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Abstract

Few-shot slot tagging is an important task in dialogue sys-
tems and attracts much attention of researchers. Most previ-
ous few-shot slot tagging methods utilize meta-learning pro-
cedure for training and strive to construct a large number of
different meta tasks to simulate the testing situation of insuf-
ficient data. However, there is a widespread phenomenon of
overlap slot between two domains in slot tagging. Traditional
meta tasks ignore this special phenomenon and cannot simu-
late such realistic few-shot slot tagging scenarios. It violates
the basic principle of meta-learning which the meta task is
consistent with the real testing task, leading to historical in-
formation forgetting problem. In this paper, we introduce a
novel domain-transfer meta task design paradigm to tackle
this problem. We distribute a basic domain to each target do-
main based on the coincidence degree of slot labels between
these two domains. Unlike classic meta tasks which only rely
on small samples of target domain, our meta tasks aim to cor-
rectly infer the class of target domain query samples based
on both abundant data in basic domain and scarce data in tar-
get domain. To accomplish our meta task, we propose a Task
Adaptation Network to effectively transfer the historical in-
formation from the basic domain to the target domain. We
carry out sufficient experiments on the benchmark slot tag-
ging dataset SNIPS and the name entity recognition dataset
NER. Results demonstrate that our proposed model outper-
forms previous methods and achieves the state-of-the-art per-
formance.

Introduction
Slot tagging, also called slot filling, is a crucial task in
human-machine dialogue systems. The purpose of slot tag-
ging is to identify pre-defined semantic slots from utterances
and then the extracted slots are involved in downstream tasks
such as dialogue state tracking. Benefiting from the rapid
development of deep learning, slot tagging has made great
progress in recent years. Researchers have proposed a series
of effective algorithms, which usually require a large amount
of annotated data.

In reality, it is not feasible to obtain a large amount of an-
notated conversation data in brand-new dialogue systems. In
this situation, the data-driven methods may lead to serious
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Figure 1: An illustration of slot label distribution in the real-
istic slot tagging task. There is a widespread phenomenon of
overlap slot between two domains. This phenomenon exists
not only between the two source domains, but also between
the source domain and the target domain.

overfitting problems. Therefore, a robust model is required
in this data scarcity scenario, which can effectively learn
from limited samples. Inspired by human ability to learn
new things quickly, researchers proposed few-shot learning
(FSL) algorithms (Snell, Swersky, and Zemel 2017; Sung
et al. 2018) to overcome the problem of lacking training
samples. Generally, few-shot learning methods utilize meta-
learning procedure for training and construct a series of meta
tasks which are identical to testing tasks. A meta task is con-
structed by sampling a small training set (support set) and
test set (query set) from rich data domains (source domains).
The objective of each meta task is to correctly classify query
set samples based on only a small amount of data. These
meta tasks are selected from different source domains, re-
sulting in strong generalization ability of the meta-learning
model. However, the design of traditional meta tasks is not
completely suitable for few-shot slot tagging tasks. In slot
tagging, it is common for two domains to contain overlap
labels, such as time and number of people can be universal
for airline ticket booking and restaurant booking. Traditional
meta-learning models aim to minimize the loss on multiple
different meta tasks and they don’t focus on the specific label
in each meta task. In other words, these overlap labels in dif-
ferent domains are regarded as different labels in traditional
meta task design strategy. It violates the basic principle of
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Figure 2: Meta tasks of our proposed method, which the objective is to correctly infer the class of query set samples depending
on the support set and auxiliary set. The contents in the red dotted line box are the traditional meta task settings, simulating the
situation of data scarcity.

meta-learning which the meta task is consistent with the real
testing task, causing historical information forgetting prob-
lem.

In this paper, we introduce a novel meta task design
paradigm to tackle this problem. We define the basic domain
corresponding to each domain based on the coincidence de-
gree of slot labels between these two domains. For example,
in Figure 1, Domain A is the basic domain of Domain C.
Similarly, Domain A is also the basic domain of Domain
D. As shown in Figure 2, the auxiliary set is a collection
of a large amount of data in the basic domain, which con-
tains both useful information and a lot of noise. It should be
noted that if there is no slot intersection between one domain
and any other source domains, we regard a random source
domain as the basic domain. We form the novel meta task
which the objective is to correctly infer the class of query
set samples depending on the support set and auxiliary set.
To accomplish our meta task, we propose a Task Adapta-
tion Network to effectively transfer the historical informa-
tion from the basic domain to the target domain. Task Adap-
tation Network adopt a two-phase meta-learning framework.
Specifically, a basic model is trained on the auxiliary set in
a supervised learning manner to learn the historical infor-
mation of overlap slots. Next, a meta model is designed to
learn the meta knowledge of novel slots, which uses tradi-
tional meta-learning procedure. Each sentence is fed into
basic model and meta model separately and a task adapta-
tion feature fusion module is introduced to fuse the histori-
cal information with meta knowledge of sentences depend-
ing on different meta tasks. In addition, linguistic features as
a universal cross-domain knowledge, playing a guiding role
for few-shot slot tagging tasks. To effectively explore the
knowledge of linguistic features, we propose a Linguistic

Features Enhanced Task Adaptation Network (LFETAN). It
explicitly introduces part-of-speech features into the model
to assist in constructing the vector representation of words.

The primary contributions of this paper are as follows:

• We introduce a novel domain-transfer meta task design
paradigm for few-shot slot tagging, which can simu-
late realistic few-shot slot tagging tasks and alleviate the
problem of historical information forgetting.

• We propose a novel Linguistic Features Enhanced Task
Adaptation Network to accomplish our meta task. It
effectively fuses overlap labels historical information,
novel labels meta knowledge and cross-domain linguistic
features.

• We conduct abundant experiments on both slot tagging
and named entity recognition datasets to test the perfor-
mance of our method in few-shot scenarios. Sufficient
experimental results show that our method is superior to
previous methods and achieves new state-of-the-art re-
sults.

Related Work
Few-Shot Slot Tagging
Slot tagging aims to correctly infer the slot label of each
word in sentences, which is generally considered as a se-
quence labeling problem. Most of previous few-shot slot tag-
ging methods adopt metric-based meta-learning strategy for
training and testing (Finn, Abbeel, and Levine 2017). (Hou
et al. 2020) introduce the conditional random fields (CRFs)
(Sutton and McCallum 2012) into the few-shot slot tagging
task and modify two key functions (emission and transition
scores) in CRF according to the characteristics of the few-
shot scenario. Moreover, (Zhu et al. 2020) point out that
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the dot product similarity function is not suitable for mea-
suring the word-label similarity in such few-shot tasks and
they propose a more appropriate similarity measure func-
tion with better generalization ability. (Wang et al. 2021) uti-
lizes contrastive learning to model episode-level relationship
and transfers prior knowledge from source domains. These
methods follow the traditional meta task design strategy, ig-
noring the particularity of the slot tagging task. Different
from these metric-based methods, (Hou et al. 2022) first ap-
ply prompting learning methods for few-shot slot tagging.
However, prompting methods need to fine-tune on target do-
main and has high requirements on the quantity and quality
of data.

Generalized Few-Shot Learning
Generalized few-shot learning (GFSL) is an extension of
few-shot learning, aiming to correctly classify samples in a
joint label space where both existing and novel classes are
present. GFSL is a new investigation domain and current
works mainly focus on computer vision. (Gidaris and Ko-
modakis 2018) introduce an attention based few-shot classi-
fication weight generator and enhance the recognition ability
of base and novel classes. (Kukleva, Kuehne, and Schiele
2021) propose a three-stage framework for GFSL, which
strikes a balance between preventing base classes, learning
novel classes and ultimately correcting. (Fan et al. 2021)
find some neglected but useful features by analyzing trans-
fer learning based few-shot object detection and utilize these
features to simply and effectively combine the base detector
with the novel detector. In the field of natural language pro-
cessing, most of the current GFSL work focuses on the clas-
sification problem. (Yang et al. 2022) extract the diversity
features in base categories and utilize these features to en-
hance features in novel categories for generalized few-shot
intent detection. (Chen et al. 2022) extend GFSL on relation
classification and explore a new problem called open gen-
eralized few-shot relation classification. Although few-shot
slot tagging has overlap slot phenomenon, it is still different
from the setting of GFSL because most of slots in source
domains do not appear in the target domain.

Problem Formulation
In this section, we define the few-shot slot tagging task fol-
lowed by (Hou et al. 2020). We denote the input sentence as
x = (x1, x2, · · · , xn) and the corresponding tag sequence
as y = (y1, y2, · · · , yn), where n represents the number of
words in this sentence. Furthermore, each domain is defined
as D = {(x(i),y(i))}|D|

i=1, which contains a series of (x, y)
pairs. The few-shot slot tagging task requires the model to
be trained on the source domains DS and directly tested
on the target domain DT without fine-tuning. Source do-
mains contain a large number of labeled samples while the
target domain only includes few labeled data. For the tar-
get domain, these few labeled samples form a support set
S = {(x(i),y(i))}|S|

i=1 , which contains K samples (K-shot)
for each of N tags (N-way). Given such a support set S and
a query x, the objective of the few-shot slot tagging task is
to find the best tag sequence y∗ corresponding to this query

x. The mathematical formulation is shown in Equation 1.

y∗ = argmax
y

pθ (y|x, S) (1)

where θ refers to the parameters of the model, the (x,y) pair
and the support set S belong to the target domain.

Method
Overall Architecture
In this section, we introduce an overview of the Linguistic
Features Enhanced Task Adaptation Network, as shown in
Figure 3.

We first distribute a basic domain to each domain based
on the slot coincidence degree between these two domains.
The slot coincidence degree is calculated by the Jaccard sim-
ilarity coefficient between slot label spaces of two domains.
Given the label set Ya of domain a and the label set Yb of
domain b, the slot coincidence degree can be calculated as
follow:

degree (Ya, Yb) =
|Ya

⋂
Yb|

|Ya

⋃
Yb|

(2)

We regard the domain with the highest slot coincidence de-
gree in sourse domains as basic domain. During training, we
select one source domain to simulate the target domain in a
meta task and choose its basic domain from the remaining
source domains.

Our meta task formulation of few-shot slot tagging can be
defined as follows. We regard the total samples in the basic
domain as the auxiliary set, A = Db = {(x(i)

b ,y
(i)
b )}|Db|

i=1 .
In the target domain, few labeled samples constitute the sup-
port set, S = {(x(i)

t ,y
(i)
t )}|S|

i=1. while a subset of the remain-
ing samples serve as the query set, Q = {(x(i)

t ,y
(i)
t )}|Q|

i=1.
In K shot slot tagging setting, support set contains K

samples for each of N tags. Given an auxiliary set, a sup-
port set and a query set, the objective of our meta task is to
correctly infer the class y∗ of a query set sample xt depend-
ing on both auxiliary set and support set,

y∗ = argmax
y

pθ(y|x, (A,S)) (3)

where θ refers to the parameters of the model.
There are two phases in our model. In the first phase, we

train a Basic Slot Tagging Network on the auxiliary set for
the basic domain slot tagging task. Basic Slot Tagging Net-
work is trained in a supervised learning manner and adopt
a CRF framework proposed by (Hou et al. 2020). In the
second phase, we use the similar CRF framework to train
a Task Adaptation Meta Network, which can determine the
knowledge transfer degree from the basic domain according
to tasks. Besides, a POS Encoder is designed to acquire POS
features and POS features are used to assist in constructing
word embeddings.

Basic Slot Tagging Network
Basic Slot Tagging Network (BSTN) aims to learn a Basic
Encoder (BE) storing historical information, which is used
to transfer historical information from the basic domain to
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Figure 3: An overview of the Linguistic Features Enhanced Task Adaptation Network. There are two training phases in our
method. In the first phase, we select a basic domain and train a corresponding slot tagging model on it. This basic model is
based on a large number of annotated data and obtain historical information of overlap labels. In the second phase, we train
a slot tagging model on the target domain based on a few labeled data. This meta model is trained on different domains and
acquire meta knowledge of novel labels. We design a Task Adaptation module which fuses historical information and meta
knowledge. In addition, we use POS features to assist in constructing word embeddings.

the target domain in the second phase. In order to adapt to
the second stage tasks, we train the slot tagging task on the
auxiliary set and employ a CRF-based few-shot slot tagging
framework (Hou et al. 2020). Since the auxiliary set samples
are from the same domain, this few-shot framework can still
learn appropriate historical information. We construct the
auxiliary set A into the form of few-shot episode data set-
ting and each episode includes a support set SA and a query
set QA.

There are two essential components in the few-shot CRF
framework: Transition Scorer and Emission Scorer. Tran-
sition Scorer aims to learn the dependencies between la-
bels. Given a basic domain query set sentence xb =
(x1, x2, · · · , xn) and a K-shot basic domain support set SA,
the dependency between two labels is the transition proba-
bility:

fT (yi−1, yi) = p(yi|yi−1) (4)

This transition probability is calculated by Collapsed De-
pendency Transfer (CDT) mechanism (Hou et al. 2020) and
the Transition Scorer output is claculated via Equation 5:

TRANS(yb) =
n∑

i=1

fT (yi−1, yi) (5)

Emission Scorer aims to learn the correspondence between
each word and each label. The correspondence is expressed
as

fE(yi,xb, SA) = p(yi|xb, SA)

= Sim(BE(xb)i, cyi) (6)

where BE is Basic Encoder, cyi
is the label embedding of

yi which is calculated based on SA. In this paper, we use a
pre-trained language model BERT (Devlin et al. 2019) as the
Basic Encoder and it encodes each word xi in the sentence

as word embedding, ei = BE(xi), ei ∈ Rd. Prototypical
network (Snell, Swersky, and Zemel 2017) is used to cal-
culate the label embedding cyi

, which is the average vector
of the corresponding words in the support set SA. We use
Vector Projection Similarity (VP) (Zhu et al. 2020) as the
similarity function,

Sim(BE(xb)i, cyi) = BE(xb)
T
i · cyi

∥cyi∥
(7)

The Emission Scorer output is

EMIT (yb,xb, SA) =
n∑

i=0

fE(yi,xb, SA) (8)

The label probability of label yb is as follows:

p(yb|xb, SA) =
1

Z
exp(TRANS(yb)+

λ · EMIT (yb,xb, SA)) (9)

Z =
∑

y
′
b∈Yb

exp(TRANS(y
′

b)+

λ · EMIT (y
′

b,xb, SA)) (10)

λ is a scaling parameter used to balance weights of these
two scores. The loss function of Basic CRF Slot Tagging
Network is defined as:

Lb = −logp(yb|xb, SA). (11)

Task Adaptation Meta Network
Task Adaptation Meta Network (TAMN) aims to learn the
meta knowledge from the target support set and fuse it with
historical information according to different tasks. Historical
information is stored in Basic Encoder and the parameters of
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BE are fixed during TAMN training. We employ a Meta En-
coder (ME) to capture the meta knowledge, which is trained
across multiple episodes. A Task Adaptation is designed to
fuse meta knowledge and historical information.

Given a query set sentence xt = (x1, x2, · · · , xn) and
a K-shot support set S. Each word xi is encoded by Basic
Encoder and Meta Encoder respectively,

ebi = BE(xi), e
b
i ∈ Rd (12)

emi = ME(xi), e
m
i ∈ Rd (13)

Task Adaptation fuses these two feature vectors by,

efi = wb
i ⊙ ebi + (1− wb

i )⊙ emi (14)

where wb
i is the weight of the historical information, ⊙ is

the element-wise product. wb
i is calculated by two fully-

connected linear layer, the detailed process is as Equation
15 and 16:

hb
i = Relu(W [ebi ⊕ emi ] + d) (15)

wb
i = Sigmoid(W

′
hb
i + d

′
) (16)

where ⊕ is concatenation operation, W , d, W
′
, d

′
all are the

parameters of two linear layer.
The fused features are input into a CRF framework which

is the same as the Basic Slot Tagging Network. We define
the loss function of Task Adaptation Meta Network as

Lm = −logp(yt|xt, (A,S)) (17)

POS Adaptation Network
As a basic task in natural language processing, part of speech
tagging has been well solved. We can use the POS tagging
model to mark the POS label z for each word in both the sup-
port set S and the query set Q automatically. The enhanced
support set with POS label is SE = {(x(i)

t ,y
(i)
t , z

(i)
t }|S|

i=1,

the POS query set is QP = {(x(i)
t , z

(i)
t )}|Q|

i=1. In this work,
we employ SpaCy’s pre-trained POS tagger1 to mark POS
labels.

In the second phase, we train a POS Encoder (PE) through
the POS tagging task, which is used to acquire POS features.
Each word xi is encoded by POS Encoder, the POS feature
vector

epi = PE(xi), e
p
i ∈ Rd (18)

We use the same CRF framework as the Basic Slot Tagging
Network for POS tagging. It should be noted that since all
POS tags are known, the POS label embedding czi is the
mean vector of the corresponding words in both enhanced
support set SE and POS query set QP . The loss function of
POS tagging is:

Lpos = −logp(zt|xt, (SE , QP )) (19)

1https://spacy.io/api/annotation#pos-tagging

For each word xi, we use the average vector of the POS
feature vector epi and the fusion word vector efi as the fi-
nal word embedding efi . The final word embedding is used
in few-shot CRF framework and the loss function of POS
Adaptation Network is calculating in Equation 20:

Lada = −logp(yt|xt, (A,SE , QP )) (20)

Finally, in the second phase, the LFETAN Loss is calculated
as:

Lall = Lmeta + Lpos + Lada (21)

Experiments
Datasets
We evaluate our proposed model on the benchmark slot tag-
ging dataset SNIPS (Coucke et al. 2018) and the name entity
recognition dataset NER, followed the same data split pro-
vided by (Hou et al. 2020). These two datasets are both in the
form of few-shot episode data setting (Vinyals et al. 2016) ,
where each episode contains a support set and a query set.
SNIPS dataset contains 7 domains with different label sets:
Weather (We), Music (Mu), PlayList (Pl), Book (Bo), Search
Screen (Se), Restaurant (Re) and Creative Work (Cr). NER
dataset treats 4 dataset as different domains: CoNLL-2003
(News) (Sang and Meulder 2003) , GUM (Wiki) (Zeldes
2017), WNUT-2017 (Social) (Derczynski et al. 2017) and
OntoNotes (Mixed) (Pradhan et al. 2013). For each dataset,
we follow (Hou et al. 2020) to select one domain for test-
ing, one domain for validation and the remaining domains
for training. We need to distribute a basic domain to each
domain. Note that the basic domain is only selected from
the training set. We build different meta tasks for training.
In each training meta task, we select one domain from train-
ing set as target domain. During testing, target domain is the
test set domain and its basic domain is also selected from
training set.

Baselines
SimBERT is a metric-based method that assigns labels
based on cosine similarity of word embedding generated by
non-fine-tuned BERT.
TransferBERT is a domain transfer-based method using pa-
rameter sharing of BERT, which is pre-trained on source do-
mains and fine-tuned on the target domain support set.
WPZ+BERT (Fritzler, Logacheva, and Kretov 2019) is a
few-shot slot tagging model based on prototypical network
(Snell, Swersky, and Zemel 2017). It regards slot tagging
as classification of each word, pre-trains on source domains
and then performs word classification directly on the target
domain.
L-TapNet+CDT+PWE (Hou et al. 2020) is a few-shot slot
tagging method using CRF framework. It introduces the col-
lapsed dependency transfer mechanism to transfer knowl-
edge of label dependencies from source domains.
L-ProtoNet+CDT+VPB (Zhu et al. 2020) introduces differ-
ent distance functions on the basis of L-TapNet+CDT+PWE
and uses the distance function VPB to improve the perfor-
mance of the model.
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Model We Mu PI Bo Se Re Cr Avg.

SimBERT 36.10 37.08 35.11 68.09 41.61 42.82 23.91 40.67
TransferBERT 55.82 38.01 45.65 31.63 21.96 41.79 38.53 39.06
WPZ+BERT (2019) 46.72 40.07 50.78 68.73 60.81 55.58 67.67 55.77
L-TapNet+CDT+PWE (2020) 71.53 60.56 66.27 84.54 76.27 70.79 62.89 70.41
L-ProtoNet+CDT+VPB (2020) 73.12 57.86 69.01 82.49 75.11 73.34 70.46 71.63
MCML (2021) 72.30 58.33 69.64 82.90 77.23 72.79 79.57 73.25
InversePrompt⋆ (2022) 63.37 53.04 63.33 75.21 56.58 65.73 59.10 62.34
Ours 76.57 63.37 75.02 87.01 80.34 76.61 71.02 75.71

Table 1: F1 scores on 1-shot slot tagging of SNIPS. ⋆ indicates the results reproduced by using the source codes.

Model We Mu PI Bo Se Re Cr Avg.

SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96
TransferBERT 59.41 42.00 46.07 20.74 28.20 67.75 58.61 46.11
WPZ+BERT (2019) 67.82 55.99 46.02 72.17 73.59 60.18 66.89 63.24
L-TapNet+CDT+PWE (2020) 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01
L-ProtoNet+CDT+VPB (2020) 82.93 69.62 80.86 91.19 86.58 81.97 76.02 81.31
MCML (2021) 81.79 69.70 80.78 91.53 87.09 82.49 81.07 82.06
InversePrompt⋆ (2022) 79.08 69.08 75.80 87.87 80.22 76.75 71.71 77.22
Ours 85.14 70.26 83.63 93.36 90.17 83.77 77.33 83.38

Table 2: F1 scores on 5-shot slot tagging of SNIPS. ⋆ indicates the results reproduced by using the source codes.

Model 1-shot 5-shot
News Wiki Social Mixed Avg. News Wiki Social Mixed Avg.

SimBERT 19.22 6.91 5.18 13.99 11.32 32.01 10.63 8.20 21.14 18.00
TransferBERT 4.75 0.57 2.71 3.46 2.87 15.36 3.62 11.08 35.49 16.39
WPZ+BERT (2019) 32.49 3.89 10.68 6.67 13.43 50.06 9.54 17.26 13.59 22.61
L-TapNet+CDT+PWE (2020) 44.30 12.04 20.80 15.17 23.08 45.35 11.65 23.30 20.95 25.31
L-ProtoNet+CDT+VPB (2020) 43.47 10.95 28.43 33.14 29.00 56.30 18.57 35.42 44.71 38.75
MCML (2021) - - - - - - - - - -
InversePrompt⋆ (2022) 22.36 10.71 15.18 21.90 17.54 25.23 21.57 19.74 30.01 24.14
Ours 46.86 15.55 30.91 42.71 34.01 61.06 25.86 36.00 52.47 43.85

Table 3: F1 scores on 1-shot and 5-shot slot tagging of NER. ⋆ indicates the results reproduced by using the source codes.

MCML (Wang et al. 2021) is a current state-of-the-art meta-
learning method for the few-shot slot tagging task. It utilizes
contrastive learning to model episode-level relationship and
transfers prior knowledge from source domains.
InversePrompt (Hou et al. 2022) is a current state-of-the-art
prompting method for few-shot slot tagging. It introduces a
novel inverse paradigm for prompting methods and proposes
an Iterative Prediction Strategy for learning.

Implementation Details
We take the uncased BERT-Base (Devlin et al. 2019) as
Basic Encoder, Meta Encoder and POS Encoder to embed
words into different semantic vector representations. We use
ADAM (Kingma and Ba 2015) to train our model and set
Basic Encoder, Meta Encoder and POS Encoder learning
rate as 1e-5, other modules learning rate as 1e-3. We set the
word vector dimension d is 768 and learn the scaling param-

eter λ during training. To prevent the impact of randomness,
we use 10 different random seeds to carry out our experi-
ments and report the final average results.

Comparisons with State-of-the-arts
Table 1 and Table 2 indicate an overall improvement of our
method for 1-shot and 5-shot slot tagging on SNIPS dataset
compared to previous baselines. Table 3 shows the results of
these methods on NER dataset.

Overall, our model outperforms all baselines on the two
benchmark datasets and reach state-of-the-art results. On the
SNIPS dataset, the average F1 score of our model on 1-shot
and 5-shot situation is 2.46 and 1.32 higher than that of
MCML, respectively. On the NER dataset, our model out-
performs InversePrompt by F1 scores of 16.47 and 19.71 on
1-shot and 5-shot situation in average respectively. It can be
seemed that the performance improvement of our model is
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Model 1-shot 5-shot

Ours 75.71 83.38
w/o BSTN 72.66 82.22
w/o TAMN 74.55 82.52
w/o POS 73.36 82.67

Table 4: Ablation study of F1 score on SNIPS.

more obvious in 1-shot situation. This is because the smaller
number of support set samples, the more important it is to
transfer knowledge from source domains.

In terms of specific domains, our model outperforms all
baselines in all four domains on the NER dataset and per-
forms worse than MCML in only one domain (Cr) on the
SNIPS dataset. We find the Cr domain has a unique charac-
teristic after carefully examining the label fields of all do-
mains. It has only two slots and both of those slots appear in
other domains. This unique characteristic is very beneficial
to MCML because it has a module specifically designed for
this feature. From the results, we can see that the F1 score
of MCML on Cr domain increases slightly when increasing
the number of support set samples from 1 to 5. This is due to
such particular module relies more on learning overlapping
knowledge from source domains than on the number of sam-
ples in the support set. Compared with MCML, our model is
more stable for general slot tagging scenarios.

We also observe that the InversePrompt is not as good as
such metric-based meta-learning model in this cross-domain
few-shot setting. Generally, prompting methods need to train
directly on the small amount of data in the target domain,
rather than training in source domains. (Hou et al. 2022)
tests the performance of InversePrompt in this cross-domain
few-shot slot tagging situation, pretrains the model in source
domains and fine-tunes it on the target domain support set.
According to this strategy, we conduct complete experi-
ments on our dataset using the code provided by (Hou et al.
2022). Results demonstrate that our proposed method out-
performs InversePrompt under all testing circumstances.

Ablation Study
In this section, we conduct a large number of ablation stud-
ies to observe the effect of each individual component in our
model. We test the performance of our full model and its ab-
lations on SNIPS dataset. As shown in Table 4, the average
performance of the model decreases to varying degrees after
removing these three modules separately.

“w/o BSTN” means that we employ traditional meta task
and use POS features to enhance word embeddings. In 1-
shot and 5-shot settings, the performance decreases by 3.05
and 1.16, respectively. It can be seen that BSTN has the most
impact on the performance improvement on both 1-shot and
5-shot scenarios, especially in the 1-shot setting. It proves
the effectiveness of our novel meta task design paradigm, es-
pecially in the case of low resources. This is mainly because
our meta task can effectively simulate realistic few-shot slot
tagging scenarios and learn the ignored historical knowledge
form source domains.
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Figure 4: The impact of the basic domain selection.

“w/o TAMN” means that we no longer set a separate loss
function for the traditional meta task and change the final
loss function to Lall = Lpos + Lada. It the 1-shot setting,
changing the final loss function has the least impact on the
model. It proves the ability of learning historical informa-
tion is more important when resources are scarce. With the
increase of support set samples, the ability of learning meta
knowledge becomes more and more important.

“w/o POS” means that we only use Task Adaptation Meta
Network to train the model, ignoring the influence of POS.
The final loss function is modified to Lall = Lmeta. In the
1-shot and 5-shot settings, the F1 scores are reduced by 2.35
and 0.71. We further explore the impact of the basic domain
selection on the Task Adaptation Meta Network. In TAMN,
we use Label Space Similarity Calculation (LSSC) to de-
termine the basic domain. It can help to filter out a large
amount of irrelevant information compared with directly us-
ing the entire source domains as the basic domain. As shown
in Figure 4, we compare the results of these two basic do-
main selection strategies on 1-shot slot tagging of SNIPS.
The performance of the TAMN without LSSC decreases in
six domains, but improves in the Cr domain because all Cr
domain slots appear in source domains. It proves directly us-
ing the entire source domains as the basic domain can bring
both historical information and a large amount of noise.

Conclusion
In this paper, we introduce a novel domain-transfer meta
task design paradigm to simulate realistic few-shot slot tag-
ging tasks and alleviate the problem of historical informa-
tion forgetting. To accomplish our meta task, we propose a
novel Linguistic Features Enhanced Task Adaptation Net-
work. It can effectively fuse overlap labels historical infor-
mation, novel labels meta knowledge and cross-domain lin-
guistic features. Experimental results show that LFETAN is
superior to previous state-of-the-art methods on both slot
tagging and named entity recognition datasets in few-shot
scenarios. In the future, we will explore the effectiveness of
our meta task design paradigm in other tasks.
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