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Abstract

Fairness in influence maximization has been a very active re-
search topic recently. Most works in this context study the
question of how to find seeding strategies (deterministic or
probabilistic) such that nodes or communities in the network
get their fair share of coverage. Different fairness criteria have
been used in this context. All these works assume that the
entity that is spreading the information has an inherent inter-
est in spreading the information fairly, otherwise why would
they want to use the developed fair algorithms? This assump-
tion may however be flawed in reality – the spreading entity
may be purely efficiency-oriented. In this paper we propose
to study two optimization problems with the goal to mod-
ify the network structure by adding links in such a way that
efficiency-oriented information spreading becomes automati-
cally fair. We study the proposed optimization problems both
from a theoretical and experimental perspective, that is, we
give several hardness and hardness of approximation results,
provide efficient algorithms for some special cases, and more
importantly provide heuristics for solving one of the prob-
lems in practice. In our experimental study we then first com-
pare the proposed heuristics against each other and establish
the most successful one. In a second experiment, we then
show that our approach can be very successful in practice.
That is, we show that already after adding a few edges to the
networks the greedy algorithm that purely maximizes spread
surpasses all fairness-tailored algorithms in terms of ex-post
fairness. Maybe surprisingly, we even show that our approach
achieves ex-post fairness values that are comparable or even
better than the ex-ante fairness values of the currently most
efficient algorithms that optimize ex-ante fairness.

Introduction
The question of how information spreads through networks
has been studied in various research disciplines. In com-
puter science, the so-called influence maximization (IM)
paradigm has attracted a lot of attention in the last two
decades. The IM problem can be stated as follows. Given
a social network G = (V,E) in which information spreads
according to some probabilistic model, target a set of at most
k seed nodes S ⊆ V in such a way that σ(S), the ex-
pect number of nodes that receive the information, is maxi-
mized (Kempe, Kleinberg, and Tardos 2015).

Copyright © 2023, Association for the Advancement of Artificial
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As online social networks play an essential role in how
we acquire information nowadays and as access to infor-
mation has an important impact on our lives, more recently
researchers have started to study the IM framework in the
presence of fairness concerns as well. Fairness may be un-
derstood w.r.t. individuals or communities, the former be-
ing the special case of the latter with singleton communi-
ties. Generally, in such works, for a community C ⊆ V , one
considers the average probability σC(S) of nodes in C to
be reached from S, also called the community coverage of
C. Then the concern is to choose S in such a way that some
fairness criteria on the communities is maximized. The prob-
ably most commonly used one is the maxmin (or maximin)
criterion. In the most basic setting, studied, e.g., by Fish et
al. (2019), the goal is to find a seed set S ⊆ V of size at most
k such that the minimum probability that nodes are reached
minv∈V σv(S) is maximized.

Several articles have been published in this scope and they
have shown certain success in finding seeding strategies that
lead to fairer outcomes. Nevertheless, they are all based on
the assumption that the information spreading entity, i.e., the
agent choosing S, has an interest in spreading information
in a fair way. This assumption is however rather unrealis-
tic in the real word. Information spreading agents may be,
and probably mostly are, purely efficiency-oriented and not
particularly interested in choosing fair seeding strategies.

In this work we take a different approach to fairness.
We do not rely on the good will of the information spread-
ing entity, but instead modify the underlying social network
in such a way as to make efficiency-oriented information
spreading automatically fair. The modification of the net-
work may be done by the network owner or any other entity
interested in guaranteeing fairness. While different ways of
modifying the network are perceivable, we choose the pos-
sibly most natural one – we improve the network’s connec-
tivity by adding links. Here, we take the rather realistic ap-
proach to assume the information spreading entity to be in-
different rather than adversarial towards fairness.

Our Contribution. We formalize this problem as follows.
Given a social network G = (V,E), we want to add at most
b non-edges F ⊆ Ē = V 2 \ E to G in such a way that
the minimum community coverage is maximized when in-
formation is spread in G′ = (V,E ∪ F ) using a purely ef-
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ficiency oriented seeding strategy, i.e., a seed set S of size
k that maximizes the spread in G′, we measure this using
the function σ(·, F ). We call this the FIMAL problem – fair
influence maximization by adding links. We study the com-
plexity of solving FIMAL (Section The FIMAL Problem:
Making Spread Maximizers Fair) and provide plenty of ev-
idence that solving FIMAL is challenging, both exactly and
approximately. Maybe most importantly, we show that it is
unlikely to be able to find an α-approximation to the optimal
solution, for any α ∈ (0, 1], even when having access to an
oracle that solves an NP-complete problem. We furthermore
show that FIMAL remains NP-hard for constant b or k (in
the latter case even to be approximated).

We thus turn to study a second problem (Section The
FIMg

AL Problem: Towards Fairness in Practice) that is pos-
sibly practically better motivated in the first place – the
FIMg

AL problem: Here instead of assuming that the effi-
ciency oriented entity uses maximizing sets to spread infor-
mation, we assume it to employ the greedy algorithm. This is
a quite realistic assumption as the problem of finding a max-
imizing set is NP-hard, while the greedy algorithm can be
used in order to obtain a 1− 1/e− ε-approximation for any
ε ∈ (0, 1) w.h.p. in poly(n, ε−1) time, i.e, polynomial time
in n = |V | and ε−1. Even more, this approximation guar-
antee is essentially optimal (Kempe, Kleinberg, and Tardos
2015). Multiple implementations of the greedy algorithm for
IM exist (e.g., (Tang, Xiao, and Shi 2014; Tang, Shi, and
Xiao 2015)) and they have been shown to be extremely ef-
ficient in practice. We observe that, in contrast to FIMAL,
the FIMg

AL problem is polynomial time solvable when b is
a constant – exactly in the (unrealistic) case of determinis-
tic instances and up to an arbitrarily small additive error in
the probabilistic case. While this highlights the difference
between the two problems, the proposed algorithm is essen-
tially a brute-force algorithm and is thus not promising in
practice. We complement the finding of this algorithm for
the special case of constant k with a lower bound showing
that it is NP-hard to provide any approximation algorithm.
We then propose a set of algorithms for FIMg

AL and evaluate
them against each other in a first experiment in Section Ex-
periments. We then take the best performing algorithm for
FIMg

AL and, in a second experiment, compare the resulting
fairness (i.e., fairness achieved by the greedy algorithm after
adding the proposed non-edges to the graph) with competi-
tor algorithms that choose seeds as to optimize fairness. We
observe that already after adding very few edges to graphs
with thousands of nodes, the fairness achieved by our al-
gorithm outperforms the fairness achieved by the fairness-
tailored algorithms. Maybe surprisingly, this even holds for
algorithms that optimize ex-ante fairness.

We summarize our theoretical results for FIMAL and
FIMg

AL in Table 1 together with references to the respective
statements in later sections. Due to space limitation some
proofs are deferred to the full version (Becker, D’Angelo,
and Ghobadi 2023).

Related Work. There is a rich set of related works in this
area, so we are able to summarize only the results most re-
lated to our work. Fish et al. (2019) were the first to study

general constant b constant k

FIMAL

Σp
2-hard

[Thm. 0.4]
Σp

2-hard to
α-approx.
[Thm. 0.5]

NP-hard
[Thm. 0.7]

NP-hard to
α-approx.
[Thm. 0.6]

FIMg
AL

NP-hard to
α-approx.
[Cor. 0.9]

- poly. time
(determ.)
[Obs. 0.8]
- ε-approx.

(prob.)
[Lem. 0.11]

NP-hard to
α-approx.
[Cor. 0.9]

Table 1: Summary of our complexity results. The number α
can be any factor in (0, 1].

the maximin criterion in influence maximization w.r.t. single
nodes. Tsang et al. (2019) study the maximin criterion w.r.t.
groups. Becker et al. (2022) also consider the maximin cri-
terion for groups, but allow probabilistic seeding strategies.
Stoica and Chaintreau (2019) analyze the fairness achieved
by standard algorithms for influence maximization.

There are several works in which the authors add links
to the network, however they do so with a different objec-
tive. Both Castiglioni, Ferraioli, and Gatti (2020) and Corò,
D’Angelo, and Velaj (2021) study the problem of adding
edges to a graph in order to maximize the influence from
a given seed set in different models of diffusion. D’Angelo,
Severini, and Velaj (2019) study the problem of adding a
set of edges incident to a given seed set with the same aim.
Wu, Sheldon, and Zilberstein (2015) consider also different
intervention actions than just adding edges, e.g., increasing
the weights of edges. Khalil, Dilkina, and Song (2014) study
both the edge addition and deletion problems in order to
maximize/minimize influence in the linear threshold model.

Swift et al. (2022) introduce a problem to suggest a set
of edges that contains at most k edges incident to each node
to maximize the expected number of reached nodes while
satisfying a fairness constraint (reaching each group in the
network with the same probability). Garimella et al. (2017)
address the problem of recommending a set of edges to min-
imize the controversy score of the graph. Tong et al. (2012)
transform the edge addition/deletion problem to the prob-
lem of maximizing/minimizing the eigenvalue of the adja-
cency matrix. Amelkin and Singh (2019) propose an edge
recommendation algorithm to disable an attacker that aims
to change the network’s opinion by influencing users.

Preliminaries
For an integer k, we denote with [k] the set of integers from
1 to k. We say that an event holds with high probability
(w.h.p.), if it holds with probability at least 1 − n−α for a
constant α that can be made arbitrarily large.

Information Diffusion. Given a directed graph G =
(V,E,w) with n nodes V , edge set E, and edge weight
function w : V 2 → [0, 1], we use the Independent Cascade
model (Kempe, Kleinberg, and Tardos 2015) for describing
the random process of information diffusion. For an initial
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seed set S ⊆ V the spread σ(S) from S is the expected num-
ber of nodes that are reached from S in a random live-edge
graph which is constructed as follows. Every node v inde-
pendently picks a triggering set Tv by letting each u in its
set of in-neighborsNv be in Tv independently with probabil-
ity we, where e = (u, v). We then let EL :=

⋃
v∈V {(u, v) :

u ∈ Tv} and we callL = (V,EL) a random live-edge graph.
We then define ρL(S) as the set of nodes reachable from S
in L and the expected number of nodes reached from S is
σ(S) := E[|ρL(S)|], where the expectation is over the ran-
dom generation of the live-edge graph L. We furthermore
define σv(S) := E[1v∈ρL(S)] = Pr[v ∈ ρL(S)] for ev-
ery node v ∈ V , i.e., σv(S) is the probability of v being
reached from S. For a set (or group) of nodes C ⊆ V , we let
σC(S) := 1

|C|
∑
v∈C σv(S) be the group coverage of C.

When the edge probabilities belong to {0, 1}, we refer to
the instance as the deterministic case, in this case σ(S) is the
(deterministic) number of nodes reachable from seeds S in
G. In the general case, it is not feasible to compute σ(S) via
all live-edge graphs L, instead a (1 ± ε)-approximation of
σ(S) can be obtained w.h.p. by averaging over poly(n, ε−1)
many live-edge graphs L, see, e.g., Proposition 4.1 in the
work of Kempe, Kleinberg, and Tardos (2015). Similarly,
σv(S) (and thus also σC(S)) can be approximated w.h.p.,
however, only to within an additive error of ±ε by aver-
aging over poly(n, ε−1) many live-edge graphs, see, e.g.,
Lemma 4.1 in the work of Becker et al. (2022).

Non-Edges and Spread with Added Edges. We let Ē :=
(V × V ) \ E denote the set of non-edges in G. For a set of
non-edges F ⊆ Ē and a set of seed nodes S ⊆ V , we define
σ(S, F ) as the expected number of nodes reached from S in
the graph G′ = (V,E ∪ F ) that results from adding F to
G. This is the reason why we have defined the edge weight
function also w.r.t. non-edges above. Similarly, for a node
v ∈ V , σv(S, F ) is the probability that v is reached from
S in G′ and, for a community C ⊆ V , we define σC(S, F )
to be the average probability of nodes in C being reached
from S in G′. We remark that also these functions cannot be
computed exactly but only approximated in the same way as
their counterparts without added edges.

The FIMAL Problem: Making Spread
Maximizers Fair

Problem Definition. Consider a directed weighted graph
G = (V,E,w) and let C be a community structure, i.e.,
m non-empty communities C ⊆ V , and let k and b be
two integers. For a set of non-edges F ⊆ Ē, we define
M(F, k) := argmaxS⊆V {σ(S, F ) : |S| ≤ k} to be the
set of size k maximizers to σ(·, F ). We are now ready to
formally define the FIMAL problem motivated above:

max
F⊆Ē:|F |≤b

{
τ : min

C∈C
σC(S, F ) ≥ τ, ∀S ∈M(F, k)

}
.

We denote with optAL(G, C, b, k) the optimum of FIMAL.
Clearly, our objective in FIMAL is to find a set of at most
b non-edges F ⊆ Ē, that, when added to G, maximizes the
minimum community coverage when information is spread

in a purely “efficiency-oriented” way, i.e., from a set of at
most k seed nodes that is chosen such that the set func-
tion σ(·, F ) is maximized. The motivation behind study-
ing FIMAL is to, e.g., as the network owner, change the
structure of a social network in such a way that an efficiency-
oriented entity that wants to spread information in G auto-
matically spreads information in a more fair way.

In what follows, we give several hardness and hardness of
approximation results for FIMAL. We start by showing that
the decision version of the general FIMAL problem is Σp2-
hard. We even show that it is unlikely that FIMAL can be
approximated to within any factor. We then turn to special
cases of FIMAL where either b = 1 or k = 1 and show that
the problem remains NP-hard also in these special cases –
for k = 1 even hard to approximate to within any factor.

For better comprehensibility, we first note that in the
the decision version of FIMAL, in addition to the graph
G = (V,E), the communities C, and the integers b, k, we
are given a threshold t and the task is to decide if there ex-
ists F ⊆ Ē with |F | ≤ b such that for all S ∈ M(F, k):
minC∈C σC(S, F ) ≥ t.

Σp2-Hardness. We start by recalling the definition of the
complexity class Σp2.

Definition 0.1 (Definition 5.1 in (Arora and Barak 2009)).
The class Σp2 is defined to be the set of all languages L
for which there exists a polynomial-time Turing machine
M and a polynomial q such that x ∈ L if and only if
∃u ∈ {0, 1}q(|x|) : ∀v ∈ {0, 1}q(|x|) : M(x, u, v) = 1.1

We next introduce the Σ2 SAT problem which is Σp2-
complete, see, e.g., Exercise 1 in Chapter 5 of the book by
Arora and Barak (2009).

Definition 0.2 (Example 5.6 in (Arora and Barak 2009)).
Given a boolean expression φ(X,Y ) in 3-CNF with vari-
ables X = (x1, . . . , xν) and Y = (yν+1, . . . , yµ), the
Σ2 SAT problem entails to decide if ∃x∀y : φ(x, y) = >,
where x : X → {0, 1} and y : Y → {0, 1} are assignments
to the variables X and Y , respectively.

For ease of presentation, we assume the indices of Y to
start at ν + 1, such that indices of X and Y are disjoint.
Our goal now is to show that the decision version of FIMAL

is Σp2-hard. We will describe a reduction from Σ2 SAT to
the decision version of FIMAL. We assume that φ(X,Y )
contains m clauses φ1, . . . , φm and for a clause φr we call
r(s), s ∈ [3], the indices of the three variables corresponding
to φr’s three literals (in arbitrary fixed order).

Given an instance of Σ2 SAT, we create an instance
(G, C, b, k, t) of the decision version of FIMAL as follows,
see Fig. 1 for an illustration. Fix a constant M := µ + ν +
6m+ 1. The node set V of G consists of

• U = {q, P}, where P = p1, . . . , pM−1,
• V ∃ = {vi, v̄i : i ∈ [ν]} and V ∀ = {vj , v̄j , Lj : j ∈

[µ] \ [ν]}, where Lj = lj,1, . . . , lj,M−2, and

1Equivalently, see, e.g., Theorem 5.12 and Remark 5.16 in the
same book, Σp

2 can be defined as the set of all languages that can
be decided by a non-deterministic Turing machine with access to
an oracle that solves some NP-complete problem.
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v1

vν

v̄1

v̄ν

...

Cm+1

Cm+ν

V ∃

vν+1 v̄ν+1

Lν+1

vµ v̄µ

Lµ

...

V ∀

w1
1 w1

2̄ w1
3 w1

1̄ w1
2 w1

3̄

wm
1 wm

2 wm
3̄ wm

1̄ wm
2̄ wm

3

C1

Cm

W

...

Figure 1: Construction of G from a Σ2 SAT instance. Only
the edges to the nodes corresponding to the first clause φ1

are drawn. All drawn edges have weight 1. The only edges
that are not in G are the ones from q to V ∃.

• W = {wr1, wr1̄, w
r
2, w

r
2̄, w

r
3, w

r
3̄ : r ∈ [m]}.

The edge set E consists of

• Evar := {(vr(s), wrs), (v̄r(s), wrs̄) : s ∈ [3], r ∈ [m]},
• EL that consists of all edges from the nodes vj , v̄j to all

nodes v ∈ Lj , for j ∈ [µ] \ [ν],
• EP that consists of edges from q to all nodes in P , and
• Z := V 2 \ (Evar ∪ EL ∪ EP ∪ E(q, V ∃)), where
E(q, V ∃) := {(q, v) : v ∈ V ∃}.

We note that as a result Ē = E(q, V ∃). The edge weight
function is defined as we = 0 for all edges e ∈ Z and
we = 1 otherwise. The community structure C consists of:
(1) communities C1, . . . , Cm, where each Cr is of cardinal-
ity 3 and for s ∈ [3], wrs ∈ Cr if xr(s) ∈ φr (or yr(s) ∈ φr)
and wrs̄ ∈ Cr if x̄r(s) ∈ φr (or ȳr(s) ∈ φr); and (2) com-
munities Cm+1, . . . , Cm+ν , with Cm+i = {vi, v̄i} for each
i ∈ [ν]. We set k = µ+ 1, b = ν and t = 1/3.

Our goal is now to show that the Σ2 SAT instance is a
yes-instance if and only if the constructed FIMAL instance
is. We first need the following lemma.

Lemma 0.3. Let F ⊆ Ē = E(q, V ∃) with |F | ≤ ν. It holds
that S ∈M(F, µ+1) if and only if q ∈ S and S∩{vj , v̄j} 6=
∅ for all j ∈ [µ] \ [ν].

We are now ready to prove the theorem.

Theorem 0.4. The decision version of FIMAL is Σp2-hard
even in the deterministic case.

Proof. We show that the Σ2 SAT instance is a yes-instance
if and only if the constructed FIMAL instance is.

(⇒) Assume that the Σ2 SAT instance is a yes-instance,
i.e, there exists an assignments x to the variables X such
that for all assignment y to the variables Y , it holds that
φ(x, y) = >. We will now show that there exists F ⊆ Ē
with |F | ≤ ν such that for all S ∈ M(F, µ + 1), it holds
that minC∈C σC(S, F ) ≥ 1/3. Let F ⊆ Ē = E(q, V ∃) be

equal to the set of edges from q to V ∃ that correspond to
the assignment x. Now, let S ∈ M(F, µ + 1) be arbitrary.
It then follows using Lemma 0.3 that S = {q} ∪ Ṡ, where
Ṡ corresponds to an assignment y of Y . As φ(x, y) = > it
follows that, for every clause φr at least one literal is true,
thus for every community Cr with r ∈ [m], at least one
node w ∈ Cr is reached and hence σCr

(S, F ) ≥ 1/3. For
communities Ci with i ∈ [m + 1,m + ν], we obtain that
σCi(S, F ) ≥ 1/2, as F corresponds to an assignment and S
contains q according to Lemma 0.3.

(⇐) Now, assume that the FIMAL instance admits a solu-
tion F ⊆ Ē with |F | ≤ ν such that for all S ∈M(F, µ+1),
it holds that minC∈C σC(S, F ) > 0. Notice that σC(S, F ) >
0 for every S ∈ M(F, µ+ 1) together with Lemma 0.3 im-
plies that F consists of a set of edges to V ∃ that corresponds
to an assignment. Let now y be an arbitrary assignment to Y
and let S be the set containing q and all nodes from V ∀ that
correspond to the assignment y. Again using Lemma 0.3 it
follows that S ∈ M(F, µ + 1) and thus σCr

(S, F ) > 0 for
all r ∈ [m]. This means that at least one node in every com-
munity Ci is reached or equivalently at least one literal in
every clause φr is true in the assignments x and y. It follows
that φ(x, y) = >.

From the same reduction, we can even conclude that it
is unlikely to find an arbitrary approximation to FIMAL as
shown in the next theorem. The class ∆p

2 is the class of
all languages decided by polynomial-time Turing Machines
that have access to an oracle for some NP-complete prob-
lem. It is widely believed that Σp2 and ∆p

2 are distinct (see
Section 17.2 in (Papadimitriou 1994)).

Theorem 0.5. Let α ∈ (0, 1]. If computing an α-approxi-
mation to FIMAL is in ∆p

2, then Σp2 = ∆p
2.

Still Hard Special Cases. While we have shown above
that the general problem is Σp2-hard, we will now show that
not even in the apparently simple case where k = 1, we can
hope to find any approximation unless P = NP.

Theorem 0.6. For any, α ∈ (0, 1], it is NP-hard to approx-
imate FIMAL to within a factor of α, even in the determin-
istic case and if k = 1.

A natural next question is whether the problem remains
hard also if b = 1. We show that this is the case:

Theorem 0.7. The decision version of FIMAL is NP-hard
even in the deterministic case and if b = 1.

The FIMg
AL Problem: Towards Fairness in

Practice
Problem Definition. We have seen a lot of evidence above
that FIMAL is intractable. We thus continue by proposing an
alternative problem that not only turns out to be more com-
putationally tractable, but also is possibly practically bet-
ter motivated in the first place in the following sense: The
problem of finding a set of at most k nodes that maximizes
σ(·, F ) is however an NP-hard optimization problem and
thus it is unrealistic to assume the entity to spread informa-
tion using a maximizing set. Instead what is frequently used
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in practice for the computation of an efficient seed set is the
greedy algorithm. In fact, the choice of the greedy algorithm
is also well-founded in theory, as, for a fixed set of non-
edges F , the set function σ(·, F ) is monotone and submod-
ular and thus one is guaranteed to achieve an essentially op-
timal approximation factor of 1− 1/e− ε for any ε > 0, see
the work of Kempe, Kleinberg, and Tardos (2015). Hence,
an optimization problem that is practically better motivated
than FIMAL, assumes that the efficiency-oriented entity, in
order to spread information, uses the greedy algorithm for
computing the seed set. The greedy algorithm for σ(·, F ) is
however a randomized algorithm, as it relies on simulating
information spread using a polynomial number of live-edge
graphs (or reverse reachable (RR) sets, depending on the im-
plementation). It becomes thus necessary that we consider
the output of the algorithm to be a distribution over seed sets
of size k, rather than just a single set. For a set of non-edges
F ⊆ Ē and an integer k, let us denote this distribution with
p(F, k). We then define the FIMg

AL problem as:

max
F⊆Ē:|F |≤b

{
τ : ES∼p(F,k)[σC(S, F )] ≥ τ ∀C ∈ C

}
.

Intuitively, our goal in the optimization problem FIMg
AL is

to find a set of at most b non-edges F ⊆ Ē, that, when added
to G, maximizes the minimum community coverage (in ex-
pectation) when information is spread using the greedy algo-
rithm – a quite realistic assumption. We assume the greedy
algorithm to break ties arbitrarily, but consistently.

Here, we do not assume to have access to p(F, k), not
even for one set F , as it would generally require exponential
space to be encoded. Instead, we assume to have access to
the greedy algorithm in an oracle fashion, i.e., for a given set
F , we can call the greedy algorithm on σ(·, F ) with budget k
and get a set S. One can then show using an easy Hoeffding
bound argument, see below, that ES∼p(F,k)[σC(S, F )] can
be approximated arbitrarily well w.h.p. for every F .

It is also worth mentioning that our approach can be ex-
tended to a setting where we want to be fair w.r.t. multiple
implementations of the greedy algorithm or even more gen-
erally to multiple implementations of multiple algorithms
(different from the greedy algorithm). This can be achieved
as follows. Assume that (pi)i∈[N ] are a priori-likelihoods of
using one of N different algorithms and assume pi(F, k) to
reflect the probability distribution of seed sets correspond-
ing to algorithm i. Then the distribution with pS(F, k) :=∑
i pi ·piS(F, k) for S ⊆ V reflects the distribution over seed

sets resulting from using all N algorithms. The only condi-
tion here, for our algorithmic results below to keep working,
is that the algorithms are polynomial time.

Polynomiality of Deterministic Case with Constant b.
We now first observe that in the deterministic case with con-
stant b, it is simple to solve the problem exactly in polyno-
mial time, simply by going through all at most

(
n2−m
b

)
≤

n2b possible sets of non-edges F , computing the determin-
istic set SF that the greedy algorithm outputs for max-
imizing σ(·, F ), and checking what is the value τF =
minC∈C σC(SF , F ). Then return the set F that achieves the
maximum τF . Although this seems trivial, we notice that

such an approach cannot work for FIMAL, for which we
showed that the problem remains NP-hard in the determin-
istic case even if b = 1, see Theorem 0.7.
Observation 0.8. There is a polynomial time algorithm to
compute an optimal solution to FIMg

AL in the deterministic
case when b is constant.

Hardness. In the language of parameterized complexity,
Observation 0.8 shows that the deterministic FIMg

AL prob-
lem belongs to the class XP when parameterized by b. A
natural question is therefore whether there exists an FPT
algorithm that solves or approximates FIMg

AL in determin-
istic instances. In fact, already Theorem 0.6 answers nega-
tively to this question as the proof shows a polynomial-time
reduction from the SET COVER problem to the deterministic
case of FIMg

AL in which b is equal to the size of a set cover
κ. As SET COVER is W[2]-hard w.r.t. κ, FIMg

AL does not
admit an FPT algorithm w.r.t. b, even in the deterministic
case, unless W[2] = FPT. Moreover, under the same con-
dition, no parameterized α-approximation algorithm exists
since the optimum of a FIMg

AL instance is strictly positive if
and only if there exists a set cover of size κ.

A natural next question is what happens for general b, but
with k = 1. The problem remains hard in this case. Consider
the instance constructed in the reduction in Theorem 0.6.
As k = 1 and as the instance is deterministic, it is clear
that the greedy algorithm, for any set F ⊆ Ē of non-edges,
simply computes a maximizing set of cardinality 1. Hence
the following statement can be shown in the same way as in
the proof of Theorem 0.6: there exists a set cover S of size at
most κ if and only if there exists a set of non-edges F ⊆ Ē
with |F | ≤ b, such that minC∈C ES∼p(F,k) σC(S, F )] ≥ 1.
This yields the following corollary to Theorem 0.6.
Corollary 0.9. For any α ∈ (0, 1], it is NP-hard to approxi-
mate the FIMg

AL problem to within a factor of α, even in the
deterministic case and if k = 1.

As mentioned above, we will see below that FIMg
AL for

general constant b turns out to be arbitrarily well approx-
imable. To prove this, we first turn back to the question of
approximating ES∼p(F,k)[σC(S, F )] for a fixed F .

Approximating p(F, k). As mentioned above, we do not
assume access to p(F, k), instead we show that, using the
greedy algorithm in an oracle fashion, we can approxi-
mate ES∼p(F,k)[σC(S, F )] arbitrarily well using a Hoeffd-
ing bound. We first recall that already σC cannot be evalu-
ated exactly but has to be approximated using poly(n, ε−1)
many samples of live-edge graphs.
Lemma 0.10. Given an instance (G, C, b, k) of FIMg

AL with
constant b, one can in poly(n,m, ε−1) time, compute func-
tions fC such that, w.h.p., |fC(F )−ES∼p(F,k)[σC(S, F )]| ≤
ε for all C ∈ C and F ⊆ Ē with |F | ≤ b. Here m = |C|.
General Approximation for Constant b. The above
lemma enables us to provide a polynomial time algorithm
for FIMg

AL when b is constant that finds a set F ⊆ Ē
that is ε-close to optimal (in an additive sense) w.h.p. Af-
ter proving the above lemma, the idea is simple and similar
to the deterministic case: Again, go through all at most n2b
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possible sets of non-edges F , compute ε/2-approximations
(fC(F ))C∈C as in Lemma 0.10, and return the set with max-
imum value τF = minC∈C fC(F ). This set is an additive
ε-approximation of the maximizing set F ∗ (using the ap-
proximation guarantee once for F and once for F ∗).
Lemma 0.11. Let ε ∈ (0, 1), there is a polynomial time al-
gorithm to compute an additive ε-approximation to the opti-
mal solution of FIMg

AL when b is constant.

Practical Algorithms. For the case with general budget b,
recall that the problem is in-approximable unless P = NP
according to Corollary 0.9. We still propose several algo-
rithms in this paragraph that perform well in practice as we
will show later on. All our algorithms are of a greedy flavour
and based on restricting to the evaluation of increments of
non-edges that seem promising to improve fairness. In the
following, we give the informal description of the methods.
grdy al. The algorithm that, starting with F = ∅, in
b iterations, chooses the non-edge e into F that maxi-
mizes the increment minC ES∼p(F,k)[σ(S, F ∪ {e})] −
minC ES∼p(F,k)[σ(S, F )]. For efficiency we restrict to
evaluate only non-edges that are (1) incident to Sp, the
union over all sets with positive support in p(F, k), and
(2) are inter-community edges. Note that at the beginning
of each iteration, we recompute p(F, k) as F changes.

to minC infl. The algorithm that, starting from the
empty set F = ∅, adds the non-edge e = (u, v) ∈ Ē \ F
to F that connects a node from Sp with a node that maxi-
mizes f(e) := PrS∼p(F,k)[u ∈ S]·we·ES∼p(F,k)[σC̄(S∪
{v}, F )], where C̄ is the community of minimum cover-
age. The rationale being to choose the non-edge that con-
nects a seed node with a node that has large influence in
the community C̄ taking into account both the probabil-
ity that u is a seed and the edge weight we.

to minC min. The algorithm that, starting from the empty
set, adds a non-edge to the node v̄ with minimum proba-
bility of being reached in the community that currently
suffers the smallest community coverage. Among all
these non-edges we choose the non-edge (u, v̄) that max-
imizes the product PrS∼q[u ∈ S] · w(u,v̄).

We also use two techniques in order to speed up our imple-
mentations: (1) a pruning technique for grdy al and (2)
a way to update RR sets rather than recompute them from
scratch after adding edges.

Experiments
In this section, we report on two experiments involving the
FIMg

AL problem. In the first experiment, we compare the
algorithms presented above in terms of quality and run-
ning time. In a second experiment, we evaluate the best
performing algorithm against other fairness-tailored seed-
ing algorithms. We show, for several settings, that already
adding just a few edges can lead to a situation where purely
efficiency-oriented information spreading becomes automat-
ically fair.2 We proceed by describing the experimental
setup. We proceed by describing the experimental setup.

2https://github.com/sajjad-ghobadi/fair adding links.git

Figure 2: Results Experiment 1: Synthetic instances (k =
25, n = 500, communities induced by gender and region).

Experimental Setting. In our experiments we use ran-
dom, synthetic and real world instances. (1) Random in-
stances are generated using the Barabasi-Albert model con-
necting newly added nodes to two existing nodes. (2) The
synthetic instances are the ones used by Tsang et al. (2019).
(3) We use similar real world instances as Fish et al. (2019).
For random and synthetic instances we select edge weights
uniformly at random in the interval [0, 0.4], and in the
interval [0, 0.2] for the real world instances (other than
youtube). For youtube, we choose the edge weights
from the interval [0, 0.1]. We choose the non-edge weights
uniformly at random from the interval [0, 1]. We consider
different community structures: (1) Singleton communities:
each node has its own community. (2) BFS communities:
for every i ∈ [m], we generate a community Ci of size n/m
using a breadth first search from a random source node (we
continue this process if the size of a community is less than
n/m). (3) Community structures given for the synthetic net-
works and some of the real world networks.

We repeat each algorithm 5 times per graph. For ran-
dom and synthetic instances, we average in addition over
5 graphs, resulting in 25 runs per algorithm. The error-bars
in our plots represent 95% confidence intervals. We use the
TIM implementation for IM by Tang, Xiao, and Shi (2014)
in order to implement the greedy algorithm for IM. The algo-
rithms grdy al, to minC infl, and to minC min are
implemented in C++ and were compiled with g++ 7.5.0.
All experiments were executed on a compute server run-
ning Ubuntu 16.04.5 LTS with 24 Intel(R) Xeon(R) CPU
E5-2643 3.40GHz cores and a total of 128 GB RAM.

Experiment 1. In addition to the three algorithms de-
scribed in the previous section, we evaluate the following
two base lines: random: the algorithm that chooses b non-
edges uniformly at random, and max weight: the algo-
rithm that chooses the b non-edges of maximal weight. The
results can be found in Fig. 2 for the synthetic instances.
We observe that, despite the pruning approach, grdy al’s
running time is the worst. Furthermore, the fairness that it
achieves is worse than the one of to minC infl. We thus
exclude grdy al from further experiments. In Fig. 3, we
can see the results for the real world instance ca-GrQc.
We observe that the running times of both algorithms
to minC infl and to minC min are comparable, while
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Figure 3: Results Experiment 1: ca-GrQc with BFS com-
munities (m = 10), k = 20.

Figure 4: Results Experiment 2: Random instances (k = 25,
n = 200, singleton communities).

to minC infl achieves better values of fairness. We thus
choose to minC infl as the best performing algorithm as
a result of this experiment.

Experiment 2. The goal of the second experiment is to
analyze how many links we need to add in order to make
the standard greedy algorithm for IM satisfy similar or bet-
ter fairness guarantees than fairness-tailored algorithms. To
this end, we compare our method to minC infl with the
following competitors: grdy im, the standard greedy algo-
rithm for IM (we use the implementation of Tang, Xiao, and
Shi (2014)) serves mainly as a baseline; grdy maxmin,
the greedy algorithm that iteratively selects k seed nodes to
maximize the minimum community coverage; myopic, a
simple heuristic proposed by Fish et al. (2019) that itera-
tively chooses the node with minimum probability of being
reached as seed; mult weight, the multiplicative weights
routine for the set-based problem of Becker et al. (2022);
moso, a multi-objective submodular optimization approach
proposed by Tsang et al. (2019) (we choose gurobi as
solver (Gurobi Optimization, LLC 2022)).

We note that the algorithms mult weight and moso
are designed to compute distributions over seed sets and
nodes, respectively, and thus they can be used to obtain both
ex-ante and ex-post fairness guarantees. We defer the reader
to the work of Becker et al. (2022) for details regarding prob-
abilistic seeding and ex-ante guarantees. Hence, for these
two algorithms we include both there ex-post and ex-ante
values in our evaluations. It is worth pointing out that is
much easier (especially in settings with many communities)

Figure 5: Results Experiment 2: Real world graphs with BFS
communities (m = 10) for arena, ca-GrQc, ca-HepTh,
irvine and real communities for email-Eu-core and
youtube, k = 20.

to achieve good values ex-ante rather than ex-post.
We show the results for the random instances in Fig. 4.

Already for small values of b, i.e., after adding just a few
edges, our algorithm surpass all ex-post fairness values of
the competitors. Even better and maybe surprisingly, our al-
gorithm also achieves ex-post values higher than the ex-ante
values of mult weight and moso. We exclude the algo-
rithms grdy maxmin and moso from experiments with the
real world instance as they perform the worst in terms of run-
ning time. We turn to the real world instances, see Fig. 5, on
which we evaluate our algorithm for three fixed values of
b = 10, 20, 50. We observe that after adding only 50 edges,
we obtain the best (or comparable to the best) fairness values
on all instances.

Conclusion
We studied two optimization problems with the goal of
adding links to a social network such as to make purely
efficiency-oriented information spreading automatically fair.
In the first problem FIMAL, our goal is to add at most b
non-edges F to the graph such that the minimum commu-
nity coverage σC(S, F ) is maximized w.r.t. maximizing sets
S of size at most k to spread information. We showed several
hardness and hardness of approximation results for FIMAL.
Maybe most importantly, the decision version of FIMAL is
Σp2-hard even in the deterministic case and remains NP-hard
even if b = 1 or k = 1 (in the latter case even to approximate
within any factor). We thus proposed to study a second opti-
mization problem FIMg

AL that entails to add at most b non-
edges F to the graph such that the minimum expected com-
munity coverage is maximized when information is spread
using the greedy algorithm for influence maximization. As
we observed, also this problem remains NP-hard to approx-
imate to within any factor if k = 1. On the other hand, in
contrast to FIMAL, FIMg

AL becomes polynomial time −ε-
approximable if b is a constant. We then proposed several
heuristics for FIMg

AL and evaluated them in an experimen-
tal study. Lastly, we conducted an experiment showing that
the greedy algorithm for IM achieves similar or even better
levels of fairness than fairness-tailored algorithms already
after adding a few edges proposed by our algorithm.
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mizing the Spread of Influence through a Social Network.
Theory Comput., 11: 105–147.
Khalil, E. B.; Dilkina, B.; and Song, L. 2014. Scalable
diffusion-aware optimization of network topology. In The
20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, 1226–1235. ACM.

Papadimitriou, C. H. 1994. Computational complexity.
Addison-Wesley.
Stoica, A.; and Chaintreau, A. 2019. Fairness in Social In-
fluence Maximization. In FATES2019 – WWW2019 Com-
panion, 569–574. ACM.
Swift, I. P.; Ebrahimi, S.; Nova, A.; and Asudeh, A. 2022.
Maximizing Fair Content Spread via Edge Suggestion in So-
cial Networks. Proc. VLDB Endow., 15(11): 2692–2705.
Tang, Y.; Shi, Y.; and Xiao, X. 2015. Influence Maximiza-
tion in Near-Linear Time: A Martingale Approach. In SIG-
MOD2015, 1539–1554.
Tang, Y.; Xiao, X.; and Shi, Y. 2014. Influence maxi-
mization: near-optimal time complexity meets practical effi-
ciency. In SIGMOD2014, 75–86.
Tong, H.; Prakash, B. A.; Eliassi-Rad, T.; Faloutsos, M.; and
Faloutsos, C. 2012. Gelling, and melting, large graphs by
edge manipulation. In 21st ACM International Conference
on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012, 245–254.
ACM.
Tsang, A.; Wilder, B.; Rice, E.; Tambe, M.; and Zick, Y.
2019. Group-Fairness in Influence Maximization. In IJ-
CAI2019, 5997–6005.
Wu, X.; Sheldon, D.; and Zilberstein, S. 2015. Efficient al-
gorithms to optimize diffusion processes under the indepen-
dent cascade model. NIPS Work. on Networks in the Social
and Information Sciences, 1(1).

14126


