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Abstract

Face-based speech synthesis provides a practical solution to
generate voices from human faces. However, directly using
2D face images leads to the problems of uninterpretability
and entanglement. In this paper, to address the issues, we
introduce 3D face shape which (1) has an anatomical rela-
tionship between voice characteristics, partaking in the “bone
conduction” of human timbre production, and (2) is natu-
rally independent of irrelevant factors by excluding the blend-
ing process. We devise a three-stage framework to generate
speech from 3D face shapes. Fully considering timbre pro-
duction in anatomical and acquired terms, our framework in-
corporates three additional relevant attributes including face
texture, facial features, and demographics. Experiments and
subjective tests demonstrate our method can generate ut-
terances matching faces well, with good audio quality and
voice diversity. We also explore and visualize how the voice
changes with the face. Case studies show that our method up-
grades the face-voice inference to personalized custom-made
voice creating, revealing a promising prospect in virtual hu-
man and dubbing applications.

Introduction
With the development of talking head techniques, virtual hu-
mans have shown tremendous potential in virtual anchors,
virtual idols, and other fields. TTS (text-to-speech) systems
are usually employed to produce a voice for a virtual human.
Current methods of TTS can generate a natural voice com-
parable to the voice of a real person. However, it is required
to record a large-scale real human voice corpus and train
the model for days to generate a proper voice matching the
virtual character. If it is possible to automatically infer the
voice characteristic of a virtual human and then synthesize
the speech with it, it will be easy to adapt TTS models with-
out time-consuming training to produce personalized voices.

Therefore, it is necessary to explore the prospect of
speech synthesis with faces. Though lots of previous works
pay attention to face-voice correlations, only a few of
them spend effort on face-voice generation. Among them,
Face2Speech (Goto et al. 2020) replaces the speaker em-
bedding with the face embedding in multi-speaker TTS.
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FaceVC (Lu et al. 2021) introduces a three-stage training
strategy to fit face embedding to speaker embedding in voice
conversion systems. However, all of their works only con-
sider 2D face images involving the face pose, expression,
lighting, and other factors irrelevant to voice characteristics.
Besides, since face images are hardly editable, it is also dif-
ficult to modify them to get different voices and explain how
and to what extent voice is influenced by face.

In this paper, we aim to exploit face-voice inference by in-
troducing 3D face shapes to explain the face-voice correla-
tion and predict and manipulate the voice afterward, because
face shape always figures personality and matters to dubbing
work (Mirza and Osindero 2014). For example, a superman
with a large chin and prominent brow ridges usually has a
powerful and deep voice. 3D face-voice inference is innova-
tive, reasonable and meaningful. Anatomically, it is the skull
shape, but not the 2D face image, that influences the voice.
Because “bone conduction” is an important factor of tim-
bre production, such as cheekbones and chins (Maurer and
Landis 1990). The bones also influence the growth of vocal
organs. Technically, the 3D approach (Deng et al. 2019) dis-
entangles the speaker’s identity from irrelevant factors, such
as lighting, pose, and expression. The entangling problem is
not discussed and addressed in existing papers. By introduc-
ing the 3D approach, unrelated factors are excluded.

To fully explore cause of formation of human voice, we
also consider more factors influencing voice characteristics
besides face shape. For example, wheatish skin is related
to good health and loose skin is related to aging; gold-
framed glasses and beards also make different impressions.
Although these factors are not necessarily associated with
voice characteristics in real life, voice actors are required
to balance all appearance factors to choose a proper voice
type for a character (Smith et al. 2016). Therefore, besides
the 3D face shape, we supplement three additional voice-
related factors: face texture, facial features, and demograph-
ics. The face texture represents soft tissues from the aspect
of anatomy; the facial features, such as glasses and beards,
are related to personality and speaking habits; demograph-
ics, including gender and age, also matter in voice charac-
teristics.

We propose a multi-modal framework to address this task,
taking these factors as input, outputting the corresponding
voice characteristics, and synthesizing the speech at the end.
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First, we employ a 3D face constructor to restore face shape
and face texture from a video. A texture encoder compresses
face texture into appearance features. We utilize an attribute
extractor to derive the facial features and demographic la-
bels. All features are concatenated and sent to a voice en-
coder to predict the eigenvalue of speaker embedding, which
contains speaker information compressed by a speaker en-
coder. The predicted eigenvalue is restored to speaker em-
bedding by an inverse PCA (Principal Component Analysis)
process and sent to a multi-speaker text-to-speech model to
generate the speech with proper voice characteristics.

We implement our framework on two datasets and con-
duct experiments. Objective comparison and subjective eval-
uations suggest that the voice our model produced qualifies
for matching the speaker’s appearance, along with high au-
dio quality and voice diversity, outperforming the method
considering 2D face image merely.

Further case studies provide a possible approach to voice
editing by face interpolation and principal component edit-
ing. Visualizations reveal how faces influence voices. For
example, face width causes different effects on pitch in
speech of males and females.

We summarize our contributions as follows:

• We propose a task generating speech based on 3D face
shape, making face-voice relation anatomically explain-
able and controllable from deep learning models.

• We establish a practicable pipeline from 3D face shape
and other additional inputs to speaker embedding, and
finally to speech. Our generated audio achieves a good
level of audio quality, voice diversity, and face-voice
matching degree.

• We propose two possible approaches to voice editing and
visualizations demonstrate how faces influence voices.

Related Work

Face Voice Correlation

Faces and voices are highly related to personal identities.
The voice is one kind of ‘auditory face’ on the concept.
In cognitive science experiments, participants can predict
voice characteristics by giving the faces of speakers (Ka-
machi et al. 2003; Lachs and Pisoni 2004), and the match-
ing accuracy is significantly above chosen level, suggest-
ing that faces and voices offer overlapping or complemen-
tary information about a person (Smith et al. 2016), such as
gender, age, height, and weight. In neuroscience research,
speaker cognition can result from the information sharing
between auditory voice and visual face regions (Kriegstein
et al. 2005).

Speech-face-associated learning has been widely studied.
Face height and head length can predict the vocal tract struc-
tures (Vorperian et al. 1999), and deep learning methods also
indicate the relationship between face and voice, such as
predicting faces from voices (Oh et al. 2019) and matching
faces and voices (Horiguchi, Kanda, and Nagamatsu 2018;
Mavica and Barenholtz 2013).

3D Face Model Reconstruction
Current 3D face reconstruction can recover fine face geo-
metric shapes from 2D face images. Pretty many methods
need to reconstruct 3D faces from different inputs, from
multi-view images (Cao et al. 2018b) to a single image (Li
et al. 2018; Hassner 2013; Riviere et al. 2020). Different
models also restore 3D faces from different priors. Some
works determine a statistical face model previously and pre-
dict or analyze the coefficients (Tu et al. 2019; Chang et al.
2018; Thies et al. 2016; Ploumpis et al. 2020). These meth-
ods take advantage of fast speed, but with the limitation of
fixed shape space, producing smooth results.

Several methods predict 3D face vertexes of meshes in-
stead, and model more detailed information of faces (Wei,
Liang, and Wei 2019; Feng et al. 2018; Jackson et al. 2017).
Nevertheless, these methods call for explicit 3D supervision
provided by other models and therefore capture coarse shape
information.

Face animation is taken into consideration for detailed re-
construction. For example, DECA (Feng et al. 2021) enables
animation and relighting by capturing high-fidelity textures.
It predicts expression, pose, and other parameters from one
image and generates a UV color map from the person-related
low-dimensional representation. Deep3DFace (Deng et al.
2019) employ the 3D MorphableModel (3DMM) (Blanz and
Vetter 1999) and train an CNN model to predict the corre-
sponding coefficients. It also models the expression for ac-
curate reconstruction.

Face-based Speech Synthesis
Recent TTS systems are competent to synthesize realistic
and natural speech (Wang et al. 2017; Shen et al. 2018; Ren
et al. 2019; Li et al. 2019). These years, multi-speaker TTS
is developed to generate the voices of different speakers by
one system (Arik et al. 2017; Jia et al. 2018; Park et al.
2019; Cooper et al. 2020). These models usually implement
the multi-speaker function with a speaker encoder trained by
a speaker verification task (Snyder et al. 2018a; Wan et al.
2018). Speaker embedding vectors are extracted from the
hidden layer of the speaker encoder and concatenated to the
hidden states of the TTS encoder.

Based on multi-speaker TTS, face-based TTS models are
proposed by replacing speaker embedding vectors with face
embedding vectors. As far as we know, Face2Speech (Goto
et al. 2020) is the first model to generate speech from
face images. Face2Speech trains a VGG (Simonyan and
Zisserman 2014) model to fit face embedding vectors to
speaker embedding vectors, and apply the face embedding
to Tacotron2 (Shen et al. 2018). Several works are published
following this method (Wu et al. 2022; Plüster et al. 2021;
Wang et al. 2022), introducing sophisticated modules and
detailed experiments to promote the generated voice quality.
FaceVC (Lu et al. 2021) introduces a similar approach in
voice conversion, but with a three-stage training strategy. A
face encoder and a speaker encoder are trained separately,
and face embedding space is mapped to speaker embed-
ding space by introducing a Visual-to-Audio Transformation
module. Using this approach, FaceVC achieves good audio
quality and speaker similarity.
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Figure 1: The pipeline of our model. We extract the 3D face shape, face texture, facial features, and demographics from the
speaker’s face video. These factors are sent to a voice encoder to generate the speaker embedding. The generated speaker
embedding and the text are then sent to a multi-speaker speech synthesis module to get the synthetic speech with proper voice
characteristics. The voice encoder is trained with L2 loss between the generated speaker embedding coefficients and the ground
truth extracted by the speaker embedding extraction module.

However, none of them generate speech from 3D face
shapes.

Methodology
We first select four kinds of voice-related speaker character-
istics including 3D face as our input according to sound pro-
duction and attributes related to voice characteristics. Then
we implement a 3D face-based voice inference method uni-
fying inputs with different dimensions to predict the voice
embedding vector of the speaker. Finally, we introduce a
three-stage training strategy to complete the pipeline of
speaker embedding extraction, voice inference, and speech
synthesis, as shown in Figure 1.

Voice-Related Factors
As introduced in Section 1, we select four voice-related fac-
tors to contrive the input of our model to predict voice char-
acteristics. In this section, we give explanations of these fea-
tures and introduce how we extract them.

• 3D face shape is the 3D model of a face, composed of
vertexes in 3D space. We adopt 3D face shape as the rep-
resentation of anatomical voice-related skeleton.

• Face texture is the texture map of the 3D face shape,
mapped as a 2D image. We utilize face texture to rep-
resent soft tissues and muscles that affect sound produc-
tion.

• Facial features. We employ facial features as part of the
personality and character of a speaker. Our selected facial
features include: eyeglasses, hair color, beard, mustache,
hat and smile.

• Demographics stand for different groups of speakers
with different voice patterns, including gender and age.

We leverage a 3D reconstructor and an attribute extrac-
tor to get these features. First, we adopt the 3DMM (Blanz
and Vetter 1999) face model to represent each 3D face. The
face shape S is the weighted sum of face skeleton and face
expression:

S = Bskltfsklt +Bexpfexp + S̄ (1)
where Bsklt and Bexp are the PCA bases of speaker iden-
tity and expression; fsklt and fexp are the coefficients of
the PCAs respectively; S̄ ∈ RN ·3 is the average face shape
and N is the number of the vertexes in the face model. We
adopt the 2009 Base Face Model (Paysan et al. 2009) for
S̄, and use the expression bases Bexp of (Guo et al. 2018).
Only a subset of the bases and coefficients are in use, with
fsklt ∈ R80 and fexp ∈ R64.

The face texture T is represented by an affine model:
T = Btδ + T̄ (2)

where Bt is the PCA base of face texture and δ ∈ R80 is the
corresponding coefficient vector. Then we convert T from a
linear space into FLAME (Li et al. 2017) layout to output a
UV albedo map A ∈ Rd·d·3.

We adopt an attribute extractor with CNN architec-
ture (Hernandez 2021) to infer the facial features Lf and
demographics Ld from images.

3D Face Based Voice Inference
As described in the previous section, we obtain the four in-
puts: 3D face shape S, face texture T, facial features Lf ,
and demographics Ld. We adopt different methods to con-
vert these inputs with different dimensions into a unified em-
bedding space.

As for the 3D face shape, we select the skeleton coef-
ficient fsklt as representation, disentangled with the inter-
ference of expression and the average face. As for the face
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texture, we adopt a texture encoder with VGG19 architec-
ture (Simonyan and Zisserman 2014) and send the texture
albedo map A as input to it. We extract the hidden layer
output of the texture encoder as the representation of face
texture. We utilize lookup tables to embed facial features
and demographics to embedding vectors. We concatenate
the embedding vector of facial features with the hidden state
of the texture encoder to form the appearance feature fa, rep-
resenting the appearance information. The embedding vec-
tor of demographics forms demographic feature fd.

To infer the voice from these input, we choose speaker
embedding fspk as the representation of the speaker’s voice
characteristics and the output of our model. Instead of pre-
dicting fspk directly, we first apply a PCA to fspk to retain
the principal components espk, reducing the feature dimen-
sion for predicting simplicity.

fspk = Bspkespk (3)
where Bspk is the PCA base applied to the speaker embed-
ding vector fspk. All extracted features are concatenated to-
gether and sent to a voice encoder to predict the principal
components e′spk.

e′spk = Fv([fsklt; fa; fd]) (4)
where Fv is the voice encoder. Then we restore the speaker
embedding f ′

spk from e′spk by the inverse process of PCA
applied to the speaker embedding.

f ′
spk = Bspke

′
spk (5)

During the inference stage, the restored speaker embedding
f ′
spk is sent to a multi-speaker TTS system to generate the

utterance with corresponding voice characteristics.

Three Stage Training Strategy
We employ a three-stage training strategy to complete the
pipeline of voice extraction, inference, and synthesis. Firstly,
we employ the pretrained DNN structure XVectors (Snyder
et al. 2018b) as our speaker encoder to extract the speaker
embedding. It takes 24-dimensional filterbanks feature as in-
put, and we extract 512-dimensional embedding vector fspk
from segment7 as the speaker embedding vector.

Secondly, for the speech synthesis module, we adopt the
Conformer-FastSpeech2 (Guo et al. 2020) as our TTS sys-
tem. A text sequence t is converted to a phoneme sequence
and encoded into a hidden sequence h.

h = Encoder(t) (6)
The speaker embedding vector is replicated and added to the
hidden sequence.

h′ = h+ fspk (7)
Finally, a decoder convert h′ into Mel-spectrogram, and a
vocoder restore the waveform afterward.

Mel′ = Decoder(h′) (8)
L2 loss between the predicted and ground truth Mel-
spectrograms is used to train the TTS system.

Thirdly, for the training of the voice inference module, we
adopt L2 loss between e′spk and espk to learn the parameters
of the voice encoder and lookup tables:

L = ||espk − e′spk||22 (9)

Experiment
Dataset
Dataset Construction. The first part of the dataset comes
from VoxCeleb2 (Chung, Nagrani, and Zisserman 2018) and
VGGFace2 (Cao et al. 2018a). VoxCeleb2 is a video dataset
including more than 6,000 celebrities, and VGGFace2 con-
tains face images of these persons. Additionally, we uti-
lize ChaLearn LAP (Ponce-López et al. 2016) video dataset,
containing videos of more than 30,000 clips.

Dataset Partition. Our final face-speech pair dataset
consists of 5,995 speakers from VoxCeleb2-VGGFace2
and 2,624 speakers from ChaLearn LAP, after filtering
the speakers failing in extracting speaker embedding. We
split the first 1,200 and 525 speakers off VoxCeleb2 and
ChaLearn LAP for validation, remaining 4,795 and 2,009
speakers for training respectively.

Implementation Details
We adopt an open-source pretrained speaker encoder
XXvectors from Kaldi1. We set PCAs to retain 95% vari-
ation with espk ∈ R59. We employ a pretrained Attribute
Extractor2. Each attribute is embedded to 3 dimension. The
texture encoder is a pretrained VGG-19 model (Simonyan
and Zisserman 2014). Our Conformer-Fastspeech2 is a pre-
trained version3. We implement our voice encoder with an
MLP with 3 Linear layers. Each layer is followed by a ReLU
activation and Dropout Layer except the last one.

We train our model on an NVIDIA Geforce 2080 Ti for
50 epochs, with a batch size of 64. We adopt the Adam op-
timizer with a learning rate of 0.002.

Evaluation Method
Comparison Systems. We compare the performance of our
model with some alternative systems to synthesize speech.

• synth-speech, i.e. ground truth. We directly apply the
speaker embedding provided by the speaker encoder to
the multi-speaker TTS.

• synth-face. The speaker embedding of synth-face is pre-
dicted by a pretrained and finetuned VGG-19.

Metrics. We utilize the following metrics to evaluate mod-
els.

• MSE. We adopt MSE error to compare the ground truth
embedding from the ground truth audio and the embed-
ding reconstructed.

• Speaker Similarity. We calculate the cosine score of
speaker embedding extracted from ground truth audio,
i.e. the ground truth embedding, and our generated ones.

• MOS (mean opinion score). We use the mean opinion
score (MOS) to evaluate the degree of satisfaction of
users in terms of audio quality, voice characteristic di-
versity, and face-voice matching degree respectively. For

1http://kaldi-asr.org/models/m3
2https://github.com/buenohernandez/Face-detection-feature-

extraction
3https://github.com/espnet/espnet
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input
VoxCeleb2 Chalearn LAP

MSE (↓) Sim (↑) MSE (↓) Sim (↑)

synth-face 1.86 0.7558 1.82 0.7752

ours 1.50 0.8128 1.52 0.8169

Table 1: MSE and Sim(speaker similarity) of speaker em-
bedding vectors on the validation dataset.

audio quality and voice diversity, the range of MOS is 1-5
with 1 point interval, the higher the better. For the face-
voice matching degree, the range of MOS is 1-4 without
decimal scores by following the setting of (Chen et al.
2017), the lower the better. Totally 24 evaluators partici-
pated in the subjective tests.

Comparison with Baselines
To compare our method with other systems, we train these
models on the ChaLearn LAP dataset. We list the MSE and
speaker similarities of speaker embedding vectors given by
different models on validation datasets in Table 1. Our model
outperforms the synth-face system on both datasets in these
two indexes. This result indicates that our model produces
more accurate embedding vectors than synth-face, with a
significance p-value less than 0.05.

synth-face  
synth-speech

ours
synth-speech

30

20

10

0

-10

-20

30

20

10

0

-10

-20

-40 -20 0 20 40 -40 -20 0 20 40

ours  
synth-speech

Figure 2: The tSNE visualization of speaker embedding vec-
tors of synth-speech, synth-face and ours on ChaLearn LAP
validation dataset.

Obeying the same setting, we select validation speakers
and visualize the predictions of each model by tSNE. From
Figure 2, synth-speech has a wild distribution, while synth-
face fails to fit the ground truth, and produces vague pre-
dictions between the two gender clusters. Our method suc-
cessfully fits the ground truth embedding vectors with dis-
tinguishable clusters. But for some marginal cases on the
borderlines of clusters, it is also difficult for our model to
give precise predictions.

User Study
To examine the generation quality, we carried out the sub-
jective test to assess the Audio Quality, Voice Diversity and
Matching Score of the speech synthesized by the gener-
ated speaker embedding vectors following the description of
MOS.

Audio Quality. We adapt this index to evaluate the noise
level of the generated speech. Participants are asked to score
given audio from 1 to 5, i.e., from very bad to very good.

Embedding

MOS

Audio Voice Matching
Quality (↑) Diversity (↑) Score (↓)

synth-speech 3.42 ± 0.09 3.72 ± 0.20 1.49± 0.09

synth-face 3.45± 0.07 3.05± 0.18 1.64± 0.09

ours 3.50 ± 0.06 3.21± 0.18 1.39 ± 0.07

Table 2: The results of subjective tests. Scores are presented
with 95% confidence intervals.

As shown in Table 2, all MOS scores are above 3, indicating
generated utterances are acceptable. Our model achieves a
higher level than synth-face, even better than synth-speech
because our model tends to produce a smooth and aver-
aged embedding, causing fewer jitters and noise than synth-
speech in generated audio. Whereas synth-face produces
several over-smooth embedding vectors, for example, locat-
ing between the male distribution and the female distribu-
tion, resulting in difficulty in TTS model synthesizing.

Voice Diversity. We carry out this subjective test to exam-
ine to what extent our model learns the real distribution of
human voice characteristics. Evaluators are asked to judge
whether a group of generated utterances have a voice diver-
sity comparable to human ones. In detail, good audio sam-
ples should cover as many voice characteristics as possible,
dull or clear, soft or powerful. Samples are rated from 1 to 5,
from homogeneous or unreal to various. Results are in Table
2, it is clear that voices from real humans are of the widest
distribution. Our model still surpasses synth-face obviously,
showing the same results in Figure 2. However, there also
exists a large margin between our generated voices and real
ones, demonstrating the limitation that face-based models
are only able to produce averaged and approximate voice
types and hardly give perfect predictions.

Matching Score. The matching score is set from 1 to 4
following (Chen et al. 2017): from matching well to not
match, measuring whether generated voices match the faces.
Note that a lower match score is better. Subjects are provided
with face images and corresponding generated utterances.
The results shown in Table 2 indicate that our generated
samples match speaker faces moderately, slightly better than
ones of synth-speech. This is possibly caused by smoothed
predictions in a few cases, resulting in a voice without jitter
and shimmer, slightly more convincing than synth-speech
ones.

Visualization
We adopt tSNE visualization to observe the distribution of
generated speaker embedding vectors. In Figure 3, although
without tight clusters, predictions scatter around the ground
truth, with the same color meaning speaker embedding vec-
tors from the same speaker. Besides the two clusters of male
and female, there exist other distribution features. For exam-
ple, voices located at the top tend to be deeper, while voices
at the bottom are probably softer and brighter.
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Figure 3: Speaker embedding tSNE visualization of ground
truth and generated ones. ‘+’ represents ground truth embed-
ding vectors. ‘·’ represents our generated embedding vec-
tors. Speaker’s face is placed nearby. Box with colored dot-
ted lines represents distribution of certain voice type.

Component MSE (↓) Speaker Similarity (↑)

ours 1.52 0.8169

w/o face shape 2.12 0.7356

w/o texture 1.54 0.8165

w/o attributes 1.53 0.8190

w/o speaker PCA 1.54 0.8162

Table 3: MSE and speaker similarity of speaker embedding
vectors on ChaLearn LAP validation dataset.

Ablation Study

Although we emphasize the importance of 3D face shape,
more factors are taken into consideration for completeness,
such as face texture. We implement an ablation study to
test the performance of our model when each component
is absent to examine the contributions of each component to
voice prediction. The results on ChaLearn LAP validation
dataset are shown as Table 3.

From Table 3, face shape input is certainly the most sig-
nificant factor to predict voices, confirming our claim. Face
texture and attributes (facial attributes and demographics) do
not disturb the results too much. It is interesting to compare
the performance of ‘w/o face shape’ with synth-face in Table
1. The former is inferior to the latter, indicating the speaker
information within face textures is less than original face im-
ages. Despite the cost of information loss in face texture, the
3D face shape obtains more information in the 3D face re-
construction process. Speaker embedding PCA is also not
very necessary in terms of performance but helps to explain
how face shape influence the principle components of voice
characteristics, elaborated later in the following section.

Correlation Analysis
To demonstrate the correlation between 3D face and voice,
we visualize the correlation coefficients between 3D face
shape embedding fsklt and reduced speaker embedding
espk, as shown in Figure 4. For simplicity, we only demon-
strate the first 20 dimensions of face embedding vectors and
the first 30 dimensions of speaker embedding vectors after
PCA. Empirically, the 1st component of the 3D face shape
vector and reduced speaker embedding vector is gender. The
gender of the face not only influences the gender of voice but
also influences other components in speaker embedding by
high correlation coefficients. The phenomenon indicates that
gender is the most important factor in the voice. Other face
components also influence the voice components, but with a
weak correlation.

Figure 4: The correlation coefficients between 3D face shape
embedding vectors and reduced speaker embedding vectors.

Case Study
We carry out two case studies to intuitively demonstrate the
relationship between face shape coefficients and the gener-
ated voice. We introduce two indexes to measure the differ-
ences between voices: FFF 0 contour is the base frequency of
an utterance in the time domain; Spectral Centroid of the
mel-spectrogram represents the center of the harmonic dis-
tribution.

Principal Component Disturbance. Since the face shape
feature we extract is the eigenvalue after PCA, we can mod-
ify different principal components to observe the difference
in voices. We select one speaker and edit the first princi-
pal component of his face shape eigenvalues. As the results
shown in Figure 5, the original 3D face and the predicted
voice is in the middle, and the modified face shapes and the
generated speech spectrograms are on each side. From left
to right, the face changes from female to male, and the voice
changes accordingly. The pitch gradually decreases, and the
centroid shifts from bottom right to top left, representing the
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female

-3 std
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-2 std -1 std original face +1 std +2 std +3 std

Figure 5: The mel-spectrograms of voices generated by the 1st principal component edited face shapes. The white curves denote
F0 contours. The orange dots denote centroids of the mels. The input text is “Please retry after several hours.”

shift of the tone and resonance. Modification of the 2st trig-
gers changes in the resonance, with the case shown in the
supplement material.

Interpolation. First, we train our model with only 3D
face shapes as input, eliminating the interference of other
factors. Then we select two speakers, A and B, and aver-
age their face shape eigenvalues with weight λ (0-1). We set
λ as 0, 0.3, 0.5, 0.7, 1 and visualize the averaged face shape
and the corresponding generated audio. Figure 6 shows the
results of females and males. We do not exhibit the interpo-
lation results of two genders, though which generate accept-
able utterances.

For the voices of females in Figure 6, from left to right, the
cheekbones appear more prominent, the chin gets stronger,
and the age also grows elder. Voice type transformation is
corresponding to face shape changes. From left to right, the
voice type changes from brighter to duller, the range of F0

gradually gets lower, and resonance also shifts, with a loss of
high-frequency resonance. Similar phenomena also appear
in the voices of males. With the face getting longer and more
masculine, the voice gets deeper and the vowel patterns in
spectrograms also change.

Ethic Consideration and Error Analysis
Approximation. In this paper, we introduce 3D face shapes
to generate speaker embedding. Face shapes are related to
the vocal tract structures, but there does not necessarily ex-
ist a causal link between voices and faces. This predictive
approach can only provide an approximate and compatible
solution of voice characteristics, predicting average voices
rather than exact voices of individuals. The physical mean-
ing of 3D face and voice factors still remains to be explored.

Data Bias. The datasets we use are from English native
speakers on Youtube. Most speakers are from a specific age
group. There exists a difference between the datasets and the
real world. The populations of datasets can not cover all the
communities.

Annotation Error. The attribute labels and the face
shapes we utilize are mostly annotated by the pretrained
model we employed. Thus there exists errors between the
real faces and the ones we reconstructed. We can only try

narrow-faced / higher pitch lower pitch / wide-facedfemale

speaker A 0.7A+0.3B 0.5A+0.5B speaker B0.3A+0.7B

wide-faced / higher pitch lower pitch / narrow-facedmale

speaker A 0.7A+0.3B 0.5A+0.5B 0.3A+0.7B speaker B

Figure 6: The mel-spectrograms of voice generated by
mixed face shapes. The first row is female, and the sec-
ond row is male. The white curves denote F0 contours. The
orange dots denote centroids of the mels. The input text is
“Please retry after several hours.”

our best to give the explanation of face-voice correlation and
make predictions with the given restrictive conditions.

Conclusion

In this paper, we propose the problem of generating speech
by face shapes. We introduce a voice inference and speech
synthesis framework using 3D face shapes. Compared with
2D face images, 3D face shapes are editable and indepen-
dent of expression, pose, and other irrelevant factors. Ex-
periments and subjective tests demonstrate our method can
generate utterances matching faces well. Voice editing is
practicable through face interpolation and 3D face coef-
ficient modification. Further case studies explore how the
voice changes with the face. For example, aging causes high-
frequency resonance loss. Our method shows a promising
prospect in virtual human and dubbing applications.
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