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Abstract

Visual contents, such as illustrations and images, play a big
role in product manual understanding. Existing Product Man-
ual Question Answering (PMQA) datasets tend to ignore vi-
sual contents and only retain textual parts. In this work, to em-
phasize the importance of multimodal contents, we propose a
Multimodal Product Manual Question Answering (MPMQA)
task. For each question, MPMQA requires the model not only
to process multimodal contents but also to provide multi-
modal answers. To support MPMQA, a large-scale dataset
PM209 is constructed with human annotations, which con-
tains 209 product manuals from 27 well-known consumer
electronic brands. Human annotations include 6 types of se-
mantic regions for manual contents and 22,021 pairs of ques-
tion and answer. Especially, each answer consists of a tex-
tual sentence and related visual regions from manuals. Taking
into account the length of product manuals and the fact that
a question is always related to a small number of pages, MP-
MQA can be naturally split into two subtasks: retrieving most
related pages and then generating multimodal answers. We
further propose a unified model that can perform these two
subtasks all together and achieve comparable performance
with multiple task-specific models. The PM209 dataset is
available at https://github.com/AIM3-RUC/MPMQA.

Introduction
Product manuals contain detailed descriptions of product
features and operating instructions. They are often so long
that it is not easy for users to efficiently find the informa-
tion they are looking for. Therefore, Product Manual Ques-
tion Answering (PMQA) (Nandy et al. 2021; Castelli et al.
2020) aims to build an AI agent on product manuals to con-
veniently answer user questions. PMQA leverages textual
information in the manual, but ignores the visual contents,
such as illustrations, tables and images, which are also im-
portant for solving user problems. As shown in Figure 1,
the textual contents are insufficient to answer the question.
In contrast, a multimodal answer containing both textual
and visual contents can answer the question more clearly
and precisely, from which users can grasp answers more ef-
fectively and efficiently. Existing Multimodal Question An-
swering tasks are designed to answer questions from a single
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Question: How to take a selfie in the Selfie Count Down mode?
Textual-part Answer: You should put your fingers in front on your 
face as shown in the figure.
Visual-part Answer: 

Figure 1: In this case, the gesture of the ’Selfie Count Down
mode’ is hard to describe using only plain text, but can be
easily delivered with an image. In the MPMQA task, each
question is answered with multimodal content: a textual-part
answer and a visual-part answer.

web page (Chen et al. 2021; Tanaka, Nishida, and Yoshida
2021) or an infographic (Mathew et al. 2022), which are
not suitable for product manual question answering, because
product manuals always contain multiple pages and most
of the pages are irrelevant to the question. Therefore, to fill
the research gap in this area, we propose a challenging task
namely Multimodal Product Manual Question Answering
(MPMQA). It requires the model to comprehend both the
visual and the textual contents in an entire product manual
and provide a multimodal answer for a given question.

We construct a large-scale dataset named PM209 with hu-
man annotations to support the research on the MPMQA
task. It contains 22,021 QA annotations over 209 product
manuals in 27 well-known consumer electronic brands. To
support understanding of the multimodal content, we clas-
sify manual content into 6 categories (Text, Title, Product
image, Table, Illustration, and Graphic). Each question is
associated with a multimodal answer which is comprised of
two parts: a textual part in natural language sentences, and
a visual part containing regions from the manual. Table 1
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shows the basic comparison between PM209 and existing
PMQA datasets (Nandy et al. 2021). The scale of PM209 is
larger than existing PMQA datasets in terms of brands, man-
ual numbers, and QA pairs.

Considering most pages are irrelevant to a given question,
it is natural to split the MPMQA task into two subtasks:
firstly retrieving the most relevant pages and then generating
answers with detailed information. Thus a straightforward
solution for MPMQA is to apply two task-specific models.
However, both page retrieval and answer generation require
the model to correlate multimodal manual contents with the
question. It is possible to have both subtasks benefit from
each other. Therefore, we propose the Unified Retrieval and
Question Answering (URA) model that performs these two
steps with shared multimodal understanding ability. Specifi-
cally, URA uses a shared encoder to encode the multimodal
page in the retrieval and question-answering tasks. Based
on multitask learning, the URA model achieves comparable
performance with multiple task-specific models.

Our contributions are summarized as follows:

• We propose the novel MPMQA task, which requires the
model to understand multimodal content in the product
manual, and answer questions with multimodal outputs.

• We construct a large-scale dataset PM209 to support MP-
MQA. It contains not only semantic labels for manual
contents, but also multimodal answers for questions.

• For the MPMQA task, we design a unified model named
URA that can both retrieve relevant pages and generate
multimodal answers. It achieves comparable results with
multiple task-specific models.

Related Works
Product Manuals Question Answering
To build an automatic question-answering system, existing
works explore constructing datasets based on product man-
uals. TechQA (Castelli et al. 2020) collects 1400 user ques-
tions from the online forums and annotates the correspond-
ing answers from IBM technical documents. For each ques-
tion, TechQA annotates a single text span answer in the doc-
uments, similar to the strategy in SQuAD (Rajpurkar et al.
2016; Rajpurkar, Jia, and Liang 2018). Nandy et al. (Nandy
et al. 2021) propose S10 QA and Smart TV/Remote QA
datasets. They extract multiple text spans from the two Sam-
sung device manuals to answer each question. These works
leverage textual contents in manuals to build automatic QA
systems, but ignore crucial vision information. In this work,
we propose the MPMQA task, which requires models to un-
derstand both text and vision information to generate multi-
modal answers. Besides, our dataset PM209 is much bigger
than the aforementioned datasets in terms of the number of
products and the number of question-answering pairs.

Multimodal Question Answering
Many efforts have been made to answer questions from
a multimodal context. TextVQA (Singh et al. 2019), ST-
VQA (Biten et al. 2019), and EST-VQA (Wang et al.
2020) explore question answering on the image with scene

texts. They typically require the model to extract correct
scene text according to the question. ManyModalQA (Han-
nan, Jain, and Bansal 2020) and MultiModalQA (Tal-
mor et al. 2020) reason across text, tables and images
from Wikipedia. DocVQA (Mathew, Karatzas, and Jawa-
har 2021) performs question answering on industry docu-
ments. VisualMRC (Tanaka, Nishida, and Yoshida 2021),
WebSRC (Chen et al. 2021), WebQA (Chang et al. 2022)
and DuReadervis (Qi et al. 2022) require comprehension
on web pages. InfographicVQA (Mathew et al. 2022) fo-
cuses on arithmetic reasoning over infographics. Different
from previous multimodal inputs, the product manual is a
specific domain in terms of the question type and the con-
tent. Since product manuals usually contain detailed opera-
tion instructions for a specific device, the questions begin-
ning with ’How to’ are very common (Nandy et al. 2021),
while this type of contents and questions rarely occur in gen-
eral domain datasets. Moreover, the answers in the above-
mentioned works are all in text format, including text span,
multi-choice, and generative sentences. Multimodal answers
are less studied in the existing literature. MIMOQA (Singh
et al. 2021) explores incorporating a Wikipedia-sourced im-
age as a part of the answer. Apart from the domain differ-
ence, the setting in MIMOQA is rather ideal, as it assumes
all text answers associated to at least one complementary im-
age. This assumption does not hold in product manuals. The
visual-part answer in MPMQA is very diverse, not restricted
to images. It can also be regions like titles and tables. More-
over, most aforementioned works search for answers within
a single document or web page. However, in the real sce-
nario of PMQA, the target pages are not given in advance,
and models have to locate relevant regions by themselves
from an entire manual. To better fit the real application sce-
narios, our MPMQA task is designed to answer a question
according to a complete manual rather than a single page,
which is much more challenging than previous works.

MPMQA Task and PM209 Dataset
This section first presents a formal definition of the MPMQA
task, and then describes the detailed process of constructing
the PM209 dataset.

MPMQA Task Definition

TASK (MPMQA). Given a question Q and an n-page
product manual M = {Pi}n1 , where Pi = {ri1, . . . , rik}
refers to a page in M and rij represents a semantic region
in Pi, the model produces a multimodal answer A = (T,R)
containing two parts, with T as the textual-part answer in
natural language sentences and R = {ri}m1 as the visual-
part answer consisting of multiple semantic regions.
Since almost all questions are relevant to a very small num-
ber of pages in a manual, the MPMQA task can be naturally
split into the following two subtasks:

SUBTASK I (Page Retrieval). Given a question Q and an
n-page product manual M = {Pi}n1 , the model finds the
smallest subset {P(i)}k1 that contains the answer of Q.
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Dataset # Manuals # Brands # QA pairs Multimodal content Answer type

S10 QA 1 1 904 % Extractive
Smart TV/Remote QA 1 1 950 % Extractive
PM209 (ours) 209 27 22,021 ! Multimodal

Table 1: Comparison between other question answering datasets on product manuals.

SUBTASK II (Multimodal QA). Given a question Q and
k relevant pages {P(i)}k1 , the model generates a multimodal
answer A = (T,R) as defined in the TASK MPMQA.

PM209 Dataset Construction
We construct the PM209 dataset to support the MPMQA
task. We first collect a set of product manuals. Crowd work-
ers from the Maadaa Platform1 then annotate the semantic
regions r for each page P in the manuals. After that, the
OCR words W = {wi, bi}n1 inside each semantic region
r are automatically extracted. Finally, crowd workers cre-
ate (question, multimodal answer) pairs (Q,A) based on the
content of each manual. All crowd workers who participated
in this project are proficient English speakers.
Product Manual Collection. We collect 209 English prod-
uct manuals in total from well-known consumer electronic
brands. These manuals cover 27 brands and 90 categories.

To ensure the diversity, we only keep the longest manual
for the products in the same series. All manuals are born-
in-digital PDF files and we render each page into image. We
manually remove pages that are not suitable for posing ques-
tions, such as empty pages and cover pages, and ensure that
all manuals in PM209 contain not less than 10 valid pages.
Semantic Region Annotation. Thirteen crowd workers are
recruited to annotate the semantic regions ri of each page in
the product manuals. Two crowd workers then further vali-
date the annotations. A semantic region consists of a bound-
ing box bi and a semantic label ci. We define six semantic
regions as follows.

• Text. The body paragraphs that convey major textual in-
formation in the product manual.

• Title. The words summarize or indicate the section of the
whole page or nearby paragraph, Titles typically consist
of a few words and have different fonts than the words in
the paragraph (e.g.larger size, in bold or different color).

• Product image. Product relevant images in the manual,
including the picture of product, operating interface, and
components of the product etc. Product irrelevant images
such as decorative drawings are not included.

• Illustration. Visually rich regions to describe a particu-
lar function, operation, and purpose of the product. They
usually but not always consist of a combination of a prod-
uct image and a surrounding text notes.

• Table. Regions that convey the information of text in a
row-column format.

• Graphic. Visually rich regions indicating the name and
position of a product component. It typically consists of

1https://maadaa.ai

a product image, some surrounding texts, and indicators
(lines, arrows, and serial numbers) that align the names
in the text regions with positions in the product image.

To reduce the burden of human annotation, we leverage
PyMuPDF (McKie and Liu 2016) to automatically extract
bounding boxes of paragraphs and images in each page. We
attach the ’Text’ and ’Product image’ labels to the paragraph
and image bounding boxes produced by PyMuPDF respec-
tively. The crowd workers then modify these initial bound-
ing boxes and generate the above-mentioned semantic re-
gions. The modification options include moving, resizing,
relabeling categories, creating, and deleting.
Word Extraction. Since the product manuals are born-in-
digital, we automatically extract OCR words {wi, bi}n1 in
each region through PyMuPDF (McKie and Liu 2016).
QA Annotation. Twenty crowd workers are recruited to
create (question, multimodal answer) pairs (Q,A) for each
product manual. Considering the large cognitive load for
reading the entire manual, and the fact that a question is
usually only relevant to a few pages, we divide the entire
product manuals into groups, and each group contains con-
secutive 5 pages. Crowd workers focus on each group and
pose two questions for each page. For each question, they
create a multimodal answer, which consists of two parts: the
textual part T that is written to describe the answer in natural
language sentences, and the visual part R = {ri}m1 that is
selected from the semantic regions. To simulate the real user
scenario, the annotators are encouraged to write the question
in the first person, and provide textual part answer T in the
second person.

Statistics and Analysis
This section presents the statistics and analysis of the pro-
posed PM209 dataset.
Manuals. PM209 consists of 209 product manuals in 27
well-known consumer electronic brands and 90 product cat-
egories. Figure 2 shows the top 10 products and brands. Note
that the top 10 products cover less than 50% of all manuals,
which reveals that the manuals in PM209 are highly diverse.

We also analyze the distribution over the number of pages
in Figure 3a. It shows that PM209 are also diverse in lengths,
ranging from 10 pages to 500 pages. The average length of
the manuals is 50.76 pages.
Semantic regions. Figure 3b presents the statistics of the
semantic regions. We observe that product manuals indeed
contain rich layout information. Specifically, 65.1% of pages
contain visually-rich regions such as product images, illus-
trations, tables and graphics. And 22.1% of these regions
occur in the visual-part answer.
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Figure 2: Top 10 brands (left) and products (right) in PM209.
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Figure 3: Statistics over pages and regions.

Questions and Textual-part Answers. The comparison be-
tween PM209 and other Multimodal Question Answering
datasets is shown in Table 2. PM209 has a higher percentage
of unique questions (98.46%) and unique answers (98.35%).
It further indicates the high diversity of the PM209 dataset,
since we avoid the appearance of similar product manuals,
and both the questions and the answers in PM209 are specif-
ically designed for each product. In addition, PM209 has the
longest answer compared to other datasets, since the instruc-
tion and procedural answers can be long in product manuals.

Figure 4 shows the word cloud of the questions and
textual-part answers. We find that questions in PM209 con-
tain both factual words such as ’function’ and ’information’,
and procedural words including ’begin’, ’step’, and ’after’.
Apart from guidance-related questions such as ’what’ and
’how’, the frequency of pronoun ’I’ has a high frequency in
the questions. Correspondingly, the word ’you’ appear fre-
quently in the answers. This is as expected since we simu-
late the real-world scenarios where users pose questions in
the first person, while the QA system answers the questions
in the second person. Figure 5 shows the first 4-grams of
questions and answers. Most questions begin with the word
’what’ (43.91%) and ’how’ (25.72%). Questions with ’how’
tend to ask about the procedural process of an operation.
Questions with ’what’ are typically about factual informa-
tion about the product usage, except in the case of ’What
should I do ...’, which are also procedural questions. Besides,
there are 7.71% of questions starting with the word ’can’.
These questions are usually confirming something uncertain
about the product, e.g. ’Can I use this device underwater?’.
Their answers usually begin with ’yes’ or ’no’.
Visual-part Answers. Apart from the textual-part answers,
each question in PM209 is also paired with a set of regions
in the product manual. These regions can be seen as comple-

Figure 4: Word clouds for questions (left) and textual-part
answers (right) in PM209.

Figure 5: First 4-grams of questions (left) and answers
(right) in PM209.

Dataset Question Answers Page
%Uniq. Length %Uniq. Length Length

ST-VQA 84.84 8.80 65.63 1.56 7.52
TextVQA 80.36 8.12 51.74 1.51 12.17
DocVQA 72.34 9.49 64.29 2.43 182.75
VisualMRC 96.26 10.55 91.82 9.55 151.46
InfographicVQA 99.11 11.54 48.84 1.60 217.89
PM209 98.46 9.77 98.35 15.74 231.36

Table 2: Comparison of Multimodal Question Answering
datasets w.r.t. uniqueness rate and the average length of
questions and answers, and the average length per page.
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Figure 6: Visual-part answers break down by semantic labels

mentary to understanding the text answers. Figure 6 shows
the number of visual-part answers broken down by seman-
tic labels. A significant portion (21.8%) of questions include
visually-rich regions (product images, illustrations, tables,
and graphics) in their visual-part answers. This portion is
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Train Val Test
# Manuals 146 21 42
# Pages 7004 1011 2003
# QAs 15839 2257 3925

Table 3: Number of samples in each data split.

higher than VisualMRC, in which 9.1% of questions are rel-
evant with visually-rich regions (picture and data). It indi-
cates that visual components can be more important in un-
derstanding product manuals than open-domain web pages.
Data splits. We divide the manuals in the PM209 dataset
into Train/Val/Test as shown in Table 3.

Proposed Model
We propose a Unified Retrieval and Question Answering
(URA) model for the new MPMQA task, which can perform
page retrieval and multimodal QA all together. As shown
in Figure 7, the model consists of three key components:
a URA Encoder, a URA Decoder, and a Region Selector.
For the page retrieval task, URA encodes the questions and
the pages separately, and calculates their relevant scores with
token-level interaction. For the multimodal question answer-
ing, URA encodes questions and pages jointly, and produces
the textual part and visual part of the multimodal answer
through the Decoder and Region Selector.

Input Embeddings
URA embeds questions and pages similar to Lay-
outT5 (Tanaka, Nishida, and Yoshida 2021).
Question tokens. Question Q is tokenized into subword
units with SentencePiece (Kudo and Richardson 2018). The
special token </s> denotes the end of the question.

xtokenQ = [q1, q2, . . . , qm,</s>] (1)

Region tokens. The region tokens consist of a special to-
ken <ci> followed by the OCR words in this region. <ci>
denotes the semantic label of ri.

xtokenri = [<ci>, wi1, . . . , wik] (2)

Page tokens. The sequence of page tokens is the concatena-
tion of all region tokens in the page:

xtokenP = [xtokenr1 ; . . . ;xtokenrn ] (3)

Special embeddings. Apart from the token embeddings, we
add segment embedding zseg to distinguish question/page
tokens. To incorporate visual and layout information, we add
2D positional embeddings zpos (Xu et al. 2020) and ROI
embeddings zroi (Anderson et al. 2018) to each page token.

zQ = ztokenQ + zsegQ (4)

zP = ztokenP + zsegP + zpos + zroi (5)

Page Retrieval
Page Retrieval aims to find the relevant pages for a ques-
tion, which requires producing relevant scores between the
question and pages. Our URA encoder f processes Q and P
separately.

hQ = f(zQ; θf ) (6)
hP = f(zP ; θf ) (7)

Since the clues to answer a question usually only appear in
a small part of the page, considering the large content of the
page, it is difficult for a single global feature to retain de-
tailed clues. Thus, different from general retrieval methods
that calculate the cosine similarity between global features,
we perform token-level interaction (Yao et al. 2021) between
Q and P as shown in Figure 7(a). Specifically, We calculate
the token-level relevant scores sij between each token in hi

Q

and hj
P , and aggregate them into two global relevant scores:

question-to-page relevant score SQ→P and page-to-question
relevant score SP→Q:

sij = ∥hi
Q∥⊤∥h

j
P ∥ (8)

SQ→P =
1

N

∑
i

max
j

(sij) (9)

SP→Q =
1

M

∑
j

max
i

(sij) (10)

We optimize the model by minimizing the NCE loss (Gut-
mann and Hyvärinen 2010) on both the Q → P and P → Q
directions. The loss function for Page Retrieval is written as:

L′
(·) =

1

B

∑
i

log
exp(Sii

(·)/τ)∑
j exp(S

ij
(·)/τ)

(11)

LPR =
1

2
(L′

Q→P + L′
P→Q) (12)

Where τ = 0.01 denotes the temperature parameter of NCE,
and B denotes the batch size. Note that since we focus on re-
trieving pages relevant to a given question during inference,
we use the score SQ→P to rank the candidate pages.

Multimodal Question Answering
Compared to finding relevant pages for a question, answer-
ing a question requires a stronger understanding of both the
question and the multimodal contents of the page. Thus, dif-
ferent from Page Retrieval, URA encodes question Q and
page P jointly to perform early interaction for Multimodal
QA. We get the joint hidden state H as follows:

H = f([zQ, zP ]; θf ) (13)

Textual-part Answer. As shown in Figure 7(b),
the URA decoder receives H and generates the textual-part
of the multimodal answer auto-regressively. We train the
model in a teacher-forcing manner by minimizing negative
log-likelihood loss as below:

LTA = − 1

N
log p(Y |Y<, H) (14)

Where Y = [y1, . . . , yN ] are the ground truth tokens.
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Figure 7: Overview of the Unified Retrieval and Question Answering (URA) model.

Visual-part Answer. The Region Selector RS selects a set
of regions to compose the visual-part of the multimodal an-
swer. RS is implemented as a linear projection layer fol-
lowed by a sigmoid activation. The encoder hidden states
corresponding to the <ci> token is chosen to decide whether
ri is relevant to the question. We minimize the BCE loss to
train the model as follows:

pi = RS(H<ci>; θRS) (15)

LVA = − 1

N

∑
i

yi log(pi) + (1− yi) log(1− pi) (16)

Where yi = {0, 1} denotes whether the region ri belongs to
the ground truth vision-part answer.

Multitask Learning
Finally, URA is optimized in a multitask learning manner,
where the final loss function is calculated as follows:

LURA = LPR + LTA + LVA (17)

Experiments
We conduct experiments to validate our URA model on the
proposed PM209 dataset.

Evaluation Setup
Evaluation settings. As mentioned before, MPMQA can
be naturally split into two subtasks. Thus, we design two
evaluation settings for subtask II, Multimodal QA: 1) sep-
arate setting: evaluating QA given the ground-truth pages;
2) cascade setting: evaluating QA given retrieved pages. We
adopt the separate setting by default if not specified.

Evaluation metrics. For Page Retrieval, we calculate Re-
call@{1,3,5} in each manual, and weigh the scores across
manuals by the number of pages. For Textual-part Answer,
we report sequence generation metrics BLEU4 (B4) (Pa-
pineni et al. 2002), METEOR (M) (Banerjee and Lavie
2005), ROUGE-L (R-L) (Lin 2004) and CIDEr (Vedantam,
Lawrence Zitnick, and Parikh 2015). For Visual-part An-
swer, we report the average Precision (P), Recall (R), and
F1 scores on the whole dataset.

Baselines
We compare our URA model with the following baselines:
• PR: the Page Retrieval task-specific model. It can con-

duct the Page Retrieval task only.
• PRg: the Page Retrieval task-specific model that uses

global features to measure the relevancy between ques-
tions and pages.

• PR+TA: the multi-task model that is jointly optimized
with Page Retrieval and Textual-part Answer tasks.

• PRg+TA: the multi-task model that is jointly optimized
with the Page Retrieval (global features) and Textual-part
Answer tasks.

• 3 Single: 3 separate task-specific models for Page Re-
trieval, Textual-part Answer, and Visual-part Answer.

Implementation Details
We implement the above-mentioned models based on Py-
torch (Paszke et al. 2019) and Huggingface Transform-
ers (Wolf et al. 2020). The encoder and decoder of the mod-
els are in standard transformer architecture (Vaswani et al.
2017) with T5 (Raffel et al. 2020) initialization. The models
adopt the T5BASE structure that consists of 12 transformer
layers with 768-d hidden states. We train the models for 20
epochs with a batch size of 8 and a learning rate of 3e-5. It
takes about 20 hours to converge on 1 NVIDIA RTX A6000
GPU. We choose the model that performs best on the val-
idation set, and report its performance on the test set. We
consider the most relevant page for the Multimodal QA task.

Results and Analysis
Comparing URA with several baselines. Table 4 shows
the comparison between URA and the baselines described
above. Comparing row 1 and 2, we observe that retriev-
ing with global features performs much worse than with the
token-level interaction method described in the previous sec-
tion, which indicates that the Page Retrieval task requires
fine-grained interaction between questions and pages, since
question-related clues usually occur in local area of the page.
Additionally, jointly optimizing TA with PRg (row 3) hurts
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Model Page Retrieval Textual-part Answer Visual-part Answer
R@1 R@3 R@5 B4 M R-L C P R F1

1 PRg 39.0 61.2 71.3 - - - - - - -
2 PR 80.3 93.5 95.8 - - - - - - -
3 PRg+TA 38.3 60.8 70.4 41.5 31.8 57.4 345.3 - - -
4 PR+TA 80.7 93.0 95.6 42.4 32.4 58.5 355.3 - - -
5 URA (PR+TA+VA) 81.8 94.4 96.4 42.9 33.0 59.5 361.6 81.1 56.6 66.7
6 3 Single 80.3 93.5 95.8 42.4 32.4 59.6 367.7 75.7 60.1 67.0

Table 4: Comparing the URA model with several baselines on Page Retrieval and Multimodal QA.

Model Textual-part Answer Visual-part Answer
B4 M R-L C P R F1

3 Single 38.0 29.6 55.1 323.9 76.9 50.1 60.7
URA 38.9 30.3 55.5 324.6 82.5 48.3 61.0

Table 5: Evaluate Multimodal QA under the cascade setting.

both TA (row 6) and PRg (row 1). In contrast, jointly train-
ing TA and PR (row 4) affects each other less. It may be
because that question answering task requires fine-grained
understanding, and it does not conflict with the token-level
interaction in PR. Finally, jointly training with VA also helps
both the Page Retrieval and TA task (row 5). Compared to
the 3 task-specific models, URA achieves even better perfor-
mance over Page Retrieval and Multimodal QA.
Multimodal QA under cascade setting. Table 5 shows
that URA also outperforms multiple task-specific models
under the cascade setting. However, we observe a large per-
formance gap between the separate setting and the cascade
setting. Considering that the cascade setting is closer to real
applications, the Page Retrieval task could be the bottleneck
of the MPMQA. Thus, investigating more powerful retrieval
models, or models that can directly answer questions from
the whole manual will benefit the MPMQA task.
Multimodal QA broken down by Semantic Regions. Ta-
ble 6 shows the URA performance breaking down in seman-
tic categories. URA performs well on text regions, but worse
on visually-rich regions such as product images, illustra-
tions, tables, and graphics, which indicates that a more pow-
erful multimodal understanding ability is required to achieve
better performance in the MPMQA task.
Human evaluation. We conduct a human evaluation to
verify whether the multimodal answer is helpful for user
understanding. We sample 50 question-answer pairs from
the test set of PM209. We inference the TA task-specific
model and URA on this subset to get the Text-only Answer
and Multimodal Answer respectively. Considering the an-
notators may easily distinguish the two models according
to whether there are visual-part outputs, we attach visual-
part outputs to the text-only answers with two baseline ap-
proaches: 1) random region: randomly selecting two regions
from the page; 2) nearest region: selecting the neighbor re-
gion that shares the most OCR words with the textual an-
swer. We provide the question and four answers simultane-
ously to 20 human evaluators, and ask them to rate each

Region Textual-part Ans. Visual-part Ans.
B4 M R-L C P R F1

Text 43.1 33.2 59.8 364.9 84.6 72.6 78.2
Title 38.8 30.6 57.6 366.6 68.4 44.8 54.1
Product image 36.5 29.2 55.2 305.9 58.1 4.5 8.3
Illustration 37.7 30.1 58.9 332.6 32.6 3.0 5.4
Table 36.8 29.1 50.4 271.1 57.4 15.8 24.8
Graphic 32.9 27.1 51.3 271.2 60.8 16.2 25.5

Table 6: Multimodal QA results on each semantic region.

Model MOS
TA+random region 2.11
TA+nearst region 2.67
URA 3.52
Human 4.70

Table 7: Mean Opinion Score of the human evaluation.

answer by 1-5 points according to whether the answer is
helpful to address the given question. The four answers in-
clude: two text-only answers attached with visual-part out-
puts, the multimodal answer produced by our model, and
the ground truth multimodal answer by humans. The Mean
Opinion Score (MOS) of the 4 answers is shown in Table 7.
It shows that the multimodal answer produced by URA are
more helpful than text-only answers.

Conclusion
In this paper, we propose the Multimodal Product Manual
Question Answering (MPMQA) task, which requires the
model to comprehend multimodal content in an entire prod-
uct manual and answer questions with multimodal outputs.
To support the MPMQA task, we construct the large-scale
dataset PM209 with human annotations. It contains 22,021
multimodal question-answering pairs on 209 product manu-
als across 27 well-known consumer brands. The multimodal
answer to each question consists of a textual-part in natu-
ral language sentences, and a visual-part consisting of re-
gions from the manual. For the MPMQA task, we further
propose a unified model that retrieves relevant pages and
generates multimodal answers based on multitask learning.
It achieves competitive results compared to multiple task-
specific models. We release the dataset, code, and model at
https://github.com/AIM3-RUC/MPMQA.
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