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Abstract

Drug dosing is an important application of AI, which can
be formulated as a Reinforcement Learning (RL) problem.
In this paper, we identify two major challenges of using RL
for drug dosing: delayed and prolonged effects of adminis-
tering medications, which break the Markov assumption of
the RL framework. We focus on prolongedness and define
PAE-POMDP (Prolonged Action Effect-Partially Observable
Markov Decision Process), a subclass of POMDPs in which
the Markov assumption does not hold specifically due to pro-
longed effects of actions. Motivated by the pharmacology lit-
erature, we propose a simple and effective approach to con-
verting drug dosing PAE-POMDPs into MDPs, enabling the
use of the existing RL algorithms to solve such problems.
We validate the proposed approach on a toy task, and a
challenging glucose control task, for which we devise a
clinically-inspired reward function. Our results demonstrate
that: (1) the proposed method to restore the Markov as-
sumption leads to significant improvements over a vanilla
baseline; (2) the approach is competitive with recurrent
policies which may inherently capture the prolonged effect
of actions; (3) it is remarkably more time and memory
efficient than the recurrent baseline and hence more suitable
for real-time dosing control systems; and (4) it exhibits
favourable qualitative behavior in our policy analysis.

Introduction
Drug dosing plays an important role in human health–
e.g. individuals with type 1 diabetes require regular insulin
injections to manage their blood glucose levels, intensive
care patients require continuous monitoring and adminis-
tration of drugs, optimal doses of anaesthesia are required
during operative procedures, etc. Optimal drug dosing is
most important in cases where the therapeutic window is
narrow, meaning that small deviations from the therapeutic
range of drug concentration may lead to serious clinical
complications (FDA 2015; Maxfield and Zineh 2021). These
problems are compounded by idiosyncratic differences in
the dynamics of drug absorption, distribution, metabolism or
excretion (collectively referred to as pharmacokinetics) and
drug sensitivity. Therefore, one important goal of precision
medicine is to tailor patient care while accounting for indi-
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Figure 1: Delayed and prolonged effects of drugs. Drug is
only administered at the first step, but no immediate effect
is observed. After the initial delay, the initial dose keeps
altering the patient status for a while, even in the absence of
additional dosage. The duration of delay and prolongedness
is individual specific.

vidual characteristics, and developing algorithmic solutions
for drug dosing is a contribution towards that broader goal.

Reinforcement learning (RL) offers a framework to ac-
count for individual characteristics and automatically derive
personalized treatment policies in line with the objective of
precision medicine (Ribba et al. 2020). However, RL-based
algorithms cannot be applied off-the-shelf to tackle preci-
sion dosing since all drugs are known to have a delayed
and prolonged effect from the point of medication (Holford
2018) (see Figure 1). The delay is attributed to the time it
takes for the drug to distribute to the target site, bind to the
receptor and finally to change physiological substances be-
fore its response can be observed. This can vary between
minutes to hours or even longer (Holford 2018). The pro-
longedness is due to individual variation in pharmacokinet-
ics (Vogenberg, Barash, and Pursel 2010). In this delayed
and prolonged action effects scenario, the future depends
on the previous drug dosages and their effect, and there-
fore the Markov assumption usually made by RL algorithms
no longer holds. Although RL has been applied to address
drug dosing problems such as controlling glucose levels for
closed loop artificial pancreas (Tejedor, Woldaregay, and
Godtliebsen 2020), the violation of the Markov assumption
is in this case not only problematic from an RL research per-
spective, but also from a safety perspective, as ignoring the
delayed and prolonged effects of a drug can lead to drug
overdosing related toxicity (Guengerich 2011).

Contributions. In this paper, we identify prolongedness
and delay as fundamental roadblocks to using RL in pre-
cision drug dosing, and focus on addressing the former. To
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that end, we introduce the prolonged action effect partially
observable Markov decision process (PAE-POMDP), a
framework for modeling delayed action effects in decision
making. We then present assumptions inspired by the
pharmacology literature to convert the non-Markovian
prolonged action effect problem into a Markov decision
process (MDP), therefore enabling the use of recent ad-
vances in model-free RL. To the best of our knowledge, our
work is the first to explore the prolonged effect of actions.
We validate the proposed approach on a toy task, where
the only violation of the Markov property comes from
the prolonged effect of actions, and show that restoring
the Markov assumption allows the RL agent we develop
to significantly outperform previous baselines. We also
address the challenging task of glucose control by optimal
insulin dosing for type 1 diabetes patients by leveraging the
open-sourced version of the FDA-approved UDA/Padova
simulator (Dalla, MD, and C. 2009; Xie 2018). Although
the glucose control task has garnered interest in the RL
literature in the past (Tejedor, Woldaregay, and Godtliebsen
2020), there does not appear to be a widely adopted reward
function. Therefore, we design a clinically motivated
reward function that explicitly avoids overdosing while
effectively controlling glucose levels. Our results show that
our approach of converting the PAE-POMDP into a MDP
is not only competitive in terms of performance, but is also
remarkably more time and memory efficient than the base-
lines, making it more suitable for real-time dosing control
systems. With these contributions, we aim to raise aware-
ness of both the delayed and prolonged effects of drugs
while tackling personalized drug dosing with RL, and hope
that the proposed reward function will help break the entry
barrier to control glucose levels for a closed-loop artificial
pancreas, while fostering future research in this direction.

What this paper does not do. This paper does not aim
to provide a general solution to tackle the prolonged effect
of actions, but one crafted specifically for precision drug
dosing that allows to quickly bring the problem back to the
MDP framework in a compute- and memory-efficient way.
We do not provide a new algorithm to tackle prolongedness,
but instead propose a pharmacologically motivated effective
way to enable the use of already existing RL algorithms
for precision drug dosing. We are assuming drug action
in isolation, instead of in combination with other drugs.
Learning and predicting drug synergies is a growing body
of research that can provide interesting future work.

Related Work
Blood glucose control in individuals with Type 1 diabetes is
a longstanding problem in medicine that has stimulated the
interest of RL researchers for a long time. In a systematic
review of reinforcement learning approaches for blood
glucose management, Tejedor, Woldaregay, and Godtlieb-
sen (2020) reported 347 papers between 1990 and 2019
on the topic, of which 11 used the UVA/Padova simulator
(Dalla, MD, and C. 2009; Dalla et al. 2014; Xie 2018).
While most of these work explore RL algorithms – e.g. Ac-
tor Critic, Q-learning, SARSA, and DQN among others

– to address the glucose control problem, none of them
acknowledges the fundamental challenge of prolongedness
and most consider the current blood glucose level as a
sufficient statistic for state information. Even in the cases
where actions are considered as part of the state information,
only the most recent action is taken into account, which
is not enough to restore the Markov assumption violated
due to prolongedness (see appendix). Fox et al. (2020)
formalized the problem as a POMDP by augmenting 4
hours of blood glucose and insulin information, but they did
not recognize prolongeness of drug effects as the reason for
partial observability. In fact, to handle prolongedness, the
most recent blood glucose measurement and residual active
insulin are sufficient, as we show in the experiments section.

There is a similar theme of exploring various state of
the art deep RL algorithms for other drug dosing problems.
However, these works also miss the crucial point of recog-
nizing and handling the prolonged effect of drugs. In a non-
exhaustive list, Nemati, Ghassemi, and Clifford (2016) use
a Q-Network to learn a personalized heparin dosing policy,
Weng et al. (2017) use policy iteration to manage glycemia
for septic patients in critical care, Lin et al. (2018) propose
the use of Deep Deterministic Policy Gradient (DDPG, (Lil-
licrap et al. 2016)) for heparin dosing in critical care pa-
tients, and Lopez-Martinez et al. (2019) use Double Deep Q-
Networks (DDQN) to administer opioids for pain manage-
ment in critical care patients. But none of these papers dis-
cusses the prolonged effect of drug doses. Zadeh, Street, and
Thomas (2022) use Deep Q-Networks (DQN) to administer
the anticoagulant warfarin, and they consider a pre-defined
duration along with a dose. They use a Pharmacokinet-
ic/Pharmacodynamic (PK/PD) model to determine the dura-
tion and add it to the state information, along with the patient
information, blood coagulability measure and dosing his-
tory. However, the authors do not explicitly recognize pro-
longed drug effect as one of the reasons for adding the dura-
tion information. In addition, since dose response is individ-
ual specific, finding the right duration is a challenge in itself.

Background
Markov Decision Process (MDP). Reinforcement
Learning (RL) is a framework for solving sequential
decision making problems where an agent interacts with
the environment and receives feedback in the form of
reward. The typical formal framework for RL is the
Markov Decision Process (MDP). A MDP M is a 5-tuple
(S,A, r,P, γ), where S is a (finite) set of states, A is a
(finite) set of actions, P is the state transition probability
P(st+1 = s′|st = s, at = a), r : S × A × S → R is the
reward function and γ ∈ [0, 1) is the discount factor. As the
name suggests, a MDP obeys the Markov assumption that
the future is in independent of the past given the present,
which means that transitions and rewards depend only on
the current state and action and not on the past history. The
goal of an RL agent is to find a policy π : S×A → [0, 1] that
maximizes the cumulative discounted return

∑∞
t=0 γ

trt.

POMDP and Recurrent Policy. A Partially Observable
MDP (POMDP) is a 7-tuple (S,A, r,P,Ω,O, γ), where
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Ω is the set of observations, O is the set of conditional
observation probabilities, O(ω|s), also known as the emis-
sion function, and the rest of the elements are the same as
in an MDP. In a POMDP, the agent does not have direct
access to the identity of the states, instead needing to infer
them through the observations. Note that while in a MDP,
an agent which aims to act optimally with respect to the
expected long-term return only needs to consider Markovian
policies, π : S × A → [0, 1], in a POMDP, policies need to
either rely on the entire history of action and observations,
or to infer the distribution of hidden states from this history
(as in belief-based POMDP dolution methods). In recent
work, recurrent networks have become the standard for
implementing POMDP policies. We call recurrent policy
a mapping π : T × A → [0, 1] where T is the space of
trajectories τ = {(ot, at, rt)}Tt=0 of up to T time steps.

Q-Learning and Deep Q-Networks (DQN). Q-Learning
(Watkins and Dayan 1989) is a model-free RL algorithm
that estimates Q : S × A → R, a value function as-
sessing the quality of action at ∈ A at state st ∈ S .
The value function can be estimated as: Q(st, at) =
Q(st, at) + α

(
rt + γmaxa Q(st+1, a) − Q(st, at)

)
,

where α ∈ (0, 1) is the learning rate. In DQN (Mnih,
Kavukcuoglu, and et al. 2015), the Q-values are estimated
by a neural network minimizing the Mean Square Bellman
Error: Li(θi) = Est,at∼πb

[
(yi −Q(st, at; θi))

2
]

yi = (rt + γmaxat+1
Q(st+1, at+1; θi−1), where πb is the

behavior policy, yi is the target and θi are the parameters of
the Q-network at iteration i.

Method
Problem Formulation
Drug dosing can be formalized as a POMDP, because the
effect of a medication is felt over a period of time after
its administration. In this section, we introduce prolonged
action effect POMDPs, referred to as PAE-POMDPs, a sub-
class of POMDPs in which an action’s effect lasts more than
one time step. More precisely, the action at taken at time
step t continues to affect the future states of the environment
for κ ∈ Z+ time steps, where κ is the time interval necessary
for at’s effect to fall below a given threshold. The value of
κ is environment specific and also depends on the amplitude
of the action at. The above-defined prolongedness offers a
forward view in time. From a backward view perspective,
the state at a time step t is the result of super-imposing the
effects of the actions from several preceding time steps,
which are still felt at time t i.e. st+1 = st +

∑κ
k=0 ∆at−k

,
where ∆at is the effect of action at on the state. In other
words, the Markov transition function P (st+1|st, at) is no
longer valid, and instead the transition function becomes
P (st+1|st, (at−k)

κ
k=0). In this case, the reward function

can still be assumed to be Markov R(st, at, st+1) (see
Equation 2). From the perspective of the agent, this means
that it needs to keep track of the history of actions over
a preceding period of time. In general, this problem is
no simpler than a regular POMDP, as an agent that keeps
track of its history may need to remember all the actions

taken since the beginning of time. However, in this work,
we consider a more circumscribed problem formulation
which is relevant for therapeutic dosing. Specifically, we
use knowledge from pharmacology to enable us to restore
the Markov assumptions for drug-dosing PAE-POMDP.

Converting PAE-POMDP into MDP
In this section, we present the specific knowledge used to
restore the Markov assumptions in drug dosing problems
and show how by leveraging them we can effectively
convert a PAE-POMDP into an MDP.

Action and effect equivalence. We start by noting that as
per the pharmacodynamics axioms, drug effects are deter-
mined by drug concentration at the site of action (Holford
1984, 2018). Therefore, action and effect are considered to
be equivalent and used interchangeably hereinafter.

Exponential rate of decay. Motivated by the pharmacol-
ogy (Benet and Zia-Amirhosseini 1995; Dasgupta and Kra-
sowski 2020), biotechnology (Hobbie and Roth 2007), as
well as chemical- kinetics (Peter and de Paula Julio 2006)
literature, we adopt an exponential decay model of drug con-
centration over time (Annamalai 2010). In particular, we as-
sume that the initial action effect will decay at a constant rate
λ, which is specific to the environment (drug as well as indi-
vidual). Formally, we assume that a>t≤κ = λat. Note that
here we implicitly assume that the action’s effects can safely
be ignored after κ time-steps. This assumption is valid in the
context of drug dosing, since drugs are ineffective below a
certain concentration. The observation of the agent at a par-
ticular time step can therefore be defined conditional on the
current state and on all the past actions: ot+1 ∼ O(.|st, a<t).
Note that although this is a generalized notation, not all the
actions a<t that occur before t have an effect on ot+1 (only
those within a κ window). If the amplitude of an action de-
cays by a factor of λ for each of the κ time steps during
which the action’s effect is felt, then at any time-step t, the
environment state is a function of a sub-sequence of the pre-
vious actions {a≤t}, which we call effective action, atE , and
define as:

atE =

{
0, if t = 0

λa(t−1)E + at−1, otherwise
(1)

where λ ∈ (0, 1) enforces the exponential decay assumption
on the actions. Note that setting λ = 0 falls back to the
classical RL scenario, whereas setting λ = 1 entails a
infinitely long action effects.

Additive composition of action effects. We note that
Equation 1 leverages the additive property of drug concen-
tration, and therefore assumes that action effects are additive
and independent of each other. With the additive action
effects assumption, the conditional distribution O(.|st, a<t)
could be modelled as a sum of effects due to the actions.

From PAE-POMDP to MDP. Finally, we convert the
PAE-POMDP into a MDP, by augmenting the states with
effective actions. Formally, we define a revised MDP,
ME = (SE ,A, r,P, γ), where the states in SE are defined
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Figure 2: Performance on MoveBlock. Cumulative dis-
counted return of tabular Q-learning and Effective Q-
learning. Mean and std of performance over 10 seeds. Per-
formance is smoothed with a window of size 1000.

as stE = (st, atE ). The updated state definition restores the
Markov assumption, and therefore ME can be solved as a
proxy of the original MDP M. Note that ME and M only
differ in their state space. Since we have access to ME , we
can use traditional RL algorithms to solve it.

Experiments
We validate the proposed approach on a toy environment, as
a sanity check to prototype our method, and on a challeng-
ing glucose control environment. This section describes both
environments and presents the obtained results.

Toy Environment: MoveBlock
Environment. We created the MoveBlock environment to
assess our proposed approach in a controlled manner. In par-
ticular, we built the environment in such a way that the only
violation of the Markov property comes from the prolonged
effect of actions. In MoveBlock, the task is to move a block
from its random initial position to a fixed final position on a
slippery surface with minimum possible force applied along
the horizontal axis in the direction of the goal. Due to the
slippery nature of the floor, an exerted force will cause the
object to move until it is stopped by friction, prolonging the
effect of actions over multiple time-steps. The reward sys-
tem is the same as the one in the Mountain Car environ-
ment (Brockman et al. 2016) – i.e. there is a high reward
for reaching the goal position, but action magnitude propor-
tional penalties to encourage policies where minimum effort
is used. The observation is the position (continuous) while
the velocity remains unobserved to the agent.

Experimental setup and results. To keep the states
tractable, we discretized the continuous position values into
10k states. The action space is discrete, but to keep the effec-
tive actions tractable, we clipped the effective action value
to the maximum action value. We then trained a tabular Q-
learning agent, which serves as baseline, with ϵ-greedy ex-
ploration. Next, we modified this tabular Q-learning agent
with the method proposed in Section , and trained an Ef-
fective Q-learning agent. The results are shown in Figure 2.
We observe that the Effective Q-learning agent, which re-
stores the Markov assumptions broken by the prolonged ac-
tion effects, consistently outperforms the Q-learning agent

despite using the same Q-learning algorithm, which high-
lights the importance of considering the prolongedness of
actions when solving PAE-POMDPs.

Glucose Control Environment
Environment. We chose blood glucose control as a real-
world example of PAE-POMDP given the low therapeutic
index of insulin, which makes it a good candidate for pre-
cision dosing. We used Simglucose (Xie 2018), the OpenAI
Gym (Brockman et al. 2016) implementation of the FDA
approved UVA/Padova Type1 Diabetes Mellitus Simulator
(T1DMS) (Dalla, MD, and C. 2009; Dalla et al. 2014) built
on an in-silico population of 30 patients. In this case, the task
is to manage blood glucose by administering insulin to type
1 diabetes patients, who lose their ability to produce insulin
for the rest of their lives. In particular, the goal is to maintain
blood glucose as close as possible to the non-diabetic range
for a given patient. However, the environment does not come
with a recognized pre-defined reward function.

Experimental setup. We are interested in training a per-
sonalized glucose control policy instead of a population-
level policy. To this end, we randomly selected a virtual pa-
tient from the simulator and modified the simulator for the
experiments presented in this paper (See Appendix for more
details). In this PAE-POMDP setting, the states are hidden
patient parameters (Kovatchev et al. 2009), observations are
continuous blood glucose readings, actions are discrete in-
sulin doses in the range of [0, 5], transition dynamics are
specific to the chosen patient but unknown to the agent, and
the reward function is described in the next paragraph. We
appended the current observations with the effective actions
as described in section .

Reward. Reward design in RL is a challenging task in it-
self. The task of maintaining blood glucose as close as pos-
sible to the non-diabetic range, can be addressed by maxi-
mizing the time spent in the target zone with as little insulin
as possible. The minimal insulin dose requirement is due
to the need to avoid building insulin resistance, a condition
where a person no longer responds to small doses of insulin.
Note that the tendency to develop resistance is applicable to
any drug. Unfortunately, recently introduced reward func-
tions do not fulfill the above-discussed criteria. Therefore,
we designed a biologically inspired custom zone reward that
incentivizes the time spent in the target zone and penalizes
hyperglycemia, hypoglycemia and high insulin doses. For-
mally, the reward is defined as:

rt(st−1, at, st) = rt,state(st−1, st)− rt,action(at) (2)

where rt,state is a state reward which encourages the agent
to maintain the target vital statistics within a healthy range
as follows:

rt,state(st−1, st) =
−100 st < 70 or st > 200 (episode termination)
−1 st < 100 and st − st−1 < 0.5 (hypoglycemia)
−1 st > 150 and st − st−1 > 0.5 (hyperglycemia)
10 100 <= st <= 150 (target blood glucose)

(3)
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Figure 3: Performance (Cumulative discounted sum of
rewards) on the glucose control task. Since DQN assumes
the environment to be Markov, its performance is almost as
poor as the fixed policy. The performance of Effective-DQN
is at par with ADRQN (history length 15); both consider
prolonged effects of actions.

and rt,action is a penalty term which encourages the agent to
avoid overdosing:

rt,action(at) = 0.1 ∗ a2t (penalize overdosing) (4)

Note that this kind of reward function is well-suited for any
homeostatic control problem in drug dosing.

Policies under comparison. All agents are trained using
the zone reward function introduced in the previous section.

1. Fixed Dose. This is a handcrafted step-wise policy with
the underlying assumption that higher blood glucose lev-
els call for higher doses. Specifically, we inject the max-
imum insulin (5 units) for blood glucose in the range of
190 to 200. For every 10 units drop in blood glucose level
from 190, we reduce the insulin dose by 1 unit until it is
cut off at blood glucose 150.

2. DQN. The DQN agent assumes the environment to be
Markov, and hence is a good baseline to capture the effect
of ignoring the inherent prolongedness of the actions.

3. Action-specific Deep Recurrent Q-Network
(ADRQN) (Zhu, Li, and Poupart 2017). This baseline
leverages a recurrent neural network that encodes the ac-
tion history and appends it with the current observation to
form a state. The action history length is set to 15, as per
hyper-parameter tuning. Note that since we are the first to
acknowledge the prolonged effect of drug dosing, we are
also the first to propose an action history based baseline
in this context. In a scenario where compute and memory
is not a limiting factor, ADRQN (or any other action
history based policy) can serve as the state of the art.

4. Effective-DQN. This approach enhances the DQN base-
line, but with the decay assumption introduced in the pre-
vious section i.e. the blood glucose values are augmented
with the effective insulin dose to represent the state.

Quantitative Results. We compare the cumulative dis-
counted sum of rewards for all the agents under consid-
eration in Figure 3. The fixed dose policy, which under-

Figure 4: Glucose control performance breakdown. Average
number of steps in each blood glucose zone over training
episodes (std over 5 seeds). Due to the prolonged action ef-
fect, Effective-DQN spends more time in the hyperglycemic
zone as well as in the target zone than ADRQN. DQN
learns a sub-optimal policy that tends to overdose in order
to to quickly get out of hyperglycemia and eventually leads
to episode termination due to hypoglycemia.

Figure 5: Effect of history length on compute and mem-
ory requirement. Compute time increases exponentially and
memory requirement linearly with the history length for
ADRQN agents, but Effective-DQN compute and memory
are independent of the history length and hence remain con-
stant.

Model Runtime Max
memory

ADRQN 359.64± 19.25 1623
Effective-DQN 129.04 ± 42.73 1513

Table 1: Runtime and memory requirements. 5 agents
trained on a Nvidia RTX 8000 GPU with the same 5 seeds
(mean ± std). Runtime is in mins/10K episode and memory
in MiB.
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goes no learning, achieves the lowest performance. Unsur-
prisingly, the DQN agent only slightly improves upon this
naive hand-crafted policy, since it assumes the environment
is Markov and thus ignores the prolonged effect of ac-
tions. The ADRQN agent exhibits a significant performance
boost as compared to the DQN agent, since the learned pol-
icy depends not only on the current observation, but also
on the action history responsible for the prolonged effect.
The Effective-DQN agent’s performance is on par with the
ADRQN agent, suggesting that our decay assumption is
a good approximation for the prolonged action effect ob-
served in the diabetes simulator (see Appendix for details).
To gain further insights, we stratify the performance of each
RL agent into the hyperglycemic, hypoglycemic, and tar-
get zones, and assess the number of steps each agent spends
in each blood glucose zone over training episodes (see Fig-
ure 4). We observe that the DQN agent minimizes the neg-
ative reward for hyperglycemia and spends minimum time
in the hyperglycemic zone. However, due to the prolonged
effect of the actions taken in hyperglycemia, the agent
spends very little time in the target zone as well as hypo-
glycemic zone, suggesting that the agent learns to overdose
to quickly get out of hyperglycemia, and eventually leading
to episode termination due to hypoglycemia. Both ADRQN
and Effective-DQN spend a similar amount of time in the
hypoglycemic zone, whereas Effective-DQN spends slightly
more time in hyperglycemia than ADRQN, increasing the
time it spends in the target zone. This explains the perfor-
mance gain of the Effective-DQN agent over ADRQN.

Efficiency analysis. Since time sensitivity and limited
memory are crucial aspects of real-time control sys-
tems, we compare the best performing agents (ADRQN and
Effective-DQN) in terms of compute and memory efficiency.
In Table 1, we present the compute and maximum memory
requirement to train the models on the glucose control task.
The Runtime column presents the time required to train the
models for 10K episodes on a single Nvidia RTX 8000 GPU.
We used the readily available ADRQN PyTorch implemen-
tation1, and ensured both ADRQN and Effective-DQN are
comparable in terms of capacity. Although some of the
differences might still be attributed to the implementation,
many are due to the individual properties of each model. In
particular, ADRQN has the longest runtime as it needs to
learn the action history through the LSTM (Hochreiter and
Schmidhuber 1997) unit, and as shown in Figure 5 (left), the
compute time grows exponentially with the history length.
History length depends on how prolonged the action effects
are, which in turn are individual and drug specific factors.
However, the compute time for Effective-DQN remains
constant no matter the history length, making the compute
efficiency gap between ADRQN and Effective-DQN in-
crease for longer history lengths. In the max memory column
of Table 1, we present the maximum memory required by
the models during training. We keep a replay buffer of the
same size to train all the models. As shown in the table,
ADRQN requires slightly more memory than Effective-
DQN. While this difference does not appear significant, it is

1https://mlpeschl.com/post/tiny adrqn/

worth noting that ADRQN requires memory proportional to
the history length (see Figure 5 (right)). Moreover, in order
to benefit from longer histories, ADRQN might also require
larger models, further increasing its memory requirement.
In contrast, the Effective-DQN’s memory requirement
remains constant as we increase the history length.

Qualitative results. We present a qualitative assessment
of the policies under comparison to better understand their
behavior. Figure 6 displays the effect of insulin intake dic-
tated by each policy, and food intake, on the blood glucose
level over 10 evaluation episodes. Note that the food intake
schedule is fixed across all agents and episodes, and that
food occurrence might look different across different plots
due to episodes terminating, in some cases, before mealtime.
The starting blood glucose level is also the same in all cases,
but from then on, the trajectories are generated based on
each policy. The fixed policy (Figure 6(a)) administers the
same dose given the same blood glucose level, and hence it
is not surprising to see all the episodes terminate in hypo-
glycemia due to the prolonged effect of the doses injected at
higher blood glucose levels. The DQN agent (Figure 6(b))
learns to administer a constant low dose of insulin due to
the various penalties in the reward function. A probable in-
terpretation is that: (1) The agent learns that not doing any-
thing – i.e. setting the dose to 0 – makes the agent spend
more time in hyperglycemia, and incurs penalties (2) Due to
the inherent prolongedness of actions, higher doses quickly
drive the agent into hypoglycemia, which also leads to
penalties. Since the agent has no prior information about the
prolonged action effects, it may interpret this penalty as indi-
cating that choosing high doses is harmful. (3) There is also
an additional penalty that comes from overdosing. Hence,
the DQN agent chooses a middle ground of constantly ad-
ministering the minimum non-zero dose available (dose = 1)
to maximize its duration into the target zone. The ADRQN
agent (Figure 6(c)) is able to leverage insulin history through
its state description and hence mostly administers new doses
sparingly. As shown in the figure, it chooses all possible
doses between 0 and 5. We observe frequent doses when
blood glucose spikes around food intake, but in an attempt
to quickly regulate the spike in blood glucose, the agent of-
ten ends up over-dosing. This leads to quick episode termi-
nation due to hypoglycemia right after food consumption.
This is an undesirable behavior, evoking safety concerns, as
in the clinical context, hypoglycemia is more fatal than hy-
perglycemia (McCrimmon and Sherwin 2010), and requires
immediate medical attention. Finally, the Effective-DQN
agent (Figure 6(d)) appears to be conservative; like the DQN
agent, it only injects the smallest possible dose when it de-
cides to administer insulin. However, unlike the DQN agent,
the Effective-DQN agent has information about the residual
insulin in the blood from previous doses and hence learns
when not to administer further doses. This is an important
improvement over DQN, which closes the performance gap
with ADRQN. It is interesting to note that the Effective-
DQN agent also chooses to administer insulin around food
intake when blood glucose spikes, but the dose magnitude
remains small. A noteworthy behavior is that the Effective-
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(a) Fixed Dose (b) DQN

(c) ADRQN (d) Effective-DQN

Figure 6: Policy visualization. Trained greedy agents evaluated on 10 episodes with the same starting blood glucose. Red
crosses mark the end of episodes. The insulin administered is as prescribed by the respective policy. In the blood glucose plot,
the space between the two red dotted lines is the target zone. Effective-DQN appears to be conservative and thus does not allow
the patient to get into hypoglycemia. The ADRQN agent gets into both hypo- and hyperglycemia.

DQN agent never ended an episode due to hypoglycemia. A
potential explanation is that either administering a slightly
higher does of 2 units or more frequently administering
1-unit doses might push the agent into hypoglycemia and
eventually death. This hypothesis could be verified in the fu-
ture by training an agent with access to smaller insulin doses.
Note however that this behavior is an observation, not a con-
straint, and hence not a guarantee on the policy. To have such
guarantees one must add desired conservative properties as
constraints, which we leave for future work.

Discussion
Conclusion. In this paper, we identified delay and pro-
longedness as a common roadblock for using RL in drug
dosing. We defined PAE-POMDP, a sub-class of POMDPs
in which action effects persist for multiple time steps, and in-
troduced a simple and effective framework to convert PAE-
POMDPs into MDPs which can be subsequently solved with
traditional RL algorithms. We evaluated our proposed ap-
proach on a toy task and on a glucose control task, for which
we proposed a clinically-inspired reward function for the
glucose control simulator, which we hope will facilitate fur-
ther research. Our quantitative results have shown that our
proposed approach to convert PAE-POMDPs into MDPs is
competitive and offers important advantages over the base-
lines. In particular, we have shown that by introducing do-
main knowledge on the prolongedness of action effects, we
could build a solution capable of matching state-of-the-art
recurrent policies such as ADRQN while being remarkably
more time and memory efficient. Our qualitative results have
further emphasized the benefits of the introduced Effective-
DQN policy, which appeared to be more conservative than

the recurrent policy, despite using the same reward function.

Limitations. Our glucose control experiments are limited
to a single virtual patient environment. Since humans exhibit
similar profiles for prolonged action effects, similar perfor-
mance on patients from other demographics is expected but
should be evaluated. Although based on pharmacological lit-
erature we acknowledge that delay and prolongedness are
present in any drug dosing scenario, we did not find other
simulated environments to test our hypothesis. Hence, our
experiments at the moment are limited to a single drug ef-
fect simulation. Although this work is only in the context of
drug dosing, prolonged action effects seem to be present in
other application areas such as robotics, where the decay as-
sumption may not be justified. The recurrent solution is still
the most general solution in such cases. This work does not
explore those applications.

Future work. In this work, we have only considered dis-
crete action spaces. Exploring continuous actions might lead
to more interesting insights in the future. Delay and pro-
longedness appear across all drug dosing scenarios, so we
hope future RL applications of autonomous drug dosing will
consciously account for them. More broadly, future work in-
cludes coming up with more generalized solutions for action
superposition that accommodate qualitative actions and are
suitable for application areas beyond drug dosing.
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