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Abstract

Modeling and shaping how information spreads through a
network is a major research topic in network analysis. While
initially the focus has been mostly on efficiency, recently fair-
ness criteria have been taken into account in this setting. Most
work has focused on the maximin criterion however, and thus
still different groups can receive very different shares of in-
formation. In this work we propose to consider fairness as a
notion to be guaranteed by an algorithm rather than as a cri-
terion to be maximized. To this end, we propose three opti-
mization problems that aim at maximizing the overall spread
while enforcing strict levels of demographic parity fairness
via constraints (either ex-post or ex-ante). The level of fair-
ness hence becomes a user choice rather than a property to
be observed upon output. We study this setting from various
perspectives. First, we prove that the cost of introducing de-
mographic parity can be high in terms of both overall spread
and computational complexity, i.e., the price of fairness may
be unbounded for all three problems and optimal solutions are
hard to compute, in some case even approximately or when
fairness constraints may be violated. For one of our problems,
we still design an algorithm with both constant approximation
factor and fairness violation. We also give two heuristics that
allow the user to choose the tolerated fairness violation. By
means of an extensive experimental study, we show that our
algorithms perform well in practice, that is, they achieve the
best demographic parity fairness values. For certain instances
we additionally even obtain an overall spread comparable to
the most efficient algorithms that come without any fairness
guarantee, indicating that the empirical price of fairness may
actually be small when using our algorithms.

Introduction
The internet and particularly online social networks play a
central role in how people acquire information nowadays,
be it information about political, social, financial, or cul-
tural matters. Several research fields, including mathemat-
ics, physics, and computer science, have found interest in
analyzing how information spreads through networks. Be-
sides abstractions to (probabilistically) model information
spread, the main contributions of computer science in this
context have been algorithmic ones. Among them, probably
most importantly, the question on how to spread information
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efficiently through a network. More precisely, given a social
network and a probabilistic model on how information prop-
agates through it, the main addressed question has been the
following: Which seed set of size at most k (an input param-
eter) to target such that the expected number of nodes that
obtain the information is maximized, when the information
spreads from the chosen seed set? This problem, called in-
fluence maximization, has received a lot of attention by com-
puter science researchers in diverse communities, including
algorithms (e.g. (Kempe, Kleinberg, and Tardos 2015; Borgs
et al. 2014; Sadeh, Cohen, and Kaplan 2020)), artificial intel-
ligence (e.g. (Wilder et al. 2018a; Yadav et al. 2018; Becker
et al. 2020)), and data and graph mining (e.g. (Cohen et al.
2014; Tang, Xiao, and Shi 2014; Tang, Shi, and Xiao 2015;
Chen and Teng 2017; Wu et al. 2019)). As a result the prob-
lem is well understood from many perspectives, among them
theoretical complexity, approximation algorithms, adaptiv-
ity, and practically efficient implementations.

As access to information via social networks may have a
big impact on our life, see, e.g. (Banerjee et al. 2013), re-
searchers have taken also fairness issues with respect to in-
formation spread into account, see the related work below
for a non-exhaustive list. In these works, the social network
is composed of individuals or groups of individuals (called
communities) and the goal is to provide similar information
access to all of them. In other words, the focus is not re-
stricted to the efficiency of the information spread, but rather
on assuring that each of the communities gets its fair share of
information (or coverage). Here, an essential question arises,
namely: What do we mean by fair? There is a large variety of
fairness notions (Barocas, Hardt, and Narayanan 2019) and
in fact different notions have been investigated also in this
scope, with the most common one being the maximin crite-
rion (Tsang et al. 2019; Fish et al. 2019; Becker et al. 2022).
Here, the goal is to develop algorithms that maximize the
minimum coverage of any community or individual (the spe-
cial case of singleton communities). In some works, where
the focus is on communities, this notion is also referred to
as group fairness or demographic parity. What all three pre-
viously mentioned works, have in common however is that
they consider fairness as a measure to be optimized, namely
via maximizing the minimum coverage.

This raises, however, a conceptual question. When max-
imizing the minimum coverage, we may still end up in a
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situation where the values of two groups differ a lot. More
precisely, consider an example with two groups, say C and
D. All the three mentioned approaches would prefer an out-
come where C gets a coverage of 0.5 while D gets a cover-
age of 1 over an outcome where both receive a coverage of
0.499. Now, while fairness is a debatable concept, the sec-
ond outcome may be considered more fair by many. In fact,
if we take a closer look at what is typically understood un-
der group fairness or demographic parity, for example in the
machine learning community, see, e.g., Definition 1 in Chap-
ter 2 in the book by Barocas, Hardt, and Narayanan (2019),
we observe that, demographic parity (also referred to as in-
dependence) is actually defined as equality in probability
of being selected conditioned on group membership. In the
above example, this is satisfied in the second outcome, but
far from being satisfied in the first. More fundamentally, the
following question arises. In all of these works fairness is
considered as a notion to be optimized. But is this the right
way of considering fairness? Is fairness not instead some-
thing that we want algorithms to guarantee, i.e., don’t we
want to restrict algorithms to satisfy certain levels of fair-
ness independent of their objective?

Our Contribution. In this work, we adopt a different and
more strict view on fairness, that is, we consider fairness as
a requirement that has to be ensured by the algorithm rather
than a notion to be maximized. In terms of the optimization
problems at hand, this results in fairness being taken into ac-
count via constraints instead of in the objective function, the
obvious advantage being that the resulting fairness violation
is strictly bounded. More precisely, we develop optimiza-
tion problems that aim to maximize the overall spread (or
coverage) while ensuring that the coverage of all groups is
identical, in this way enforcing demographic parity.

While such a strict fairness notion may easily result in in-
feasibility, we show how to bypass this problem by using
an approach popular in economics and computational so-
cial choice: we study also ex-ante fairness rather than just
ex-post fairness. This approach, that was first used in the
context of influence maximization by Becker et al. (2022),
allows probabilistic rather than deterministic solutions, i.e.,
distributions over seed sets instead of single sets. Then the
expected group coverage when a set is sampled according
to this distribution is considered instead of simply the group
coverage of a group from a single seed set. This approach
is not only useful for the purpose of feasibility, but instead
offers various advantages, see, e.g., (Brandl, Brandt, and
Seedig 2016; Aziz, Brandt, and Stursberg 2013; Bogomol-
naia and Moulin 2001; Katta and Sethuraman 2006). See
also the illustrative example of Machina (1989), where a par-
ent assigns an (indivisible) treat to one of two children.

It is clear that such a strict approach to fairness as adopted
here may lead to a big loss in efficiency, i.e., in overall
spread and possibly also in time complexity of respective al-
gorithms. One of our contributions, is to rigorously analyze
these two kinds of loss. We in fact prove in Section Influ-
ence Maximization under Demographic Parity that the price
of fairness may be unbounded in this context. We then pro-
ceed by studying the complexity of the proposed optimiza-

tion problems, more precisely their approximation proper-
ties. This includes both proving hardness of approximation
results, see Section Hardness Results, and developing an ap-
proximation algorithm, see Section Algorithms for iIMdp

and pIMdp. Due to space limitations, all proofs are deferred
to the full version (Becker, D’Angelo, and Ghobadi 2023).
Our study here explicitly includes bi-criteria approximation,
that is, we relax the fairness constraints or allow them to
be violated within a limited amount (multiplicatively or ad-
ditively). This permits us to propose algorithms that entitle
the user to choose the tolerated amount of fairness violation
freely instead of observing the fairness violation upon seeing
the output of the algorithm. We proceed by developing effi-
cient heuristics for the proposed problems and conclude with
a detailed experimental study on the performance of the de-
veloped algorithms both in terms of efficiency and fairness
in Section Experiments. For our experiments, we use ran-
dom, synthetic, and real-world data sets. Our experimental
study shows that although our theoretical results are mainly
pessimistic, our algorithms achieve a trade-off between fair-
ness and overall coverage and in some cases even achieve
similar coverage as state-of-the-art influence maximization
algorithms while guaranteeing fairness on top.

Related Work. Fish et al. (2019) were the first to study
the maximin criterion in influence maximization, they focus
on individual fairness and show NP-hardness as well as that
the problem is hard to approximate unless P = NP . Tsang
et al. (2019) study the maximin criterion and diversity con-
straints with respect to groups. They give an algorithm with
asymptotic approximation factor 1−1/e in the setting where
there are o(k log3 k) communities. The work that is probably
closest to ours is the one by Becker et al. (2022). Also this
work uses the maximin criterion for group fairness, rather
than demographic parity in the exact sense of its definition.
Still, similar to ours, this work allows probabilistic seeding
strategies.

Stoica and Chaintreau (2019) define “fairness in out-
reach” that is essentially equivalent to demographic par-
ity. Their work however does not introduce tailored algo-
rithms but is instead more focused on analyzing the fairness
achieved by standard algorithms for influence maximization.
Farnadi, Barbaki, and Gendreau (2020) propose a frame-
work for fair influence maximization that is based on mixed
integer linear programs (MILPs). Their framework, that is
unlikely to be applicable to large instances, captures various
notions of group fairness, including “equity”, which again
coincides with demographic parity. Ali et al. (2022) address
fairness in influence maximization within a time-critical set-
ting. The authors also consider fairness notions that are sim-
ilar to demographic parity, but instead of maintaining the
fairness constraints, they pass the group coverages through
some monotone concave function and include it in the ob-
jective. Other somewhat related works include (Gershtein,
Milo, and Youngmann 2021; Stoica, Han, and Chaintreau
2020; Anwar, Saveski, and Roy 2021; Rahmattalabi et al.
2021; Khajehnejad et al. 2020; Wang, Varol, and Eliassi-Rad
2021).
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Preliminaries
Information Diffusion. In the classical influence maxi-
mization setting, we are given a directed graph G = (V,E)
with |V | = n and edge weights {we ∈ [0, 1] : e ∈ E}.
We use the Triggering model (Kempe, Kleinberg, and Tar-
dos 2015) for describing the random process of information
diffusion. The Triggering model is a generalization of both
the Independent Cascade (IC) and Linear Threshold (LT)
models. For a seed set A ⊆ V , the spread σ(A) from A
is the expected number of nodes reached from A in a ran-
dom sample of triggering sets which is constructed as fol-
lows. Every node v ∈ V independently picks a triggering
set Tv among its in-neighbors Nv according to some distri-
bution. Let L = (Tv)v∈V be a possible outcome of sampled
triggering sets; L defines a live-edge graph GL = (V,EL),
where EL = {(u, v)|v ∈ V, u ∈ Tv}. Then ρL(A) is the set
of nodes reachable from A in GL and the expected spread
of A is σ(A) := EL[|ρL(A)|], where L denotes a random
live-edge graph. We also use the term overall coverage for
the expected fraction of reached nodes σ(A)/|V |. We obtain
the IC model from the Triggering model if, for each edge
(u, v), the node u is added to the Tv with probability wuv .
Differently, in the LT model each v picks at most one of its
in-neighbors u with probability w(u,v).

Approximation Algorithms. For N ∈ N, we use [N ] to
denote the integers from 1 to N . We will consider maxi-
mization problems of the form max{F (x) : x ∈ R and ∃γ :
Ai(x) = γ for all i ∈ [m]}, where R is a feasibility region,
the functions Ai : R → R≥0, for i ∈ [m], define a set of
(additional) constraints, and F : R → R≥0 is an objective
function. We consider approximation algorithms (possibly)
with constraint violation. Let α, β ∈ (0, 1] be real values.
Then, we say that x ∈ R is β-feasible if Ai(x) ≥ βAj(x)
for all pairs of i, j ∈ [m]. We say that x ∈ R is an (α, β)-
approximation if x is β-feasible and F (x) ≥ α opt, where
opt is the optimum value. We call an algorithm a (α, β)-
approximation algorithm, if it is a polynomial-time algo-
rithm whose output solutions are (α, β)-approximations.

Influence Maximization under Demographic
Parity

In the classical influence maximization problem (IM), given
a graph G and an integer k, the objective is to find a
set of k seeds that maximizes the expected spread, i.e.,
maxS∈S{σ(S)}, where S := {S ⊆ V : |S| ≤ k} is the
set of subsets of nodes of size at most k. We refer to the
optimal value of this optimization problem as opt(G, k).

Requiring Demographic Parity. In our setting, in addi-
tion to G and k, we are given a community structure C that
is a set of m non-empty communities C ⊆ V . Notice that
communities may neither be disjoint nor cover the whole
node set. Our goal now is to find a set S of size at most k
that maximizes the total spread while the fraction of reached
nodes in each community is the same among all commu-
nities, i.e., achieving perfect demographic parity. To make
this formal, we introduce σv(S) := PrL[v ∈ ρL(S)] as
the probability that node v is reached from S. Note that the

expected spread is the sum over all these probabilities, i.e.,
σ(S) = EL[|ρL(S)|] =

∑
v∈V σv(S). For a community

C ∈ C, we then denote by σC(S) := 1
|C| ·

∑
v∈C σv(S) the

average probability of nodes being reached in C or equiva-
lently this is the expected group coverage of C, i.e., the ex-
pected fraction of nodes from C that are reached. We are
now ready to formally define our first optimization problem,
we refer to it as IMdp, standing for influence maximization
under demographic parity:

max
S∈S

{
σ(S) : ∃γ : σC(S) = γ for all C ∈ C

}
. (IMdp)

For an instance, consisting of a graphG, communities C, and
an integer k, we call optS(G, C, k) the optimum of IMdp.

Fairness via Randomization. In addition to IMdp, we de-
fine optimization problems that permit randomized strate-
gies in the seed selection process rather than only determin-
istic ones, in an analogous way to what Becker et al. (2022)
did for the maximin criterion. Inspired by Becker et al., we
introduce two different probabilistic settings, a general one
and one that chooses seed nodes independently.

In the first problem, pIMdp, standing for probabilistic
influence maximization under demographic parity, feasible
solutions are distributions over node sets. Formally, we let
P := {p ∈ [0, 1]2

V

: 1T p = 1,
∑

S⊆V pS |S| ≤ k} be the
set of distributions over node sets of expected size at most
k and denote by S ∼ p the random process of sampling
S according to p ∈ P . Now, the goal in pIMdp is to find
the distribution p ∈ P that maximizes the expected number
of reached nodes, while ensuring that perfect demographic
parity is satisfied in expectation, i.e., that the expected prob-
ability to be reached is the same among all communities.
Formally, pIMdp is defined as

max
p∈P
{σ(p) : ∃γ s.t. σC(p) = γ for all C ∈ C}, (pIMdp)

where we extend set functions to vectors in a straightforward
way, i.e., for a set function f , we let f(p) := ES∼p[f(S)].
For an instance G, C, k, optP(G, C, k) is the optimum.

In the second probabilistic variant of IMdp, we restrict to
independent probability distributions, that is, in a feasible
solution each node is selected as a seed independently with
some probability in such a way that the expected size of the
seed set is at most k. Formally, we let I := {x ∈ [0, 1]n :
1Tx ≤ k} and, for x ∈ I , we denote with S ∼ x the pro-
cess of randomly generating a set S from x, where each i
is included in S independently with probability xi. We then
obtain independent probabilistic influence maximization un-
der demographic parity problem iIMdp as:

max
x∈I
{σ(x) : ∃γ s.t. σC(x) = γ for all C ∈ C}, (iIMdp)

where again for a set function f and a vector x ∈ I , we
let f(x) := ES∼x[f(S)]. Again, for an instance G, C, k, we
denote with optI(G, C, k) the optimum of iIMdp.

Finally, we note that Becker et al. (2022) refer to the two
variants of the above problems in their setting of the max-
imin criterion as set-based and node-based problem.
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Demographic Parity vs. Maximin. We proceed by giv-
ing an example that illustrates that considering the maximin
criterion as done by Becker et al. and demographic parity
in our strict sense can lead to drastically different outcomes.
More precisely, we construct an instance where the optimal
maximin solution suffers linear multiplicative violation in
demographic parity, while achieving an expected coverage
that is only around twice as good as a solution that achieves
perfect demographic parity. This is formalized below.
Lemma 0.1. Let ε > 0. There is an instance G, C, k with
n nodes, in which the optimal maximin strategy achieves an
overall expected coverage of 2 + ε, but suffers a violation in
demographic parity of (n−1)/(1+ε) = Θ(n). On the other
hand, optP(G, C, k) = (n+ 1)/(n− ε) = 1 + Θ(1/n).

Relationship between IMdp, pIMdp, and iIMdp. We first
observe that clearly every feasible solution of IMdp corre-
sponds to a feasible solution of iIMdp and pIMdp, respec-
tively. Furthermore, every feasible solution of iIMdp directly
corresponds to a feasible solution of pIMdp via the fol-
lowing transformation: For x ∈ I define the vector px as
pxS :=

∏
i∈S xi

∏
j∈V \S(1−xj), for S ⊆ V . Then, observe

that σ(x) = σ(px), px ∈ P , and σC(x) = σC(px), for any
C ∈ C. Hence, we obtain the following lemma.
Lemma 0.2. For every instance G, C, k, it holds that

optS(G, C, k) ≤ optI(G, C, k) ≤ optP(G, C, k).

A natural question is then whether a similar relation holds
also in the other direction. We observe that this is not
the case, optI(G, C, k) cannot be upper bounded in terms
of optS(G, C, k) multiplicatively and optP(G, C, k) not in
terms of optI(G, C, k). Formally:
Lemma 0.3. Assume information spread to follow the IC
model. There exist instances G, C, k s.t.

(i)
optS(G, C, k)

optI(G, C, k)
= 0, and (ii)

optI(G, C, k)

optP(G, C, k)
= 0

as well as (iii) optP(G, C, k)− optI(G, C, k) = Ω(n).

Price of Fairness. The price of (group) fairness is a
measure of loss in efficiency due to fairness. More pre-
cisely, for X ∈ {S, I,P}, we define PoFX(G, C, k)
as the ratio of the maximum coverage in the absence
of fairness constraints, i.e., opt(G, k) to the optima of
the corresponding problem involving demographic parity
fairness constraints, in other words, PoFX(G, C, k) :=
opt(G, k)/ optX(G, C, k). Due to Lemma 0.2, we have
the following relation PoFS(G, C, k) ≥ PoFI(G, C, k) ≥
PoFP(G, C, k). We proceed by showing that the PoF can
be unbounded for pIMdp and thus in all three cases.
Lemma 0.4. Assume that information spread follows the IC
model. For any even n > 0, there is an instance G, C, k s.t.
PoFX(G, C, k) = Ω(n) for X ∈ {S, I,P}.

Hardness Results
In this section, we give several hardness and hardness of ap-
proximation results for IMdp, pIMdp, and iIMdp.

Hardness of IMdp. We first show that it is NP -hard to
approximate IMdp to within any bounded factor. Indeed, we
prove two stronger and more general statements: One can-
not find in polynomial time a solution that approximates the
optimum of IMdp, even if we allow the fairness constraints
to be violated by a multiplicative or an additive term, unless
P = NP . We start with the multiplicative case.
Theorem 0.5. For any α ∈ (0, 1], β ∈ (0, 1], there is no
(α, β)-approximation algorithm for IMdp, unless P = NP .

The proof is via a reduction from SETCOVER. We now
turn to the additive case. For a given ε ∈ [0, 1), we say that
a seed set S is ε+-feasible if

∣∣σCi
(S) − σCj

(S)
∣∣ ≤ ε for

all Ci, Cj ∈ C, i 6= j. For α ∈ (0, 1] and ε ∈ [0, 1), an
(α, ε)+-approximation algorithm for IMdp produces an ε+-
feasible seed set S such that σ(S) ≥ α opt. Using a similar
reduction we show the following theorem.
Theorem 0.6. For α ∈ (0, 1], ε ∈ [0, 1), there is no (α, ε)+-
approximation algorithm for IMdp, unless P = NP .

Hardness of pIMdp and iIMdp. We prove the following
theorem, again via a reduction from SETCOVER.
Theorem 0.7. The pIMdp problem is NP-hard.

For iIMdp we show an ever stronger result via a reduc-
tion from MAXCOVERAGE: It cannot be approximated bet-
ter than within 1− 1/e, unless P = NP .
Theorem 0.8. There is no (α, 0)-approximation algorithm
for iIMdp for a constant α > 1− 1/e, unless P = NP .

Algorithms for iIMdp and pIMdp

We proceed with algorithms for iIMdp and pIMdp. First note
that it is not feasible to evaluate the functions σ and σC in-
volved in the optimization problems exactly. It is however
well understood that the functions can be approximated us-
ing sampling. For the following discussion, we simply as-
sume access to approximations σ̃ and σ̃C .

Approximation Algorithm for iIMdp. We start by giving
an approximation algorithm for iIMdp. Given the above dis-
cussion, we consider σ̃ and σ̃C instead of σ and σC :

max
x∈I
{σ̃(x) : ∃γ s.t. σ̃C(x) = γ ∀C ∈ C}. apx-ipIMdp

As discussed above, an (α, β)-approximation x for an in-
stance (G, C, k) of apx-ipIMdp approximates iIMdp by
adding a multiplicative error in the objective and an addi-
tive error in the fairness violation, that is it satisfies σ(x) ≥
(α − ε) optI(G, C, k) and σC(x) ≥ βσC′(x) − ε, for any
arbitrary small ε > 0. We can thus focus on giving an ap-
proximation algorithm for apx-ipIMdp. Formally, we prove:
Theorem 0.9. There exists a (1 − 1/e, 1 − 1/e)-
approximation algorithm for apx-ipIMdp.

We first note that the objective function of apx-ipIMdp

is not linear, since the probability of sampling a seed set S
from a distribution x ∈ I is

∏
i∈S xi

∏
i/∈S(1−xi). Our ap-

proach here is to approximate apx-ipIMdp by a linear pro-
gram (LP) of polynomial size. In our experimental study we
refer to the described algorithm as ind lp.
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Algorithms for pIMdp. In this paragraph, we present al-
gorithms for pIMdp that are based on greedy strategies and
solving a (comparatively) small linear program. We again
focus on the problem with the approximate functions σ̃ and
σ̃C and refer to it as apx-pIMdp (it is defined analogously
to apx-ipIMdp). Differently from apx-ipIMdp, the objective
function of apx-pIMdp is linear and hence it can be formu-
lated as a linear program by introducing a variable for each
seed set S ⊆ 2V . However, the size of such a linear program
would be Θ(2n), the dimension of P . Our approach here is
to restrict to a subset Q ⊆ P in such a way that the linear
program at hand becomes more tractable. More precisely,
the two heuristics that we propose are based on solving the
following linear program for two different choices of Q

max
p∈Q
{σ̃(p) : ∃γ s.t. σ̃C(p) = γ for all C ∈ C}. PQ

In the first heuristic, grdy grp+lp, we chooseQ by re-
stricting the set of non-zero variables to sets that either (1)
have a large coverage with respect to a certain community,
or (2) have a large overall coverage. Formally, Q := {p ∈
P : pS = 0 for all S /∈ S1∪S2}, where S1 = {Si : i ∈ [m]}
with Si = argmaxS∈V {σ̃Ci

(S) : |S| ≤ k}, S2 := {Ti : i ∈
{0} ∪ [2k]} with Ti := argmaxS∈S{σ̃(S) : |S| ≤ i}. Here
the choice of 2k in the definition of S2 is more or less arbi-
trary, the rationale being that due to submodularity of σ it is
unlikely that choosing a set of size twice the allowed expec-
tation leads to a profitable gain in overall spread. Clearly,
the idea behind this choice of Q is to provide the LP with
sufficiently many degrees of freedom to both achieve a high
overall coverage and a good coverage for each community.

In the second heuristic, maxmin+lp, we define Q :=
{p ∈ P : p = λ0 · 1∅ +

∑
i∈[m] λi1Si

+ λm+1q}, where
1S is the 2n-dimensional vector that is 1 at position S ⊆ V
and zero elsewhere, and q ∈ P is the distribution computed
by the algorithm of Becker et al. (2022) for the maximin
criterion. In other words, we restrict to probability distribu-
tions in P that are linear combinations of (1) a distribution
computed for the maximin criterion and (2) the degenerate
distributions of the empty set and the sets maximizing the
respective community coverage. The rationale of this choice
of Q is to profit from the efficiency of the maximin solution
but enabling the LP solver to improve the incurred viola-
tion in demographic parity by putting additional probability
on the deterministic distributions corresponding to under-
represented communities.

Experiments
In this section, we report on a detailed experimental study.
We evaluate a diverse set of algorithms for influence maxi-
mization in terms of their efficiency (both overall coverage
and run-time) and demographic parity fairness. 1 In our eval-
uation, we use random, synthetic, and real data sets.

Algorithms. In addition to ind lp, grdy grp+lp, and
maxmin+lp, our study includes the following competitors:
grdy im the greedy algorithm for IM,

1https://github.com/sajjad-ghobadi/demographic parity.git

grdy maxmin the algorithm that greedily maximizes the
minimum community coverage,

grdy prop a simple heuristic that greedily maximizes
σCi

for i ∈ [m] using k|Ci|/n seeds,
milp the MILP of Farnadi, Babaki, and Gendreau (2020),
moso an algorithm based on multi-objective submodular

optimization due to Tsang et al. (2019),
mult weight the multiplicative weights routine for the

set-based problem of Becker et al. (2022),
myopic a simple heuristic by Fish et al. (2019), and

uniform the uniform solution to iIMdp.

We refer to the original papers for details about moso and
mult weight.

The myopic heuristic, after choosing the node of max-
imum degree in the first iteration, always selects the node
with minimum probability of being reached. We note that
grdy maxmin, mult weight, moso, and myopic were
designed for the maximin criterion. We emphasize that
mult weight, ind lp, grdy grp+lp, maxmin+lp,
and uniform compute distributions and are thus designed
for achieving ex-ante guarantees, while the other algorithms
compute deterministic seed sets. For our algorithms from
the previous section we relax the strict demographic par-
ity constraints for some parameter η ∈ [0, 1) as follows.
For grdy grp+lp and maxmin+lp, we replace γ in
the demographic parity constraints in PQ by γ ± η for
η ∈ {0, x/16, x/8, x/4}, where x is the violation in demo-
graphic parity that grdy im suffers. For ind lp we do a
similar relaxation.

Instances. We use random, synthetic and real world
graphs. (1) Our random graphs are generated using the
Barabasi-Albert model with parameter m = 2, i.e., connect-
ing a newly added node to two existing nodes. (2) The syn-
thetic networks are the ones used by Tsang et al. (2019) that
go back to the work of Wilder et al. (2018b). Every node
in these networks is associated with some attributes (region,
ethnicity, age, gender and status) and nodes with the same
attributes are more likely to connect to each other. Each net-
work consists of 500 nodes and the attributes induce com-
munities. (3) We use the same set of real world instances
as Fish et al. (2019). We considered the largest weakly con-
nected component for all these graphs in order to make fair
coverage more achievable. We use the IC model with uni-
formly random weights in [0, 0.4] for the random and syn-
thetic networks and [0, 0.2] for real world instances.

We consider the following different community struc-
tures. (1) Singleton communities: each node forms its own
community. (2) Random communities: each node is as-
signed u.a.r. to a community. (3) BFS communities: for a
predefined number of communities m, each community of
size n/m is generated by a breadth first search from a ran-
dom source node (if the size of community does not reach
n/m, we pick a new random node and continue the process),
this results in rather connected communities. (4) Random-
overlap communities: for a given m, a node is, each with
probability 1/(m + 2), (i) in community Ci for i ∈ [m],
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Figure 1: (1) Random instances (k = 25, n = 200, singleton
communities), (2) synthetic instances (k = 25, n = 500,
communities induced by gender and region).

(ii) in no community, or (iii) in all m communities. (5) Lei-
denalg communities: communities detected by a common
algorithm for community detection (Traag, Waltman, and
van Eck 2019). (6) Given communities for the synthetic net-
works and for some of the real world instances.

Experimental Setting. As all evaluated algorithms are
randomized, we repeat each run 10 times per graph, for ran-
dom and synthetic graphs, we in addition average over 5
graphs, thus resulting in 50 runs per algorithm. In all our
2-dimensional plots, we also show averages of the projec-
tions onto each dimension together with 95% confidence in-
tervals. For algorithms that output distributions rather than
sets, i.e., giving ex-ante guarantees, we evaluate both their
overall coverage and their demographic parity violation in
expectation. We ran experiments with a large variety of pa-
rameter settings and, due to space limitations, can only re-
port on a subset of the experiments performed. In our plots
the overall (expected) coverage (as ratio of overall nodes) is
on the vertical axis while the violation in demographic par-
ity is on the horizontal axis. We note that a perfect algorithm
would achieve maximum overall coverage, while suffering
zero violation in demographic parity, thus ending up in the
top left of the plots.

Running Times. We measure the running times of all al-
gorithms on the random instances for increasing values of
n = 50, 100, 200. We exclude uniform as it takes con-
stant time and milp for n > 50 as it does not terminate
in less than 30 mins. grdy im, ind lp, and myopic are
fastest. As we will see, unfortunately, the fairness achieved
by grdy im and myopic is very poor. From the competitor
algorithms, grdy maxmin, milp and moso perform the
worst in terms of running times and as their fairness values
are not too good either, we exclude them from experiments
involving the real-world instances.

Results for Random and Synthetic Networks. We start
with the random networks, see the top of Figure 1. We ex-
clude milp from this and all further experiment as it does
not solve a single instance in less than 30 mins. All com-
petitor algorithms suffer a fairness violation of more than
0.75 and achieve a coverage between 0.35 and 0.45. In
the case of grdy im, there is a fairness violation of al-
most 1. Next, note that our algorithms that are restricted
to find perfectly fair solutions, i.e., grdy grp+lp 0,
maxmin+lp 0, and ind lp 0 obtain zero overall cover-
age. As we are in the setting of singleton communities, per-
fect demographic parity is a very strong requirement. In-
stead, if we use grdy grp+lp x/4 (maxmin+lp x/4),
where x is the violation of grdy im (here ≈ 1), we
still achieve 75% (67%) of grdy im’s coverage while suf-
fering a fairness violation of only 0.5. More generally,
grdy grp+lp and maxmin+lp allow for a trade-off be-
tween coverage and fairness. If the user is for example will-
ing to tolerate only a fairness violation of around 0.25, he
can use grdy grp+lp x/8 (or maxmin+lp x/8) and
would still achieve 41% (or 35%) of grdy im’s cover-
age. Note that the algorithm ind lp performs worse than
grdy grp+lp and maxmin+lp in terms of coverage with
similar fairness values.

For the synthetic data sets of Wilder et al. (2018b), see
the lower plot in Figure 1, we show results for the com-
munity structure induced by the attributes gender and re-
gion consisting of 15 communities of largely varying sizes.
The best competitor algorithm in terms of fairness violation
is uniform with a fairness violation of around 0.07, on
the other hand it achieves a coverage of only around 0.13.
The moso algorithm of Tsang et al. (2019) achieves a fair-
ness violation of around 0.13 while achieving a coverage of
around 0.18. The grdy im algorithm achieves the biggest
coverage of around 0.21, but suffers a huge fairness vio-
lation of around 0.5. Here, our algorithms grdy grp+lp
and maxmin+lp even achieve a decent overall coverage of
55% and 60% of grdy im’s (comparable to, e.g., moso)
when we restrict to no fairness violation at all (note that
there is still a tiny violation in fairness as the final eval-
uation is done with an independent sample of live-edge
graphs). Furthermore, when we allow a fairness violation
of x/16, where x is the violation of grdy im, our al-
gorithms grdy grp+lp x/16 and maxmin+lp x/16
achieve a fairness violation of 0.08 and 0.07 with an over-
all coverage of 81% and 85% of grdy im’s, respectively
– thus strictly dominating over grdy maxmin, moso and
myopic, while beating competitors in terms of fairness. We
exclude ind lp as it is not performing too well in terms of
fairness and coverage in comparison to grdy grp+lp and
maxmin+lp for further experiments.

Results for Real World Instances. We turn to the real
world instances, see Figure 2 for some results on the net-
works Arenas, Irvine, and email-Eu-core. Our al-
gorithms grdy grp+lp and maxmin+lp achieve the best
demographic parity values by far. On the Arenas network,
for example, we achieve a violation in demographic parity
of only 0.008, while getting more than 88% of grdy im’s
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Figure 2: (1) Arenas (random-overlap communities, m =
10, k = 100), (2) Irvine (BFS communities,m = 10, k =
50), (3) email-Eu-core (real communities, k = 100).

coverage that in turn suffers an around 5 times higher
fairness violation. On the email-Eu-core network, our
algorithm maxmin+lp x/8 achieves a fairness violation
around 0.2 (a quarter of grdy im), while still achiev-
ing essentially the same coverage. We note that the sim-
ple heuristic grdy prop performs even worse in terms of
fairness than grdy im on the Irvine network. We also
note that all algorithms but grdy grp+lp, maxmin+lp,
and mult weight perform comparable to uniform in
terms of both coverage and fairness on Irvine and
email-Eu-core. Lastly, we report on the results for
the co-authorship networks ca-GrQc, ca-HepTh, and
the Facebook network. Due to running times we fur-
ther restrict the evaluated algorithms by excluding also
maxmin+lp and mult weight. Again grdy grp+lp
achieves the best fairness values by far. We again see a
trade-off between fairness violation and overall coverage,
i.e., in some cases no algorithm achieves low fairness vio-
lation while maintaining high coverage. Still in some other
cases our algorithms achieve exactly that. For Facebook,
grdy grp+lp x/16 obtains 55% of grdy im’s coverage
with only 7% of its fairness violation. Maybe even better,
grdy grp+lp x/8 obtains 99% of grdy im’s coverage
with only 23% of its fairness violation.

Conclusion
We consider the impact of introducing strict demographic
parity fairness via constraints in influence maximization

Figure 3: (1) ca-GrQc (leidenalg communities, k = 100),
(2) ca-HepTh (random communities, m = n/10, k =
100), (3) Facebook (BFS communities, m = 2, k = 50).

through the study of three optimization problems, IMdp,
pIMdp, and iIMdp– in an ex-post in case of the former and
in an ex-ante fashion in case of the latter two. After showing
that this drastically differs from, e.g., the maximin criterion,
we studied the price of introducing fairness via constraints in
all three problems and observe that it may be unbounded. We
then turned to investigating the computational complexity
of the three optimization problems and observed that, unless
P = NP , one cannot approximate IMdp in polynomial time
even when the demographic parity fairness constraints are
allowed to be violated by a multiplicative or additive term.
For pIMdp, we show that the problem is NP-hard, while for
iIMdp we even show that it cannot be approximated within
a factor better than 1 − 1/e unless P = NP . We then pro-
posed algorithms for pIMdp and iIMdp. In the case of iIMdp

we essentially gave a 1− 1/e-approximation algorithm that
violates the fairness constraints by at most a 1 − 1/e-factor
as well. For pIMdp we gave two heuristics that allow the
user to freely choose the level of tolerated fairness violation.
In an extensive experimental study, we then showed that
these three algorithms, and particularly the latter two, per-
form well in practice. That is, for random, synthetic, and real
word instances, we obtain the best demographic parity fair-
ness values among all competitors and for certain instances
even obtain comparable overall spread. The latter indicates
that the empirical price of demographic parity fairness may
actually be small when using our algorithms in practice.
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