The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Preserve Context Information for Extract-Generate
Long-Input Summarization Framework

Ruifeng Yuan', Zili Wang?, Zigiang Cao’® *, Wenjie Li' *

! The Hong Kong Polytechnic University
2 Xiaohongshu Inc
3 Institute of Artificial Intelligence, Soochow University, China

Abstract

The Extract-generate framework has been a classic approach
for text summarization. As pretrained language models strug-
gling with long-input summarization for their high memory
cost, extract-generate framework regains researchers’ inter-
ests. However, the cost of its effectiveness in dealing with
long-input summarization is the loss of context information.
In this paper, we present a context-aware extract-generate
framework (CAEG) for long-input text summarization. It fo-
cuses on preserving both local and global context information
in an extract-generate framework with little cost, and can be
applied to most of existing extract-generate summarization
models. CAEG generates a set of context-related text spans
called context prompts for each text snippet and use them to
transfer the context information from the extractor and gener-
ator. To find such context prompts, we propose to capture the
context information based on the interpretation of the extrac-
tor, where the text spans having the highest contribution to
the extraction decision are considered as containing the rich-
est context information. We evaluate our approach on both
long-document and long-dialogue summarization datasets:
arXiv and QMSum. The experiment results show that CAEG
achieves the-state-of-art result on QMSum and outperforms
other extract-generate based models in arXiv.

Introduction

Text summarization aims to generate a concise version of
the source document while preserve its salient information.
There are mainly two types of approaches for text summa-
rization, extractive summarization and abstractive summa-
rization. As a combination of the two approaches, extract-
generate framework has been widely used in text sum-
marization. It first extracts salient text snippets from the
source document with an extractor model and then com-
presses the extracted text as the summary with a generator
model. As pretrained language models struggling with long-
input summarization due to the high memory complexity
of full self-attention, extract-generate summarization frame-
work regains researchers’ interests.

Instead of focusing equally on the whole source docu-
ment like other long-input summarization models includ-
ing sparse attention transformers and hierarchical models,

*Corresponding authors
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13932

Source Text
| — | —
——— ——— Global
Context
—— ——
[] [I 9
L1 Tm
Extractor Extractor Local
Context
C J
[T
—— —
— — 1
T; y<t x;j y<t
\ Global
Generator Generator Context
C J

e

Yt

Figure 1: The extract-generate framework for long-input
summarization. The grey strips stands for text snippets such
as sentences or utterances from the source document. This
figure shows that in the extract generate summary frame-
work, both local and global context information is lost.

the extract-generate summarization framework is based on
the assumption that only a part of salient source docu-
ment is useful for the summarization. This not only makes
the framework follow the human intuition when dealing
with long input-summarization, but also allows it to handle
the summarization input at any length. Hence, the extract-
generate summarization framework achieves a success in
long-input text summarization (Pilault et al. 2020; Zhao,
Saleh, and Liu 2020; Bajaj et al. 2021; Zhang et al. 2021;
Mao et al. 2021). However, as shown in Figure 1, the cost of
its effectiveness in handling long-input summarization is the
loss of context information. One the one hand, there exist a
gap between the extractor and generator, where the context
information can not be transferred from the continuous rep-

resentation in extractor to the dispersed snippets in input of
the generator. On the other hand, the framework leverages
a chunking strategy in both extractor and generator to pro-
cess a longer input, which obstructs the access to global con-
text information between the chunks. Some previous works
(Xiao and Carenini 2019; Cui and Hu 2021) has noticed
this problem and propose context-aware extractive models
to capture the global context information in extractor. Un-
fortunately, they do not solve this problem in the perspective
of the whole framework and the context information still can
not be effectively transferred from extractor to generator.

In this paper, we aim to investigate the influence of the
context information and propose a context-aware extract-
generate framework (CAEG) for long-input summarization.
It aims to preserve both local and global context information
from the extractor to the generator and utilize them to en-
hance the generation process. To build a bridge between the
extractor and generator, CAEG generates a set of context-
related text spans called context prompts for each text snip-
pets and use them to transfer the context information. To
generate such context prompts, we propose to capture the
context information through the interpretation of the extrac-
tor. Considering that context information is one of the deci-
sive factors of the extractive summarization, we assume that
the text spans having the highest contribution to the extrac-
tion decision is considered as containing the richest context
information. Here, we adopt a attention-based interpretation
approach called attention rollout (Abnar and Zuidema 2020)
to generate the context prompts. Then we add the context
prompts to the generation process through simple concate-
nation. In terms of local context information, we concate-
nate the extracted snippets with their corresponding context
prompts. In terms of global context information, each ex-
tracted snippet are concatenated with context prompts from
its most related snippet to capture the global dependency.
In this case, CAEG can be easily applied to most of existing
summarization models based on extract-generate framework
without largely increasing the complexity or memory cost of
the model.

We conducted experiments on two long-input summariza-
tion datasets: arXiv (Cohan et al. 2018) for long-document
summarization, and QMSum (Zhong et al. 2021) for long-
dialogue summarization. Taking a recent proposed extract-
generate summarization model DYLE (Mao et al. 2021) as
the backbone, our approach achieves improvement on both
datasets compared to the base model and obtains the state-
of-the-art result on QMSum. These experiments suggest the
effectiveness of CAEG in preserving the context informa-
tion. We conclude our contributions as follows:

* We firstly investigate the influence of context information
loss for extract-generate framework in long-input sum-
marization and propose the CAEG for this problem.

* We introduce a new approach for capturing the context
information based on the interpretation of the extractor.

The experiment result shows that CAEG is capable of
effectively preserving the context information from the
extractor to the generator without largely increasing the
complexity or memory cost of the model.

13933

Related Work
Extract-Generate Text Summarization

Coarse-to-fine frameworks containing multiple stages are
used in many text generation tasks, such as text summariza-
tion, dialogue state tracking, and neural storyline generation.
In text summarization, the two-stage extract-generate frame-
work is commonly used. This framework first extracts im-
portant text snippets from the input, followed by generating
an overall summary. Some researchers (Mehdad et al. 2013;
Lebanoff et al. 2019) propose to extract a set of similar sen-
tence clusters and then fuse each cluster to obtain a summary
sentence. More researchers (Pilault et al. 2020; Zhao, Saleh,
and Liu 2020; Bajaj et al. 2021; Zhang et al. 2021) apply
extract-generate framework to the long-input summarization
to overcome the capability limitation of transformer models
such as BERT or PEGASUS. DYLE (Mao et al. 2021) fur-
ther extends the idea and presents a dynamic latent extrac-
tion approach that generate dynamic snippet-level attention
weights during decoding. However, these models seldom fo-
cus on the loss of the context information in the extract-
generate framework. Hence, we aim to enhance these exist-
ing extract-generate summarization models with the context
information using a cost-efficient approach in this paper.

Long-Input Summarization

Long-input summarization has attracted more attention re-
cently in different domains such as news, science paper,
dialogue and etc. One solution is to adopt transformers
with the sparse attention mechanism. Longformer (Belt-
agy, Peters, and Cohan 2020) combines sliding windows
with global attention patterns, while BigBird (Zaheer et al.
2020) uses sliding windows and random blocks. Reformer
(Kitaev, Kaiser, and Levskaya 2020) adopts the locality-
sensitive hashing to replace the dot-product attention. De-
spite focusing on self-attention, some researchers (Huang
et al. 2021) proposes head-wise positional strides to im-
prove the efficiency of the cross-attention. Some hierarchi-
cal models also have been proposed for long-input summa-
rization. HAT-Bart (Rohde, Wu, and Liu 2021) presents a
transformer with hierarchical attention that utilizes informa-
tion from both sentence and paragraph-level. HMNet (Zhu
et al. 2020) proposes a hierarchical structure that captures
discourse-level information and speaker roles for dialogue
summarization. As mentioned above, the extract-generate
summarization framework also becomes a major solution
for handling longer input. Compared with the other two
types of models, we believe models based on this framework
achieve a good balance between performance and computa-
tional cost.

Method

The extract-generate framework has been widely used in
long-input summarization. It is usually composed of two
transformer-based models, an extractor that extracts salient
snippets from the source document and a generator that com-
press the extracted snippets into summaries. In this paper,
we aim to enhance such framework by preserving previously

lost context information. An overview of our proposed ap-
proach CAEG is shown in Figure 2. In the first subsection,
we briefly introduce the extractor-generator framework for
long-input summarization. In the second subsection, we in-
troduce how we extract the context prompts based on the
interpretation of the extractor and use it to transfer the local
context information. The context prompt can also be used on
preserving the global context information, which we elabo-
rate on in the third subsection. The application of CAEG is
shown in the last subsection.

Extract-Generate Framework

In an extract-generate summarization framework, the input
is composed of m text snippets, X = (x1, ..., T,), and an
optional query ¢ if it is a query-focused summarization task.
The output is a summary y containing 7" tokens. In terms of
document summarization, we take each sentence as a snip-
pet. In terms of dialogue summarization, dialogue utterances
are regarded as snippets. The framework aims to generate a
sequence of summary tokens y given the input text X and
the generated tokens in previous steps y < t with an extrac-
tor I, and a generator G:

T

Po(y|q,X)= HP9+17 (ye | 4, X, y<t)
=1

ey

The goal for extractor is to output a score s; for each text
snippet z; taking the source text and the optional query as in-
put. However, limited by GPU memory, it is impractical to
encode the full source text within in one language model.
Hence, the text snippets are divided into multiple chunks
X = (cy, ..., ¢y), €ach containing consecutive snippets. We
feed each chunk and the optional query to the extractor and
compute score for each snippet in the chunk. Then top-N
snippets X n with the highest scores are extracted from the
document X:

Xg =topN(Ey(q, i, ¢j),x; € cj,c; € X)) (2)

Note that even the extracted snippets in long-input sum-
marization may still exceed the capability of a generation
model. Some researchers adopt a strategy called fusion in
decoder. It allows the generator first encode each extracted
snippet independently and then concatenate the hidden states
of all snippets as the input of the decoder. DYLE (Mao et al.
2021) proposes to predict the generation probability and the
dynamic weight on each snippet and obtains the final genera-
tion probability by marginalizing over all extracted snippets.

In this paper, we adopt the same generator proposed by
DYLE. It feeds each extracted snippet to the model and ob-
tains the hidden state h! and generation probability on every
decoding time step. An additional MLP is used to map the
hidden state to a scalar weight. The dynamic weight allows
the generator to focus on different snippets at different time
steps. The final generation probability at time step ¢ is com-
puted by:

ye=Y_ Go(qvi,y<t) MLP(h) 3)

T, €EXN

13934

Local Context Information

Local context refers to the neighboring snippets of a target
snippet within one chunk. Such information is fully utilized
by the extractor to extract the salient snippets. However, due
to the extracted snippets are transformed back to discrete
representation after the extraction, the local context informa-
tion can not be transferred to the generator. For example, we
assume there is a snippet x; mentioned entity A and entity
B and its local context mentioned entity A multiple times.
An extractor can easily extract the snippet x;, since entity
A is considered salient information. When snippet x; is fed
into the generator, the model can no longer identify whether
entity A or entity B is the crucial one. In this case, the loss
of local context information creates negative effects on the
summarization.

The problem lies ahead is how to obtain the local context
information from the extractor and apply it to the genera-
tor. An intuitive solution is to extend each extracted snippet
by concatenating its neighboring snippets with it, which in-
evitably brings noise and efficiency drop. Another solution
is to transfer the snippet representations in the extractor to
the generator. However, these representations may not be
effective, since the extractor and generator are usually in-
dependent models. A wildly accepted idea is that extractive
summarization mainly depends on the context information.
Inspired by this, we make an assumption that the text spans
that contribute the most to the snippet extraction contain the
richest context information. We named these text spans con-
text prompts. In CAEG, we generate these context prompts
through the interpretation of the extractor, and use them to
represent the local context information.

A commonly used interpretation approach for a
transformer-based model is the attention distribution.
However, information originating from the input tokens
gets increasingly mixed across layers of the Transformer,
which makes attention weights unreliable as explanations.
Hence, we adopt attention rollout (Abnar and Zuidema
2020) to interpret the extractor. Its glob is to quantify the
flow of information in self-attention layers by simulating the
information propagated from the input layer to the higher
layers. Attention rollout assumes information propagation
in a transformer as a directed acyclic graph, where the
nodes refer to the token representations at each layer and
edges denote the attention. The attention weight is regarded
as the proportion of information transferred between two
nodes. In this case, the information propagated between two
nodes through a certain path is computed by multiplying
the weights of all edges in the path. Considering there exist
multiple paths between two nodes, the total amount of
information is the sum of all possible paths between two
nodes. At the implementation level, the attentions rollout
score at 7 layer is computed by recursively multiplying the
attention weight matrices in all layers below:

A(l) A(li—y) if i>0

{ A(ly) if i=0
where A = 0.5Wg + 0.51 refer to the raw attention
updated by residual connections, A represents the attention

A(ly)

4)

o | Q
o ||
€1 43904

Chunk 1

Chunk k -1

Bl 4390y
Eij““ﬂ
[]

I

Source
Document

HDD N

1ldve

g

Cosine .
Similarity . - Final

distribution

— OO

Local context prompt
[] Global context prompt

[] snippet
W, CLS

1yvd

Figure 2: The framework of our proposed CAEG framework. The extractor we used is RoOBERTa-base, and the generator is
BART-large. Here, we use the blocks with various colors to represent the different types of information in the model and adopt
the dot lines to emphasize the information flow added for preserving the context information. To obtain a clear observation, we

simplified the structure of the generator in the figure.

rollout, and the multiplication operation denotes matrix mul-
tiplication.

As shown in Figure 2, for an extracted snippet x;, we use
the attention rollout score of its [CLS] token to extract K
context prompts L; = [I},12,..,1¥]. Here, we mask the at-
tention rollout scores for all [CLS] tokens, since [CLS] token
itself does not contain any effective context information. A
sliding window strategy is adopted to extract the text spans
containing the highest average attention rollout score, which
are considered as the explanation for extracting the snippet.
These text spans are used as the context prompts for the ex-
tracted snippet x;. In the application, the window size is set
to 8 tokens. One thing that is worth noticing is that the con-
text prompts are not limited to the extracted snippet, but also
disperse in its neighboring snippets.

These extracted context prompts are used to enhance the
generation process in the same way as prompt-based lan-
guage models. Given an extracted snippet x;, we concate-
nate it with its corresponding context prompts L; as the in-
put for the generator:

ve= > Golq,Li,xi,y<t) MLP(hY) (5)
T, €XN
Note that all the component of the input are not directly
concatenated together, instead we use a set of special tokens
to separate these components.

Global Context Information

The extract-generate framework split the input of the ex-
tractor and the generator into multiple chunks to handle a
longer input. The cessation of the information interaction
between chunks inevitably leads to the loss of information
that captures the long-term dependency, which leads to loss

Extracted

Extracloroi s 11 | 2 |8 |t icls2its | t6 |7 |18 | t9
Output : ;

Sliding Window Extraction %\)
Attention|, <l 4 | 12 48| 14 OLs2 15 | 16 | 7 t9
Rollout ;
Context 2| 13|t t7 | t8 | 19
Prompt

Figure 3: The generation of context prompts. The yellow
squares are the [cls] tokens and the grey squares denote the
text tokens. The darker red stands for a higher attention roll-
out score.

of global context information. Previous works (Xiao and
Carenini 2019; Cui and Hu 2021) mainly focus on capturing
such context information in the extractor. However, similar
to the local context information, these information is diffi-
cult to be transferred to the generator.

A commonly used method for capturing the global con-
text information of a snippet is to search for its related snip-
pets in the source document. Here, we adopt a similar strat-
egy but in the form of the context prompt. For an extracted
snippet x;, we adopt the context prompts from its most re-
lated snippet as its global context prompts G;. We use the co-
sine similarity between the snippet representations R in the
extractor to select the most related snippet for x;. Consid-
ering a search space of all source snippets inevitably brings
noise, in practice, we reduce the search space to top-score

13935

Dataset Type Domain Size Source length Target length Query
QMsum dialogue meeting 1808 9070 70 v
Arxiv document science paper 200000 6030 273 X
Table 1: The statistics and comparison of datasets.
snippets that have already been chosen in the snippet ex- Model R-1 R-2 R-L
traction stage. Follow the same way used for local context Bart-large (3072) 3216 8.01 27.72
information, global context prompts are used to enhance the HMNet (8192) 3229 8.67 28.17
generation process: Longformer (8 1 92) 31.60 7.80 20.50
DialogLM (5120) 3402 9.19 29.77
Yp = Z Go(q, Gy, i, y<t) MLP(hY) 6) DialogLM - Sparse (8192) 33.69 9.32 30.01
T EX N BM25+Bart (dyn) 329 9.0 22.0
DYLE (dyn) 3442 971 30.10
Application CAEG-local (dyn) 36.50 11.15 30.50
Instead of adding more neural network architecture, CAEG CAEG-global (dyn) 36.11 11.2230.24
preserves context information by adjusting the input and out- CAEG-all (dyn) 3641 1141 30.21
put of the extractor anq the generator. This allows it to.be Table 2: Results on QMSum.
easily applied to any trained extract-generate summarization
model as long as it has a transformer-based extractor. In this
paper, we adopt DYLE (Mao et al. 2021) as the base model. Model R-1 R-2 R-L
It is worth noting that we still need to finetune the generator, PEGASUS (3072) 44211695 38.83
which makes it adapt to additional contextual information BigBird-PEGASUS (3072) ~ 46.63 19.02 41.77
input. To utilize both local and global context information LSH (7168) 48.24 2026 41.78
in the framework, we concatenate the two types of context HAT-BART (3072) 46.68 19.07 42.17
prompts and add them to the generator. ExtSum-LG (dyn) 44.0117.79 39.09
DANCER-PEGASUS (dyn) 45.01 17.60 40.56
. SSN-DM (dyn) 45.03 19.03 32.58
Experiment DYLE (dyn) 4641 1795 41.54
Dataset CAEG-local (dyn) 46.69 1848 42.04
We evaluate our proposed methods in the context of long- CAEG-global (dyn) 46.86 18.61 42.20
input summarization. Two datasets from different domains CAEG-all (dyn) 46.81 18.58 42.16

are adopted as evaluation benchmarks. The detailed com-
parison is shown in Table 1. arXiv(Cohan et al. 2018) is
a dataset for long-input single-document summarization. It
collects scientific articles from arXiv.org and takes the ab-
stracts of these articles as the target summaries. Compared
to previous news summarization datasets, it has significantly
longer input and output. QMSum(Zhong et al. 2021)is a
benchmark for query-focused dialogue summarization. The
dataset is composed of meeting records from three different
domains. Since only a small proportion of the source docu-
ment is correlated to the query, QMSum has a higher com-
pression rate than other long-input summarization datasets.

Baseline

We compare our method with some commonly used pre-
trained models and previous state-of-the-art methods de-
signed for long-input summarization. The pretrained mod-
els include Bart-large (Lewis et al. 2019) and PEGASUS
(Zhang et al. 2020). There are three kinds of methods for
long-input summarization: transformers with sparse atten-
tion, hierarchical transformers, and models based on the
extract-generate framework, which are shown below:

* Transformers with sparse attention: We adopt various
sparse-attention transformers for comparison including
Longformer (Beltagy, Peters, and Cohan 2020), BigBird

13936

Table 3: Results on arXiv.

(Zaheer et al. 2020), and LSH(Huang et al. 2021). Di-
alogl.M (Zhong et al. 2022) is a pretrained model for di-
alogue understanding, and we display it with both full
attention and sinkhorn sparse attention.

Hierarchical transformers: HMNet (Zhu et al. 2020)
designed a hierarchical structure for dialogue summa-
rization, which includes discourse-level information and
speaker roles. HAT-BART (Rohde, Wu, and Liu 2021)
proposes a Transformer-based model with hierarchical
attention. It is capable of capturing information among
sentence and paragraph-level.

Models based on extract-generate framework: Dyle
(Mao et al. 2021) is the state-of-the-art summariza-
tion model based on extract-generate framework, which
is also our base model. BM25+Bart refers to a base-
line model taking BM25 as extractor and Bart as the
generator, which is drawn from (Zhang et al. 2021).
DANCER (Gidiotis and Tsoumakas 2020) propose a
divide-and-conquer approaches. Moreover, we also re-
port two extractive summarization models for long-input
summarization: ExtSum-LG (Xiao and Carenini 2019)
and SSN-DM (Cui and Hu 2021).

QMSum arXiv
Local Global Local Global
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
K=1 3546 1037 29.56 | 3538 10.36 2934 | 46.56 18.44 41.88 | 46.69 18.51 42.01
K=2 3579 10.77 29.79 | 36.09 10.88 29.83 | 46.62 18.46 4194 | 46.86 18.61 42.20
K=3 36.05 10.78 30.15 | 36.11 11.22 30.24 | 46.69 18.48 42.04 | 46.72 18.50 42.05
K=4 3650 11.15 30.50 | 35.15 10.28 29.15 | 46.56 1842 41.90 | 46.47 18.30 41.88
Table 4: Analysis of the number of context prompts.

We add the maximum input sequence length of the model R-1 R-2 R-L
in the brackets after the model, and “dyn” represents dy- Context prompt 36.50 11.15 30.50
namic denoting there is no limitation for the input length. Adjacent snippet 3574 10.78 29.46

Snippet embedding 33.26 8.66 27.36
Implementation Details No context(DYLE) 3442 9.71 30.10

Taking the state-of-the-art extract-generate summarization
model DYLE as the backbone, we adopt Roberta-base (Liu
et al. 2019) as the extractor and Bart-large (Lewis et al.
2019) as the generator. Both models are initialized by the
checkpoint given by DYLE. The implementation of our code
is based on transformers from Hugging Face. Adam algo-
rithm is used for optimization and the learning rate is set to
2 — ¢~ 5. The batch size for the training is set to 1, and gra-
dient accumulation steps are set to 8. We conduct the val-
idation for every 100 steps and train the model for a max-
imum of 20000 steps. The experiments are run on a single
V100 GPU. In terms of the inference stage, we adopt a beam
search size 4 for arXiv and a beam search size 1 for QMSum.
The length limitation is 150 to 450 for arXiv and 50 to 100
for QMSum.

Experiment Results

The evaluation results are summarized in Table 2 and Table
3. In the experiment, following previous works, we adopt
ROUGE 1.5.5 (Lin 2004) including Rouge-1 (R-1), Rouge-
2 (R-2), and Rouge-L (R-L) as evaluation metrics. There are
three types of variants of our approach. (1) CAEG-local: We
only add local context prompts to the generator; (2) CAEG-
global: We only add global context prompts to the generator;
(3) CAEG-all: We add both local context prompts and global
context prompts to the generator, and the number of context
prompt K is set to 2.

On QMSum, CAEG achieves the new state-of-the-art per-
formance. Compared with the base model DYLE, all three
variants of our model yield a clear improvement, which
shows that CAEG outperforms previous extract-generate
summarization models whose context information is ig-
nored. These results suggest the importance of context in-
formation in the long dialogue summarization. CAEG’s bet-
ter performance can be attributed to its effectiveness in pre-
serving context information between the extractor and the
generator.

On arXiv, CAEG outperforms the other models based on
the extract-generate framework, but fails to achieve the best
result. We believe there are two reasons for this. On the one
hand, CAEG is an approach that enhance extract-generate
summarization model by utilizing the context information,
so the final performance is partly dependent on the base

13937

Table 5: The comparison between different approaches in
preserving local context information on QMSum dataset.

model itself. Hence, even if we achieved improvement on
the base model DYLE, it can not fill the natural gap between
DYLE and LSH. On the other hand, the performance en-
hancement brought by context information on arXiv is not
as large as QMSum. This might be because the structural
patterns also play an important role in identifying salient in-
formation in the summarization of science papers. In this
case, the context information becomes less useful.

It is a surprise that CAEG-all fails to further improve the
performance after adding both local and global context in-
formation. A possible reason is that the generator cannot ef-
fectively distinguish the two types of context information. It
is our future work to find a optimal way for this problem.

Analysis and Discussion

Effect of number of context prompts As suggested in the
Method Section, for each extracted snippet, we generate K
context prompts to preserve its context information. Here,
we vary the value of the hyperparameter K and test it on both
QMSum dataset and arXiv dataset in Table 4. The largest K
we show in the table is 4, since a greater value leads to a
clear drop in performance.

We can observe that the performance of the model in-
crease when the value of K increase until it reach a upper
bound around 3. This suggests that the context information
requires multiple context prompts to be effectively repre-
sented. Moreover, the model achieves its best performance
when k=4 for the local context and k=3 for the global con-
text in QMSum, while the best K value are smaller for arXiv.
This is expected as the long text snippets (utterance) in QM-
Sum require more context information than the ones (sen-
tence) in arXiv.

Effect of different forms in transferring context informa-
tion We are interested in the most effective form to transfer
the context information from the extractor to the generator.
To investigate this, we evaluate the effectiveness of three dif-
ferent forms in transferring the local context information in
Figure 5. (1) Context prompt: We report the best result of

QMSum

Context Snippet

Extracted Snippet

Context Snippet

Suzy Davies Am: Do you think it would be better for us as scrutinisers of this act if we could
see the draft changes to cps guidance on the public interest test before we make our final decision?
Barry Hughes : I honestly don’t think that would necessarily be helpful. I've had some discussions
with Kwame, who would have an involvement in this. What we would envisage is that we would
simply want to take the present public interest factors, which are set out, in my view, very clearly in
the code for crown prosecutors ... And we’d need to work that up as we go along, and I think you’d
run a risk of putting the cart before the horse, if I may put it like that.

Suzy Davies Am: It’s just that, personally, I think the public interest test is critical in all this...

Prompt w Context
Prompt w/o Context

[’see the draft changes to cps guidance”, “want to take the present public interest factors™]

[’Barry Hughes : I honestly do”, ”if I may put it like that”]

arXiv

Context Snippet

Extracted Snippet

Context Snippet

One may calculate the penetration probability numerically by using the path integral method or the
wkb approximation.

However, it is highly desirable to have an analytical expression for the barrier penetra-
bility when one introduces an energy-dependent one-dimensional potential barrier @xcite
or barrier distribution functions @xcite.

In the present work, we derived a new barrier penetration formula based on the wkb approxima-
tion...

Prompt w Context

[’we derived a new barrier penetration formula based”, ”or barrier distribution functions @xcite”’]

99 99,

[’barrier distribution functions @xcite.”,

Prompt w/o Context

to have an analytical expression for the barrier”’]

Table 6: The case study of the context prompts on QMSum and arXiv. For each extracted snippet, we display two generated
context prompts. For a better observation, we use the underline to emphasize the position of the generated context prompts in

the source text.

our approach using the local context information. (2) Adja-
cent snippet: We concatenate each extracted snippet with its
neighboring snippets and feed them into the generator. (3)
Snippet embedding: For each extracted snippet, we can ob-
tain its representation from the its corresponding [cls] token
in extractor. The representation are fed to the generator by
adding it before the input embeddings. Since the word di-
mension of the extractor and generator are not the same, we
use a MLP to map the snippet embedding from the dimen-
sion of the extractor to the generator.

The results show that context prompt outperforms the

other two ways in transferring the local context informa-
tion. Although directly concatenating the neighboring snip-
pets achieves a strong result, it leads to a huge increase in
the GPU memory cost of the generator. Meanwhile, due to
the noise brought by the large amount of context, it under-
performs our proposed context prompt. As for using snippet
embeddings, the results suggest that it can not effectively
reflect the context information, especially when the distribu-
tion between the extractor and generator are not the same.
Conducting a end-to-end training may solve this problem,
but it will largely increases the computational cost.
Case study of context prompts To have a more clear un-
derstanding about how context prompts work, we display
the context prompts of some extracted snippets in the Table
6. Here, we display the extracted snippet, the neighboring
snippets of the extracted snippet (Context Snippet), and the
generated context prompts (Prompt w Context). For a better
comparison, we also show the salient text spans obtained in
the same ways as context prompt but without context infor-
mation (Prompt w/o Context). This is achieved by feeding
the extracted snippet solely to the extractor.

13938

In terms of the example from QMSum, we find the public
interest test” is the important information among the con-
text. The context prompts successfully capture such infor-
mation and highlight a related topic ’changes to cps guid-
ance”, while the prompt with no context information fails
to achieve this. In terms of the example from arXiv, “bar-
rier” has been mentioned multiple times in the extracted
snippet, which indicate its importance. However, the con-
text prompt can not further focus on “barrier penetration”
without the context information. These examples not only
suggest the importance of the local context information, but
also show the effectiveness of the context information cap-
tured through the interpretation of the extractor.

Conclusions

In this paper, we firstly propose to focus on context infor-
mation preservation in an extract-generate summarization
framework for long input. To address the challenge of con-
text information loss from the extractor to the generator, we
generate a set of context-related text spans called context
prompts for each extracted snippet and feed them into the
generator through concatenation. A novel approach is pro-
posed to generate the context prompts based on the interpre-
tation of the extractor. Hence, our approach can be applied to
most extract-generate summarization models at a low cost.
The experiments further show its effectiveness in captur-
ing and preserving the context information in the extract-
generate summarization framework.

Acknowledgements

The work described in this paper was supported by Re-
search Grants Council of Hong Kong (PolyU/15203617 and
PolyU/5210919), National Natural Science Foundation of
China (61672445, 62076212, 62106165).

References

Abnar, S.; and Zuidema, W. 2020. Quantifying attention
flow in transformers. arXiv preprint arXiv:2005.00928.

Bajaj, A.; Dangati, P.; Krishna, K.; Kumar, P. A.; Uppaal,
R.; Windsor, B.; Brenner, E.; Dotterrer, D.; Das, R.; and Mc-
Callum, A. 2021. Long Document Summarization in a Low

Resource Setting using Pretrained Language Models. arXiv
preprint arXiv:2103.00751.

Beltagy, I.; Peters, M. E.; and Cohan, A. 2020. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150.

Cohan, A.; Dernoncourt, F.; Kim, D. S.; Bui, T.; Kim, S.;
Chang, W.; and Goharian, N. 2018. A discourse-aware at-
tention model for abstractive summarization of long docu-
ments. arXiv preprint arXiv:1804.05685.

Cui, P;; and Hu, L. 2021. Sliding Selector Network with
Dynamic Memory for Extractive Summarization of Long
Documents. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 5881—
5891.

Gidiotis, A.; and Tsoumakas, G. 2020. A divide-and-
conquer approach to the summarization of long documents.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 28: 3029-3040.

Huang, L.; Cao, S.; Parulian, N.; Ji, H.; and Wang, L. 2021.
Efficient attentions for long document summarization. arXiv
preprint arXiv:2104.02112.

Kitaev, N.; Kaiser, L..; and Levskaya, A. 2020. Reformer:
The efficient transformer. arXiv preprint arXiv:2001.04451.

Lebanoff, L.; Song, K.; Dernoncourt, F.; Kim, D. S.; Kim,
S.; Chang, W.; and Liu, F. 2019. Scoring sentence single-
tons and pairs for abstractive summarization. arXiv preprint
arXiv:1906.00077.

Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2019. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehen-
sion. arXiv preprint arXiv:1910.13461.

Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, 74-81.

Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Mao, Z.; Wu, C. H.; Ni, A.; Zhang, Y.; Zhang, R.; Yu, T.;
Deb, B.; Zhu, C.; Awadallah, A. H.; and Radev, D. 2021.
Dyle: Dynamic latent extraction for abstractive long-input
summarization. arXiv preprint arXiv:2110.08168.

13939

Mehdad, Y.; Carenini, G.; Tompa, F.; and Ng, R. 2013. Ab-
stractive meeting summarization with entailment and fusion.
In Proceedings of the 14th European Workshop on Natural
Language Generation, 136—146.

Pilault, J.; Li, R.; Subramanian, S.; and Pal, C. 2020. On
extractive and abstractive neural document summarization
with transformer language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 9308-9319.

Rohde, T.; Wu, X.; and Liu, Y. 2021. Hierarchical learning
for generation with long source sequences. arXiv preprint
arXiv:2104.07545.

Xiao, W.; and Carenini, G. 2019. Extractive summarization
of long documents by combining global and local context.
arXiv preprint arXiv:1909.08089.

Zaheer, M.; Guruganesh, G.; Dubey, K. A.; Ainslie, J.; Al-
berti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang,
L.; et al. 2020. Big bird: Transformers for longer sequences.
Advances in Neural Information Processing Systems, 33:

17283-17297.

Zhang, J.; Zhao, Y.; Saleh, M.; and Liu, P. 2020. Pega-
sus: Pre-training with extracted gap-sentences for abstrac-
tive summarization. In International Conference on Ma-
chine Learning, 11328-11339. PMLR.

Zhang, Y.; Ni, A.; Yu, T.; Zhang, R.; Zhu, C.; Deb, B.; Ce-
likyilmaz, A.; Awadallah, A. H.; and Radev, D. 2021. An
Exploratory Study on Long Dialogue Summarization: What
Works and What’s Next. arXiv preprint arXiv:2109.04609.

Zhao, Y.; Saleh, M.; and Liu, P. J. 2020. Seal: Segment-wise
extractive-abstractive long-form text summarization. arXiv
preprint arXiv:2006.10213.

Zhong, M.; Liu, Y.; Xu, Y.; Zhu, C.; and Zeng, M. 2022. Di-
aloglm: Pre-trained model for long dialogue understanding
and summarization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, 11765-11773.

Zhong, M.; Yin, D.; Yu, T.; Zaidi, A.; Mutuma, M.; Jha,
R.; Awadallah, A. H.; Celikyilmaz, A.; Liu, Y.; Qiu, X;
et al. 2021. QMSum: A new benchmark for query-
based multi-domain meeting summarization. arXiv preprint
arXiv:2104.05938.

Zhu, C.; Xu, R.; Zeng, M.; and Huang, X. 2020. A hierar-
chical network for abstractive meeting summarization with
cross-domain pretraining. arXiv preprint arXiv:2004.02016.

