-
ment for individuals by their covariate values X only (un-
der an EWM treatment rule, we could not treat both Units 1
and 3 and satisfy our budget constraint). Instead, our treat-
ment rule is based on selecting specific units driven by their
realized outcome values. Observe also that this treatment
rule has the same ‘cost’ of treating only two units. Under
this intervention, we obtain cumulative distribution function
P

C|X ;do(Z(1:4)=[1,0,1,0])
Y and post-intervention social welfare

in the sample W (P
C|X ;do(Z(1:4)=[1,0,1,0])
Y ) = 32

16 .
This is one of the possible treatment assignments we

would consider from a counterfactual (CF) perspective.
Even without enumerating other possible assignments, we
can conclude that G∗

CF ̸= G∗
EWM, and, of more significance,

W (G∗
CF) > W (G∗

EWM), so EWM and CF lead to different
optimal policies (as well as different candidate policies), and
the EWM-optimal policy is not necessarily the best choice
for the welfare of the given sample.

In summary, if we focus on a wider population outside the
sample, as in EWM, then we should treat all units with X =
0. But if we instead focus on our particular sample of four
units, as in CF, then we should treat Units 1 and 3, whose
covariates X are different from each other and identical to
those of other untreated units.

5 Assumptions About Exogenous Variables
In this work, we do not propose a catch-all characterization
of exogenous stability, and we do not propose a structure
that applies to all models. Instead, we focus on the following
illustrative parameterization in order to demonstrate insights
that are applicable more generally.

Consider an outcome Y and intervention Z at two time
steps (years), t = 0 and t = 1. We observe data across n

individuals {Z(i)
0 , Y

(i)
0 }ni=1 in order to learn the relationship

between Z and Y , and we intervene at time step t = 1,
determining the value Z1 in order to affect the distribution
of Y1. Intervention on individual i with value Z

(i)
0 increases

their Z value by constant amount δ, i.e., Z(i)
1 = Z

(i)
0 + δ ·

w(i), with w(i) ∈ {0, 1} indicating the treatment decision
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(a) (b)

Figure 1: (a) Interventional, forward-looking counterfactual, and true densities for Y1 after intervention on Z1. (b) Scatter-plots
of (Y (i)

0 , Y (i)
1 ) for each individual i with the line Y0 = Y1 overlaid in gray.

for individual i.

Ground Truth. The true relationship between Z and Y at
each time step is as follows.

Z
(i)
0 = U

(i)
Z

Y
(i)
0 = Z

(i)
0 + U

(i)
0

Z
(i)
1 = Z

(i)
0 + δ · w(i)

Y
(i)
1 = Z

(i)
1 + U

(i)
1

(4)

where U
(i)
Z ∼ N (µZ , σ

2
Z) and U

(i)
0 , U

(i)
1

iid∼ N (µ
(i)
U , σ2

U ),
with µ

(i)
U ∼ N (0, σ2

µ). With this setup, we can explore as-
sumptions about exogenous stability and structure through
parameters σU and σµ. Table 2 shows 4 possible assump-
tions and their parameterization in this example using σU

and σµ. Assumptions (A1) and (A2) are about stability (how
a unit looks exogenously compared to itself over time),
while Assumptions (A4) and (A5) are instead about struc-
ture (how a unit looks exogenously compared to other units).

Model Perspective. From the perspective of the modeler,
who sees only {Z(i)

0 , Y
(i)
0 }ni=1, a correct specification of the

data generating process at time t = 0, given the available
information, would be

Z
(i)
0 = U

(i)
Z

Y
(i)
0 = Z

(i)
0 + U

(i)
0

where U
(i)
Z ∼ N (µZ , σ

2
Z) and U

(i)
0 ∼ N (0, σ2

µ + σ2
U ).

With this model, the modeler would make the following in-
terventional and forward-looking counterfactual estimates
of PY1

after intervention I that determines treatment deci-
sions w(i).

Interventional Estimate of PY1 . For an interventional es-
timate of PY1

, we would draw U1 as a new value from
N (0, σ2

µ + σ2
U ), i.e.,

Z
(i)
1 = Z

(i)
0 + δ · w(i)

U
′(i)
1 ∼ N (0, σ2

µ + σ2
U )

Y
(i)
1 = Z

(i)
1 + U

′(i)
1

with entailed distribution P
C;do(I)
Y1

.

Forward-looking Counterfactual Estimate of PY1 . A
forward-looking counterfactual estimate of PY1 , rather than
drawing a new value of U , would instead set U1 = U0 dur-
ing abduction:

Z
(i)
1 = Z

(i)
0 + δ · w(i)

Ũ
(i)
1 = U

(i)
0

Y
(i)
1 = Z

(i)
1 + Ũ

(i)
1

with entailed distribution P
C|X ;do(I)
Y1

.

5.1 Empirical Results
Figure 1a compares the true post-intervention density pY1

to the interventional estimate p
C;do(I)
Y1

and the counterfac-

tual estimate p
C|X ;do(I)
Y1

for n = 1000, µZ = 0, σZ = 1,
δ = 1, and varying values of σU , σµ ∈ {0, 0.5, 5}. We con-
sider a setting where higher values of outcome Y are more
desirable. The treatment rule is to treat all individuals with
outcomes Y0 < 0.

If, among unobserved factors influencing Y , each unit
looks exactly the same next year as it does this year (σU =
0), and each unit looks exactly like every other unit (σµ =
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Figure 2: Estimated Kullback–Leibler divergence values be-
tween true densities for Y1 and both interventional and
forward-looking counterfactual densities with individual
treatment effect δ = 1, shown for σU ∈ [0, 5] in increments
of 0.1 across a few settings of σµ ∈ {0, 0.5, 1, 5}.

Figure 3: Estimated Kullback–Leibler divergence values be-
tween true densities for Y1 and both interventional and
forward-looking counterfactual densities with individual
treatment effect δ = 5, shown for σU ∈ [0, 12] in incre-
ments of 0.5 across a few settings of σµ ∈ {0, 0.5, 1, 5}.

0), then the interventional, counterfactual, and true distri-
bution for Y1 all line up. The corresponding scatter plot in
Figure 1b shows that, for those with Y0 < 0, Y1 is exactly
Y0 + δ, and for those untreated with Y0 > 0, Y1 is exactly
Y0.

If each unit, among the exogenous factors influencing Y ,
looks exactly like itself next year (σU = 0), and units’ ex-
ogenous variables are not exactly the same (σµ > 0), then
the counterfactual distribution lines up with the distribution
of Y1, but the interventional distribution does not. In these
cases in Figure 1b, though the range of Y0 values is wider,
Y

(i)
1 is again exactly Y

(i)
0 + δ · w(i).

If, instead, among unobserved factors influencing Y , each
unit will vary next year compared to this year (σU > 0), and
each unit looks exactly like every other unit apart from this
random variation with time (σµ = 0), then the true distribu-
tion for Y1 can lie between the counterfactual and interven-
tional distributions. For some values of σU > 0, the true
distribution for Y1 is visibly closer to the interventional dis-
tribution (e.g., σU = 0.5). For large enough values of σU ,
the counterfactual distribution is again closer to the true dis-

tribution of Y1 (e.g., σU = 5). In the corresponding row in
Figure 1b, as σU increases, for any given value of Y0, the
value of Y1 starts to vary enough to drown out the effect
of the intervention. As variation in exogenous factors across
units increases (increasing σµ), forward-looking counterfac-
tual estimate p

C|X ;do(I)
Y1

matches pY1
more closely than does

p
C;do(I)
Y1

.
Figure 2 gives a higher granularity view of changes in

p
C|X ;do(I)
Y1

and p
C;do(I)
Y1

relative to pY1 as σU increases for
a few different values of σµ. Kullback–Leibler divergence
values DKL(pY1 ||p

C|X ;do(I)
Y1

) and DKL(pY1 ||p
C;do(I)
Y1

) are esti-
mated using the FNN package in R (Beygelzimer et al. 2022)
to quantify how close the interventional and counterfactual
distributions are to the ground truth. There are regions, when
σU is smaller and σµ is sufficiently small, in which, by this
measure, pC;do(I)

Y1
is a better estimate of pY1

than p
C|X ;do(I)
Y1

.
We can focus on the behavior in these regions by amplifying
the individual treatment effect δ. Figure 3 shows the same
information as Figure 2, now with δ = 5 instead of δ = 1
and for a correspondingly wider range of σU values.

In summary, the two settings (1) where exogenous fac-
tors are sufficiently stable over time and (2) where units’
exogenous factors are sufficiently dissimilar (regardless of
stability over time) are both appropriate for forward-looking
counterfactuals.

6 Discussion and Future Work
A standard story about counterfactuals is that we envision an
unreal past in order to understand the present. In this paper,
we have explored how and when we could alternatively use
counterfactuals to envision an unreal past in order to draw
conclusions about our future. We introduced assumptions
about the stability and structure of exogenous variables that
lead us to this forward-looking rather than retrospective use
of counterfactuals.

We also introduced counterfactual treatment choice prob-
lems as a setting that motivates the use of forward-looking
counterfactuals and studied empirically the behavior of
forward-looking counterfactual distributions as well as their
interventional counterparts under different exogenous con-
ditions, showing that each approach leads to different esti-
mates.

What happens when decision maker D makes a decision
based on assumptions consistent with the interventional case
but exogenous variables are actually stable, or vice-versa? A
key implication is that these distributional differences can
be crucial for downstream policy decisions. To illustrate this
point, let us return to the case in Figure 1, where σU = 5,
σµ = 5, and δ = 1. The variance V for each distribution is
shown in the following table:

V[PY0
] V[PY1

] V[PC|X ;do(I)
Y1

] V[PC;do(I)
Y1

]
12.2 9.36 9.61 51.1

If, for example, our aim is to allocate treatments in or-
der to decrease variance in Y , the post-intervention variance
we get from an interventional estimate (51.1) is an order
of magnitude larger than the actual value (9.36). With this

14150



approach, we would expect an intervention for individuals
with Y0 < 0 to increase variance overall, when in fact the
opposite is true. Conversely, in an unstable setting, exoge-
nous noise could cause more variability in actual outcomes
than a forward-looking counterfactual approach would pre-
dict, leading D to disappointment if they expect their chosen
interventions to reduce V.

Our work here also suggests several avenues for future ex-
ploration, including extending results to more than two time
steps with deeper connections to latent variable and time se-
ries cross-sectional models, where exogenous components
of variables could be time-varying in different estimable
ways. For example, mixed-effects models are closely related
in settings where estimation is possible. Adding additional
generality to our characterization of exogenous stability and
structure in Table 2 could enable tests for stability in dif-
ferent settings, as well as support reasoning about exogene-
ity for multiple variables in arbitrary DAGs. Counterfactual
treatment choice problems also have their own set of techni-
cal challenges to investigate. For example, if we can only re-
liably estimate intervals for counterfactuals (Lei and Candès
2021), that would induce a policy choice problem with in-
tervals rather than point estimates.

Lastly, our exploration here of how mismatched as-
sumptions about widely-used inferential objects (like in-
terventional distributions) can lead to counterintuitive pol-
icy results suggests the creation of educational material in
these areas (e.g., Bynum et al. (2022)) as well as cross-
collaboration with decision and policy makers as important
additional areas of future work.
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