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Abstract

Frame Semantic Role Labeling (FSRL) identifies argu-
ments and labels them with frame semantic roles defined in
FrameNet. Previous researches tend to divide FSRL into ar-
gument identification and role classification. Such methods
usually model role classification as naive multi-class classifi-
cation and treat arguments individually, which neglects label
semantics and interactions between arguments and thus hin-
dering performance and generalization of models. In this pa-
per, we propose a query-based framework named ArGument
Extractor with Definitions in FrameNet (AGED) to mitigate
these problems. Definitions of frames and frame elements
(FEs) in FrameNet can be used to query arguments in text.
Encoding text-definition pairs can guide models in learning
label semantics and strengthening argument interactions. Ex-
periments show that AGED outperforms previous state-of-
the-art by up to 1.3 F1-score in two FrameNet datasets and
the generalization power of AGED in zero-shot and few-shot
scenarios. Our code and technical appendix is available at
https://github.com/PKUnlp-icler/AGED.

Introduction
Semantic Role Labeling (SRL) aims to identify arguments
and label them with semantic roles for each predicate in
a sentence. Frame Semantic Role Labeling (FSRL) is pro-
posed based on frame semantics theory (Gildea and Juraf-
sky 2000), where predicates are target words that can evoke
semantic frames, and arguments are labeled with frame ele-
ments (FEs). Frames and FEs are described in the lexical re-
source FrameNet (Baker, Fillmore, and Lowe 1998). Frames
represent different events, relations, objects, and situations.
FEs of a frame are frame-specific roles. FSRL can extract
frame semantic structures from text and thus can be helpful
to many downstream tasks such as information extraction
(Surdeanu et al. 2003), question answering (Shen and Lap-
ata 2007), reading comprehension (Guo et al. 2020).

Previous work tends to divide the FSRL into argument
identification and role classification, and they usually iden-
tify the arguments first and then assign an FE to each ar-
gument. There are two flaws in such methods. First, inter-
actions between arguments are either neglected (Kalyanpur
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et al. 2020; Lin, Sun, and Zhang 2021) or modeled in a so-
phisticated and time-consuming interaction module (Chen,
Zheng, and Chang 2021; Zheng et al. 2022) where the argu-
ments of one frame are identified sequentially. Besides, label
semantics of FEs are ignored. For regular role classifiers,
representations of FEs are learned from labeled instances.
However, limited by amount of training data of FSRL, such
methods may perform poorly, especially for low-resource
and few-shot frames because they cannot capture label se-
mantics directly.

In relevant tasks, e.g. SRL (Carreras and Màrquez 2005)
and Event Argument Extraction (EAE) (Ebner et al. 2020),
some researches propose query-based frameworks to handle
problems mentioned above. They treat these tasks as Ma-
chine Reading Comprehension (MRC) (Liu et al. 2020) or
fill-in-the-bank Clozing (Ma et al. 2022). Queries are gener-
ated from role-specific questions (Meng et al. 2019) or event
(or event role) templates to extract argument spans, where
label semantics can be captured in label-specific templates.
Recent work in EAE (Ma et al. 2022) uses event templates
to extract all arguments simultaneously, where interactions
between arguments are highlighted in the event templates.
However, the templates or questions used by them are either
too simple or in need of elaborative manual design. The sim-
ple questions format is not informative enough for FSRL,
and manually designed templates cannot be easily applied to
FrameNet because there are nearly 1000 frames and 10000
frame elements in FrameNet.

FrameNet describes frames and FEs with frame def-
initions and FE definitions. As shown in Figure 1, the
frame definition of Attack describes an event where an
Assailant attacks a Victim, and other FEs of Attack
such as Weapon are also included. The definition of
Attack also describes how they interact with each other;
FE definitions show fine-grained descriptions of FEs and
FE relations, for example, the definition of Assailant
shows the relation be attack by between Victim and
Assailant and vice versa.

We find that frame definitions and FE definitions are suit-
able for the above problems. First, frame definitions de-
scribe how FEs of this frame interact with each other, and
FE definitions also show fine-grained relations between FEs
(e.g. the definition of FE Victim describes relations be-
tween Victim and Assailant). We can model relations
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Attack
Definition:
AnAssailant physically attacks a Victim (which is usually but not always sentient), causing or intending to cause the Victim physical
damage. AWeapon used by the Assailant may also be mentioned, in addition to the usual Place, Time, Purpose, Reason, etc. …

Assailant The person (or other self-directed entity) that is attempting physical harm to the Victim

Victim This FE is the being or entity that is injured by the Assailant’s attack

Purpose This FE identifies the purpose for which an Assailant attacks the Victim

Is he INVADING Iraq just to cover other shortcomings?

Figure 1: Definitions of Attack and its FEs Assailant, Victim, and Purpose with an example sentence of frame
Attack and these FEs. INVADING is the target word evoking frame Attack, arguments of the target are painted with the
same color they correspond to, e.g., he is associated with FE Assailant.

between FEs with these definitions, and relations between
FEs (e.g., Assailant and Victim) can reflect interac-
tions between arguments (e.g., he and Iraq). Additionally,
we treat definitions as natural language style queries, and
representations of FEs are encoded by pretrained language
models (PLMs), which can utilize label semantics of FEs,
such as FE names and their context in definitions. Moreover,
the definitions can be applied directly as templates with only
a few modifications, which is informative and free of time-
consuming manual design.

In this paper, we propose a query-based frame seman-
tic role labeling framework named ArGument Extractor
with Definitions in FrameNet (AGED). We concatenate the
text with frame definitions and use PLMs to encode text-
definition pairs. AGED can extract all arguments simultane-
ously. For each FE, its representation is derived from con-
textual representations in PLM. Label semantics of this FE,
and interactions between FEs can be captured with the bidi-
rectional attention mechanism in PLM. Each FE represen-
tation can generate two pointer queries to identify start and
end positions of arguments. In addition, we can use text-FE
definition pairs as extra training data because FE definitions
can represent fine-grained label semantics and FE relations.

Experiments show that AGED outperforms previous state-
of-the-art models by up to 1.3 F1-score points in two
FrameNet datasets. Further experiments demonstrate the
power of AGED in zero-shot and few-shot scenarios. We also
combine AGED with Jiang and Riloff (2021) in multitask
training paradigm to explore interactions between FSRL and
frame identification.

Overall, our contribution can be summarized as follow:
• We propose AGED, a query-based framework to model

label semantics and strengthen interactions between ar-
guments in FSRL. Different from traditional two-stage
(argument identification and role classification) methods,
AGED achieve better performance on FSRL, especially in
zero-shot and few-shot scenarios.

• We use definitions in FrameNet as templates in AGED
with only a few modifications. Frame definitions can be
used to extract all arguments simultaneously; while FE
definitions can serve as additional training data to capture

fine-grained label semantics and FE relations.

Task Formulation
Frame Semantic Role Labeling aims to identify arguments
and label them with frame elements for frame-evoking tar-
gets in a sentence. For a sentence S = w1, . . . , wn and a
target word wt that evokes a frame f . Suppose that the ar-
guments for the predicate wt are a1, . . . , ak, and we are re-
quired to identify the start and end positions si and ei for
each argument ai = wsi , . . . , wei and label ai with the se-
mantic role ri ∈ Rf , where Rf are frame elements of the
frame f .

Previous researches usually adopt methods including ar-
gument identification and role classification:
• Argument Identification: the start and end positions (si,
ei) for each argument ai are identified first.

• Role Classification: based on ai, wt, and S, an FE ri ∈
Rf is assigned to ai.

In this work, we use definitions in FrameNet as templates
and FEs in definitions as slots; thus, FSRL can be treated as
slot filling. Frame definition Df of frame f contains all FEs
Rf = {r1, . . . , rm}, and we need to fill these slots in Df .
For each slot ri:
• First, we need to determine whether there exists an argu-

ment ai labeled with ri in sentence S.
• If there exists an argument ai labeled with ri in sentence
S, we need to identify si and ei for this argument.

Methodology
We propose a query-based framework for FSRL named
AGED. FSRL is modeled as template clozing. AGED utilize
definitions in FrameNet as templates, and FEs in definitions
as slots, then we can generate queries for each FE to extract
arguments to fill the slots. Figure 2 shows the how AGED
build queries from definitions and extract arguments.

Definitions in FrameNet
Definitions in FrameNet include frame definitions and FE
definitions, which describe label semantics of frames or FEs,
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[CLS] Is he invading Iraq just to cover other shortcomings? [SEP] Attack: … Assailant physically attacks a Victim… A Weapon

FE slots tokens FE Representation Span

Assailant ass #ail #ant Start: 2 End: 2 he

Victim victim Start: 4 End: 4 Iraq

Weapon weapon Start: 0 End: 0 no argument

Purpose purpose Start: 5 End: 9 just .. shortcomings

tokenize
Encoding 

PLM Encoders

Max Pooling

… … … …

Start Query
End Query

Figure 2: AGED generate queries for each FE slot in the definition and arguments are extracted based on queries.

and semantic relations between FEs. AGED encodes text-
definition pairs and both definitions can be appended to the
text.

Frame Definitions Frame definitions describe frames and
their FEs in a global view. In other words, the definition of a
frame describe how its FEs interact with each other to com-
bine this frame. Frame definitions are similar to event tem-
plates in EAE, and according to Ma et al. (2022), using such
templates can not only extract all arguments of an event si-
multaneously, but can also capture argument interactions. If
we add frame definitions to the text, AGED can also extract
arguments to fill all FE slots in frame definitions and capture
argument interactions. However, frames in FrameNet usu-
ally contain more semantic roles than events in EAE, while
some FEs are not mentioned in frame definitions, especially
some non-core FEs. An easy and straightforward solution
is to add other FEs not mentioned in the raw definitions to
them:

Df = frame name|raw def|FE list (1)

For a frame f , we concatenate its name frame name, its
raw definition raw def and FE list together. For all
FEs Rf of frame f , we remove FEs that have been included
in raw def, and remaining FEs are listed in the order pre-
defined by FrameNet project to construct FE list. Now
Df ensures that any role r ∈ Rf has a slot in the definition,
and AGED can extract all arguments in this frame from text
with Df .

Frame Element Definitions Frame element definitions
give precise and concrete descriptions of frame elements.
FE definitions also show fine-grained relations between FEs
and can help AGED capture argument interactions better. For
example, the FE definition of Assailant tells the rela-
tion be attack by between Victim and Assailant,
and reflects the semantic relation between arguments he and
Iraq, so it is helpful to capture arguments’ interactions to ex-
tract arguments. Accordingly, we also append FE definitions
to text in training stage as extra training data. For a frame f
and an FE r ∈ Rf , we concatenate its frame name and
FE name and raw def together. Different from frame

definition, we use both frame name and FE name here
to distinguish FEs of different frames that have the same
name; we do not add FE list because for FE definition,
we do not aim at extracting all arguments, instead, we only
care FEs that are related to current FE.

Dr = frame name|FE name|raw def (2)
Definitions v.s. Role Specific Questions A common ap-
proach in query-based framework is to use simple role-
specific questions like What is the Assailant of
Attack? or Who attacks Iraq?. To compare the per-
formance of definitions in FrameNet with simple questions,
we also use plain question here:
Qr = What’s [FE name] of [frame name]?

(3)
This kind of question template is simple and can be applied
to any FE of any frame. However, this template only models
label semantics by its name and ignores semantic relations
between FEs. Moreover, a text-question pair can only extract
one argument, so it will be slower than text-definition pairs.

Frame definitions v.s. FE definitions Both the frame def-
initions and the FE definitions can be appended to the text
to extract arguments. Frame definitions are used in both the
training and inference stages because frame definitions can
be efficient in extracting all arguments from a global view in
one shot. FE definitions implies fine-grained label semantics
of FEs and semantic relations between FEs.

FE mentions in the definitions are slots to be filled. 1 Slots
in frame definitions include all FEs of this frame and slots in
FE definitions only include this FE and its related FEs.

Model Architecture
AGED, shown in Figure 2, uses PLMs to encode text-
definition pairs to contextualized representations and gen-
erate queries for each FE slot in the definition. Argument
queries can capture label semantics of FEs and semantic re-
lations between arguments, then they are used to identify
start and end positions of each arguments.

1As is shown in figure 1, there are two Assailant mentions
in Attack definitions, and we only use the leftmost mention as its
slot.
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Text Encoder Text-definition pairs are fed to the PLMs
in the form of [CLS] text [SEP] definition
[SEP]. The contextualized representations of each token in
both the text and the definition are then derived from PLMs.
The definition can be viewed as context of tokens in text and
vice versa, thus alignments between arguments in text and
FEs in the definition can be learned via self-attention mech-
anism of PLMs.

HS ;HD = Encoder (S;D) (4)

HS =
(
hS
0 , h

S
1 , . . . , h

S
n

)
are contextualized representations

of tokens w1, . . . , wn in sentence S and hS
0 are contextual-

ized representation of token [CLS]. Analogously, HD are
contextualized representations of tokens in definition D.

To make PLMs focus on targets and frame or FE men-
tions, we also add special tokens in text-definition pair. <t>
and </t> are inserted to the left and right of the target word
wt:

S = w1, . . . ,<t>, wt,</t>, . . . , wn (5)

Similarly, <f> and </f> are placed around frame
name, and <r> and </r> are placed around all FE men-
tions in the definition.

Query Generator and Span Pointer Based on contextu-
alized representations of tokens in text and definition, AGED
generate queries for each FE slot in the definition, and use
these queries to identify start and end positions of argu-
ments.

FE slots are FE mentions in the definition. If an FE has
more than one mentions in the definition, we choose the
leftmost one as its slot. The slots in a frame definition are
all FEs of this frame, while slots in an FE definition con-
tain this FE and FEs related to it. For m slots in the defi-
nition D, slot1, . . . , slotm, each slot is an FE mention span
slotj = wD

s′j
, . . . , wD

e′j
, where s′j and e′j are start and end po-

sitions of slotj in definition D.

qj = Maxpooling
(
hD
s′j
, . . . , hD

e′j

)
(6)

q1, . . . , qm are query vectors generated from
slot1, . . . , slotm. Then we use pointer networks to identify
start and end positions is and ie for each slot sloti.

Pr(si|S,D, qi) = Softmax
(
(W sqi)

⊤ ·HS
)

(7)

Pr(ei|S,D, qi) = Softmax
(
(W eqi)

⊤ ·HS
)

(8)

Here qi ∈ Rd and HS = (hS
0 , h

S
1 , . . . , h

S
n) ∈ Rd×(n+1).

W s and W e are linear transformation matrices in Rd×d.
Pr(si/ei|S,D, qi) is the probability distribution of (n + 1)
tokens as the start or end position of sloti and the token 0
([CLS]) means no argument.

Training and Inference
Training In training stage we use both frame definitions
and FE definitions. An instance in the training data includes
a sentence S, and the target wt that invokes the frame f , and
the k arguments a1, . . . , ak of the target t labeled with FEs

r1, . . . , rk. We use (S,Df ) as original training data. Fur-
thermore, for each ri, we use (S,Dri) as additional training
data. The labels of each slot are the start and end positions
of arguments related to slots. If there exists an argument
wŝi , . . . , wêi labeled with sloti, the labels of this slot are
ŝi and êi. If there is no argument labeled sloti, the labels of
this slot are ŝi = 0 and êi = 0 (that is, we regard [CLS] as
no argument). We use cross entropy loss in AGED.

Ls =
m∑
i=1

− log Pr(ŝi|S,D, qi) (9)

Le =
m∑
i=1

− log Pr(êi|S,D, qi) (10)

L = 0.5Ls + 0.5Le (11)
Inference We only use frame definitions in inference stage
because a frame definition contains all FE of this frame and
AGED can extract all arguments efficiently in one shot.

For each FE slot, we first assume that there exists an
argument, and we adopt a greedy strategy to identify the
argument span, which means the probability of an argu-
ment span (si, ei) labeled with ai equals Pr(si|S,D, qi) ·
Pr(ei|S,D, qi):

spredi = argmax
si ̸=0

Pr(si|S,D, qi) (12)

epredi = argmax
ei ̸=0

Pr(ei|S,D, qi) (13)

We also add some constraints:
• To identify a valid span, epredi should be no less than
spredi : epredi >= spredi .

• If Pr(si = 0|S,D, qi) · Pr(ei = 0|S,D, qi), the
probability of no argument, is greater than Pr(si =

spredi |S,D, qi) · Pr(ei = epredi |S,D, qi), the prediction
of this slot will be no argument.

Experiments
We mainly focus on these questions and conduct corre-
sponding experiments:
• What is the performance of AGED in FrameNet datasets?
• What is the difference between definitions and simple

role-specific questions?
• Can definitions in FrameNet help AGED capture label se-

mantics? How does AGED perform in few-shot and zero-
shot scenario?

Datasets
We evaluate the performance of AGED in two FrameNet
datasets: FN 1.5 and FN 1.7. FN 1.7 is an extension ver-
sion of FN 1.5. Table 1 shows the comparison between these
two datasets. The train / dev / test split is the same as Peng
et al. (2018). FrameNet also annotates exemplar sentences
for frames and their lexical units, and these exemplar sen-
tences are usually used as additional training data in previ-
ous researches (Kshirsagar et al. 2015; Yang and Mitchell
2017; Peng et al. 2018; Zheng et al. 2022). We follow these
researches and also use exemplar sentences as extra training
data.
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#frame # FE #exem #train / dev / test

FN 1.5 1019 9634 153952 17143 / 2333 / 4458
FN 1.7 1221 11428 192461 19875 / 2309 / 6722

Table 1: Comparison between FN 1.5 and FN 1.7. FN 1.7 de-
fines more frames and FEs than FN 1.5, and contains more
training and test instances. “exem” means exemplar anno-
tated sentences for frames and lexical units in the FrameNet.

Main Results
We compare AGED with previous models for both FN 1.5
and FN 1.7. For fair comparison, we only compare the per-
formance of AGED with models that use PLMs2. These
models can be roughly divided into two groups: w/o exem-
plar and w/ exemplar because some models claim that they
do not use exemplar instances as additional training data.

Table 2 shows the main results of our experiments. If
AGED is trained with only frame definitions, AGED outper-
forms the previous state of the art by up to 1.2 F1-score (75.6
→ 76.84). Using FE definitions as extra training data can
help AGED performs better and it will outperform the previ-
ous state of the art by up to 1.3 F1-score (75.6 → 76.91). The
results show the effectiveness of AGED under all conditions
in both datasets, which indicates that the models can benefit
from considering label semantics and argument interactions
with definitions in FrameNet. Using FE definitions as extra
training data can bring up to 0.6 F1-score increase (74.73 →
75.37) because these definitions give concrete and precise
descriptions of FEs and reflect fine-grained FE semantic re-
lations.

Discussion
In this section, we conduct further experiments for better un-
derstanding of AGED. If not specified, experiments is con-
ducted on FN 1.5 without exemplar sentences because train-
ing with exemplar sentences is time-consuming.

Few-shot and Zero-shot Performance Zheng et al.
(2022) design a few/zero-shot experiment to validate the
transfer learning ability of the Frame Knowledge Graph con-
structed by them. We follow the same experiment settings to
evaluate AGED with three frames Getting, Arriving,
Transition to state under zero-shot and few-shot
scenarios. Table 3 shows the comparison between AGED and
KID under zero-shot and few-shot scenarios. As they do not
use PLMs in this experiment, we cannot directly compare
zero-shot results of two models (56.25 v.s. 82.45). When
removing all instances of these frames, KID drops much
larger than AGED (-14.06 v.s. -3.81), and the situations is
the same under few-shot scenarios (full → 32). Definitions
can help AGED directly capture label semantics, while KID
uses semantic relations between Frames and FE mappings
in semantic-related frames to transfer knowledge. Results
show that using definitions directly is much more effective
under zero-shot and few-shot scenarios. Even AGED never

2Experiment setups and details of these models are listed in
https://github.com/PKUnlp-icler/AGED

see instances of these frames in training stage, its perfor-
mance is still close to AGED with full instances because
AGED learns ability to parse definitions as queries in train-
ing stage.

As FN 1.7 is an extension version of FN 1.5, we also con-
duct another zero-shot experiment for AGED. FN 1.7 defines
some new frames which are not included in FN 1.5 and we
wonder the performance of AGED trained with FN 1.5 on
FN 1.7. Table 1 shows that FN 1.7 defines 202 new frames
and the test dataset of FN 1.7 includes at least 2264 new in-
stances. Nearly 25% of these 2264 new instances evoke new
frames in FN 1.7. Table 4 shows the results of this experi-
ment. As there are some new frames, AGED trained with FN
1.5 performs slightly worse than AGED trained with FN 1.7
(73.72 v.s. 74.73). The narrow gap indicates the zero-shot
performance of AGED. To further validate the performance
of AGED with unseen frames, we evaluate AGED trained
with FN 1.5 on instances of new frames in FN 1.7 test set,
and the gap is still narrow (72.86 v.s. 74.73).

The two above experiments both show the generalizability
of AGED. Even if these frames are never or seldom seen
in training stage, AGED can still perform promising if the
corresponding definitions are provided and the model learns
how to encode them.

Target Markers and Label Markers A common practice
to strengthen contextualized span representations is the use
of markers (Baldini Soares et al. 2019; Xiao et al. 2020). Ta-
ble 5 gives an ablation study of markers in the text-definition
pairs. Results show that label markers such as <r> and <f>
bring negligible improvements because FEs are already nat-
ural language labels instead of abstract labels in Propbank
(arg0, arg1, ..., ) and markers seem redundant to capture la-
bel semantics of FEs in FrameNet. However, target markers
play a vital role in AGED. When we remove target markers,
the performance will drop by 10.54 points. Frame seman-
tics is based on predicate-argument semantic structure, and
target (predicate) is central in frame semantics. Without tar-
get markers, AGED even does not know which word is the
target, thus affecting the performance of AGED.

Combination of Frame Definitions and FE Definitions
We can use definitions for AGED and we can still use simple
questions, what is the difference between simple questions
and definitions? Both frame definitions and FE definitions
can be used in AGED, why choose frame definitions in the
inference stage and why choose FE definitions as additional
training data? This section answers these questions.

In this section, we use three baselines:

• Role-Specific QA: we use role specific questions in
Eq. 3. A frame that includes m FEs will construct m text-
question pairs. Each pair only queries one argument.

• FE Def: using FE Definitions definied in Eq. 2 instead
of simple questions. A frame including m FEs will con-
struct m text-definition pairs. Each text-definition pair
only queries one argument.

• Frame Def: baseline model in our work, using frame def-
initions to query all arguments with only one single text-
definition pair.

14033



Model FN 1.5 FN 1.7
Precision Recall F1-score Precision Recall F1-score

semi-CRF (2017) - - 73.56 - - 72.22
Lin, Sun, and Zhang (2021) - - 73.28 - - 72.06
Kalyanpur et al. (2020) - - - 71 73 72
AGED (ours) w/o exemplar 71.93 76.78 74.28 74.02 75.46 74.73
AGED (ours) + FE definition w/o exemplar 73.43 76.31 74.84 75.39 75.36 75.37

Chen, Zheng, and Chang (2021) 69.27 75.39 72.20 - - -
Bastianelli, Vanzo, and Lemon (2020) 74.23 76.94 75.56 - - -
KID (2022) 71.7 79.0 75.2 74.1 77.3 75.6
AGED (ours) 73.06 79.84 76.30 75.84 77.87 76.84
AGED (ours) + FE definition 74.04 79.75 76.79 75.80 78.05 76.91

Table 2: Empirical results on the test set of FN 1.5 and FN 1.7. Models in the upper block do not use exemplar instances others
in the bottom block use exemplar instances as additional training data. AGED outperforms previous state-of-the-art by up to 1.3
F1 score (75.6 → 76.91). AGED still performs better than other models when trained with only frame definitions.

Model K

0 32 full

KID (GloVe) 56.26 65.95 70.32
AGED 82.45 84.06 86.26

Table 3: Experiments under zero-shot and few-shot scenar-
ios. Experiment settings is from Zheng et al. (2022). In zero-
shot scenarios, AGED performs much promising in zero-shot
and few-shot scenarios than KID (Zheng et al. 2022). The
difference between zero-shot and full instances is quite small
(82.45 → 86.26), which verifies that definitions can bring
the power of generalization and transfer learning.

Model Precision Recall F1-score ∆

15 → 17 73.28 74.17 73.72 -1.01
15 → 17 (new) 71.85 73.90 72.86 -1.87
17 → 17 74.02 75.46 74.73 -

Table 4: Zero-shot experiments from FN 1.5 to FN 1.7. 15
→ 17 means training with FN 1.5 and evaluating with FN
1.7. 15 → 17 (new) means evaluating with instances of new
frames in FN 1.7. The F1-score of 15 → 17 (new) shows the
zero-shot performance of AGED for new frames in FN 1.7.

Results are listed in Table 6. Role-specific simple
questions are not informative enough than definitions in
FrameNet. Using Frame Def is more efficient than FE Def
as a frame includes 10 FEs on average and it will take 10x
time to extract arguments when using FE Def. Besides, FE
Def gets higher precision, and Frame Def gets higher recall
because FE Def gives more detailed description of FEs and
Frame Def extracts all arguments in a more global view. A
straightforward method to combine strengths of two meth-
ods is to use FE Def as extra training data and this method
achieves fast and accurate performance.

Multi-Task Learning Frame Identification (FI) and
Frame Semantic Role Labeling (FSRL) are both subtasks
of Frame Semantic Parsing. Previous research (Bastianelli,

Model Precision Recall F1-score ∆

AGED 71.93 76.78 74.28 -
AGED w/o label 72.09 76.48 74.22 -0.06
AGED w/o target 62.36 65.18 63.74 -10.54

Table 5: Ablation study of target markers and label markers
in AGED.

Model Precision Recall F1 #pairs

Role-specific QA 72.32 75.12 73.69 44252
AGED (FE Def) 72.53 76.00 74.23 44252
AGED (Frame Def) 71.93 76.78 74.28 4458
AGED (All Def) 73.43 76.31 74.84 4458

Table 6: Comparison between Definitions and Role-Specific
Questions. All Def means using FE definitions as additional
training data. Using definitions is more effective than simple
questions. Frame Def is more efficient than FE Def because
it can extract all arguments simultaneously. All Def is a good
way to combine frame Def and FE Def together.

Vanzo, and Lemon 2020; Chen, Zheng, and Chang 2021;
Lin, Sun, and Zhang 2021; Zheng et al. 2022) has trained
their models with these subtasks in an end-to-end frame-
work. Holding the believe that interactions between subtasks
can contribute to all subtasks, they usually train their models
in multi-task learning. However, as reported in Bastianelli,
Vanzo, and Lemon (2020); Lin, Sun, and Zhang (2021),
multi-task learning is not beneficial for FSRL which means
training with FSRL only performs better than multi-task.

Jiang and Riloff (2021) is similar to AGED because we
both feed text-definition pairs to PLMs. We simply re-
implement their work by removing lexical unit definitions
and model FI as sentence pair multiple choice. We train
AGED in both subtasks and also train AGED in multi-task
learning. The results are in Table 7. The results of FI are con-
sistent. All frameworks get higher performance than single-
task when trained with FI and FSRL. Bastianelli, Vanzo, and
Lemon (2020); Lin, Sun, and Zhang (2021) cannot benefit
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Model FI FSRL
Accuracy ∆ Precision Recall F1-score ∆

Bastianelli, Vanzo, and Lemon (2020) 89.83 - 74.23 76.94 75.56 -
Bastianelli, Vanzo, and Lemon (2020) (m) 90.10 +0.27 74.56 74.43 74.50 -1.06
Lin, Sun, and Zhang (2021) 90.16 - - - 73.56 -
Lin, Sun, and Zhang (2021) (m) 90.62 +0.46 - - 73.22 -0.34

AGED 90.78 - 71.93 76.78 74.28 -
AGED (m) 91.63 +0.85 72.18 76.89 74.46 +0.18

Table 7: AGED trained with single-task v.s. multi-task (m). AGED for FI is a simple reimplementation version of Jiang and
Riloff (2021). Unlike previous multi-task frameworks, AGED can benefit from multi-task in both subtasks especially FSRL.

from multi-task in FSRL while AGED trained in multi-task
gets a 0.18 points improvement.

The results indicate that the use of definitions can narrow
the gap between FI and FSRL, because both Jiang and Riloff
(2021) and AGED require PLMs to understand the defini-
tions and encode text-definition pairs. Future work on frame
semantic parsing can focus on an end-to-end model with def-
initions.

Related Work
Frame Semantic Role Labeling Previous researches on
FSRL (Kshirsagar et al. 2015; Swayamdipta et al. 2017;
Bastianelli, Vanzo, and Lemon 2020; Zheng et al. 2022)
range from traditional SVM classifiers to deep neural net-
work architectures like LSTM, GCN, and pretrained lan-
guage models like BERT. However, they all first find can-
didate argument spans and then classify them into FEs. Ar-
guments are typically identified by sequence labeling archi-
tectures (Swayamdipta et al. 2017; Bastianelli, Vanzo, and
Lemon 2020) or span-based methods (Yang and Mitchell
2017; Peng et al. 2018) while interactions between argu-
ments are neglected. Recent researches (Chen, Zheng, and
Chang 2021; Zheng et al. 2022) propose well-designed ar-
chitectures to highlight interactions between arguments by
identifying the arguments sequentially. Such methods im-
plicitly consider relations between FEs and are not efficient
because of their sequential modeling. Label semantics is
also ignored in a typical role classifier, except Zheng et al.
(2022), where the ontology frame knowledge graph is used
in their work to model structure information between labels.

AGED directly models label semantics and interactions
between arguments by encoding text-definition pairs with
PLMs so it achieves fast and accurate performance.
Definitions in FrameNet Definitions in FrameNet are re-
cently studied and used for Frame Semantic Parsing. Jiang
and Riloff (2021); Su et al. (2021) focus on Frame Iden-
tification. Jiang and Riloff (2021) traverses all candidate
frames for the same target in a sentence and appends lexi-
cal unit definition, frame definition to original sentence for
each pair, then uses BERT to encode the inputs for further
classification. Su et al. (2021) combine frame definition with
frame-to-frame relations, and they use frozen BERT to en-
code frame definition as node features in the frame graph.
Besides, Zheng et al. (2022) extract FE relations from FE
definitions to construct a frame ontological knowledge graph

while the definitions are not encoded. Different from Jiang
and Riloff (2021), AGED concentrates on FSRL, but Jiang
and Riloff (2021) and AGED use similar input format. A
natural idea is to combine two models in multi-task learn-
ing which can explore interactions between these two tasks.

Query-based Framework Query-based methods (FitzGer-
ald et al. 2018; Meng et al. 2019; Du and Cardie 2020; Liu
et al. 2022) are common in many NLP tasks like Seman-
tic Role Labeling (SRL), Name Entity Recognition (NER)
and Event Argument Extraction (EAE). Query-based frame-
works generate queries from natural language questions or
templates, and these queries are used to extract argument
spans from the text that can answer the given questions or
fill the slots in template clozing (FitzGerald et al. 2018; Liu
et al. 2022). These frameworks show a significant improve-
ment in the generalization of models because label seman-
tics is contained in templates or questions. These templates
are either too naive to be informative enough or in need of
time-consuming human design. In FSRL, we do not need to
worry about this issue because the definitions in FrameNet
can directly serve as templates.

Ma et al. (2022) use event templates containing multiple
roles and argue that the event templates can be efficient in
extracting arguments and aware of argument interactions.
Frame definitions in AGED can also extract all arguments
in a frame and strengthen relations between them. Besides,
we use FE definitions as additional training data, because
FE definitions show fine-grained relations between FEs and
relations between FEs can reflect argument interactions.

Conclusion

In this paper, we propose a query-based framework AGED
for frame semantic role labeling. Frame definitions and FE
definitions can capture label semantics of FEs. Semantic re-
lations between FEs are also included in these definitions.
Under the guidance of definitions, AGED achieves fast and
accurate performance in two FrameNet datasets. In addi-
tion, AGED also shows the strong power of generalization
for zero-shot or few-shot frames, which verifies that the la-
bel semantics is captured in AGED. Definitions in FrameNet
are still potential, and further work can focus on a definition-
based end-to-end framework for frame semantic parsing.
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