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Abstract

Named entity recognition is a fundamental task in natural lan-
guage processing. Based on the sequence labeling paradigm
for flat named entity recognition, multiple methods have been
developed to handle the nested structures. However, they ei-
ther require fixed recognition order or introduce complex hy-
pergraphs. To tackle this problem, we propose a novel model
named Local Hypergraph Builder Network (LHBN) that
builds multiple simpler local hypergraphs to capture named
entities instead of a single complex full-size hypergraph. The
proposed model has three main properties: (1) The named
entities that share boundaries are captured in the same lo-
cal hypergraph. (2) The boundary information is enhanced by
building local hypergraphs. (3) The hypergraphs can be built
bidirectionally to take advantage of the identification direc-
tion preference of different named entities. Experiments il-
lustrate that our model outperforms previous state-of-the-art
methods on four widely used nested named entity recognition
datasets: ACE04, ACE05, GENIA, and KBP17. The code
is available at https://github.com/yanyk13/local-hypergraph-
building-network.git.

Introduction
Named Entity Recognition (NER) plays an important role
in natural language processing. It provides information for
many downstream applications like coreference resolution,
entity linking, and event extraction. Previous tagging meth-
ods have achieved significant successes in flat named entity
recognition by formulating it as assigning a tag to each to-
ken. However, such a paradigm fails to handle overlapping
named entities, as shown in Figure 1, which are very com-
mon in many fields.

In recent years, researchers have proposed multiple new
methods to tackle the nested structure. The span-based ap-
proaches (Sohrab and Miwa 2018; Tan et al. 2020) follow
a two-stage strategy. They first propose a certain number of
spans, where nesting is allowed, and then predict the cate-
gory for each candidate. Latest sequence labeling methods
(Alex, Haddow, and Grover 2007; Ju, Miwa, and Ananiadou
2018; Wang et al. 2020) leverage multiple decoding layers
to separately predict entities with different lengths following
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Figure 1: Nested named entities extracted from ACE04 and
GENIA. The nested structures are caused by: 1⃝ A named
entity as the qualifier of another one. 2⃝ Different length of
qualifiers. 3⃝ 4⃝ Relatives or pronouns.

Dataset Nested Entity Pairs (%)
Left Right Total

ACE04 45.67 19.77 65.44
ACE05 30.05 28.77 58.82
GENIA 75.03 14.62 89.65
KBP17 32.61 30.53 63.14

Table 1: The proportion of nested entity pairs that share a
boundary. The second and third columns separately indicate
the pairs that share left and right boundaries.

a certain order, like inner to outer. Other approaches (Lu and
Roth 2015; Muis and Lu 2017; Katiyar and Cardie 2018;
Iwakura, Takamura, and Okumura 2011) attempt to capture
named entities by building special structures.

To address the nested structure, we take a closer look at
the overlapping entities and propose a novel paradigm that
use the sequence labeling method to form a local hypergraph
structure. Normally, a named entity consists of a headword
and its qualifiers. There are two kinds of nested structures:
(1) An entity is a qualifier of another one, like ‘EBNA2’ and
‘EBNA2-dependent enhancer’, and (2) The headword forms
multiple named entities with qualifiers of different lengths,
like ‘human T cell’ and ‘T cell’. They are likely to share one
side of the boundary, as shown in Table 1. In some datasets
like ACE04 and ACE05, due to the requirement of down-
stream applications, such as event extraction and corefer-
ence resolution, some pronouns and the relatives in attribu-
tive clauses are also annotated as named entities. This leads
to the third kind of nested structure, like ‘those who worked
for her’ and ‘who’. As for the first two kinds of structures,
it requires a sequence labeling model to not only recognize
a named entity but also estimate the possibility of extending
its boundary to form a new one. On the other hand, the iden-
tification of the inner entities of the last kind can be regarded
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as a token-wise classification task.
We propose a novel model, named Local Hypergraph

Building Network (LHBN), as illustrated in Figure 3 to
formulate the identification of named entity as a two-stage
process: (1) Proposing boundary token candidates of enti-
ties with a token-wise classifier, (2) Given a left/right bound-
ary, sequentially casting the subsequence into a local hyper-
graph. By the word ‘local’, we emphasize that each hyper-
graph only captures the entities that share a specific bound-
ary. Compared to previous hypergraph structures that are re-
quired to encapsulate all the entities, ours has much lower
complexity and thus is easier to build. Although we also use
a sequence-to-sequence paradigm, different from previous
sequence labeling methods, our method does not require a
subjectively defined recognition order, like bottom-up, and
the decoding layer has no preference for entity length.

Our main contributions are as follows:

• We introduce a novel paradigm based on a local hyper-
graph for nested named entity recognition. The construc-
tion process is much simpler than mapping the full text
into a single hypergraph as used in previous studies.

• Instead of identifying named entities with a subjec-
tively defined order or a preference for entity length, our
method extracts entities with the same boundary in a lo-
cal hypergraph, which makes it easier to synthesize the
information in nested structures.

• We evaluate our methods on four widely used nested
named entity recognition datasets: ACE04, ACE05, GE-
NIA, and KBP17. Experiments show that the proposed
method achieves state-of-the-art performance on all four
datasets.

• By extending our methods to bidirectionally build local
hypergraphs, we achieve superior performances on all
four datasets. In addition, we illustrate that there is a pref-
erence in identifying order for different nested structures.

Related Work
There are various paradigms for nested named entity recog-
nition (NER). We can roughly divide them into span-
based methods, hypergraph-based methods, sequence label-
ing methods, and other approaches.

Span-based Methods. The span-based approaches are the
most mainstream way for nested NER. Generally, they first
propose a certain number of span candidates and then clas-
sify them into different categories. These studies focus on
span sampling strategies and span representation methods.
As an early attempt, Exhaustive Model (Sohrab and Miwa
2018) samples all possible spans. Tan et al. (2020) leverages
sub-modules to estimate boundaries before sampling spans.
Shen et al. (2021) introduces a new module to adjust bound-
aries of span candidates to further use boundary information.
Fu et al. (2021) uses a TreeCRF to enhance the interactions
between nested spans. The most recent method Yuan et al.
(2022) proposes tri-affine mechanism to integrate all use-
ful information of different formats including tokens, labels,
boundaries, and related spans to enhance the span represen-
tation. However, there is a trade-off between sampling span

candidates and cross-span attention: (1) A small number of
span candidates brings a risk of omitting entities. (2) With a
large sampling number, the cross-span attention tends to be
noneffective for involving too many lower qualified spans,
and it requires a large computation resource.

Sequence Labeling Methods. Previous sequence labeling
methods for Nested NER(Alex, Haddow, and Grover 2007;
Luo and Zhao 2020; Wang et al. 2020; Shibuya and Hovy
2020) use multiple decoding layers to handle nested struc-
tures. The identification of entities in these methods follows
a certain order, such as from inner to outer or from bottom-
up, which is difficult to learn because the labels of entities
are unordered.

Hypergraph-based Methods. Hypergraph-based models
did not achieve competitive performance in recent years.
Most previous hypergraph-based methods, like that Lu and
Roth (2015) proposed, are rule-based, and they attempt to
map a text into carefully designed hypergraphs to capture all
possible nested structures. Although other works (Muis and
Lu 2017; Katiyar and Cardie 2018) leverage a hypergraph to
transform Nested NER to a modified sequence labeling task
as we do in this work, they use a single structure to represent
all the named entities in the input sentence. Due to the com-
plexity of the hypergraph, these models are difficult to train.
This is described in detail in the Method Section.

Other Methods. Tan et al. (2021) provides a fixed set of
learnable vectors to learn the patterns of the valuable spans.
Both Li et al. (2020) and Shen et al. (2022) use a machine
reading comprehension framework to identify entities.

To our best knowledge, we are the first to formulate nested
named entities recognition as building multiple local hyper-
graphs via a sequence labeling method.

Method
In this section, we first introduce the proposed local hyper-
graph structure and then our task formulation. Figure 3 il-
lustrates an overview of the proposed method.

Encoding Scheme
Using the standard BIEO tag scheme, the desired tag se-
quences of three overlapping named entities (‘peripheral
blood mononuclear cell’, ‘peripheral blood mononuclear
cell glucocorticoid receptors’, and ‘glucocorticoid recep-
tors’ ) are shown in Figure 2(a), where a nested structure
requires different types of labels at the same position.

To tackle this problem, several previous works (Lu and
Roth 2015; Muis and Lu 2017; Katiyar and Cardie 2018)
introduce directed hypergraphs that encode the token-level
tags for all entities in the input sentence. A directed hyper-
graph is very similar to a standard directed graph except
that its edges (hyperarcs) can connect more than one head
node and tail node. Specifically, in a hypergraph represent-
ing named entities, there are two types of hyperarcs: normal
edges that connect a single head node and tail node, and hy-
peredges that connect a set of head nodes and tail nodes. As
illustrated in Figure 2(b), the hyperedges are introduced to
encode nested structures.
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Figure 2: Tag scheme and hypergraphs for three overlapping entities. (a): Entities in an unfolded hypergraph. Each row corre-
sponds to a tag sequence using standard BIEO tagging scheme. (b): Hypergraph structure introduced in (Katiyar and Cardie
2018). (c): Forward local hypergraphs. (d): Backward local hypergraphs. Curved edges represent hyperedges and straight edges
are normal edges in (b)(c)(d).

Previous hypergraph-based methods use a single hyper-
graph to encode all the entities in the input sentence. To
build such a complex structure, they have to either extend
label types (Muis and Lu 2017) or generate hyperedges as
a multi-label problem (Katiyar and Cardie 2018), which in-
creases the difficulty of modeling. To alleviate this problem
and leverage the aforementioned syntactic features of named
entities, we propose a novel local hypergraph structure. In-
stead of representing all the name entities in the input sen-
tence, the proposed local hypergraph only encodes the enti-
ties that share the same boundary, as illustrated in Figure
2(c)(d). Each local hypergraph has a generation direction
(forward/backward) indicating whether built from a left or
right boundary. Our tagging scheme is similar to the stan-
dard BIEO scheme, except that the B and I are not type-
specific. The following four types of nodes are used:
• B denotes the left/right boundary token of one or more

named entities in a forward/backward local hypergraph.
• I denotes a token inside any named entity.
• EclsX denotes the right/left boundary token of a named

entity, whose type is clsX in a forward/backward local
hypergraph.

• O denotes a token outside of any named entities.
Nodes and hyperarcs are used together to encode named

entities: A path from a B node to a EclsX node through any
numbers of I nodes represent a named entity (type clsX ) in
a local hypergraph. We perform depth-first searches for such
paths on all the local hypergraphs to decode named entities.
It is important to note that both forward and backward local
hypergraph sets can encode all named entities in the input
sentence independently.

Task Formulation
As shown in Figure 3, we formulate the recognition of
named entities as a two-stage process: boundary proposing
and hypergraph building, as described below.

Boundary Proposing. Given an input sentence X =
{x1, x2, ..., xN} consisting of N tokens, the model is re-
quired to propose a set of left boundary candidates XL =

{xli} and a set of right boundary candidates XR = {xrj}
as initial B nodes of local hypergraphs, where li is the in-
dex of the i-th left boundary, and rj is the index of the j-th
right boundary. We regard this process as token-wise binary
classification.

Hypergraph Building. Given an input sentence X =
{x1, x2, ..., xN} and a left boundary candidate xli , a for-
ward local hypergraph is build by sequentially assigning tags
to each token of the subsequence {xli , xli+1, ..., xN}. Sim-
ilarly, a backward local hypergraph corresponding to a right
boundary xrj is built by tagging the reversed subsequence
{xrj , xrj−1, ..., x1}.

Model Structure
In general, there are two modules in our model, referred to as
Boundary Detector and Hypergraph Builder. The bound-
ary detector first proposes potential boundaries of named
entities in the input sentence. Then, the hypergraph builder
generates a local hypergraph for each boundary and its sub-
sequence. In this section, we illustrate the detailed structure
of the proposed model, and the specific algorithm to build
local hypergraphs.

Boundary Proposer
The boundary proposer consists of a text encoder and a feed-
forward layer. As a token-wise binary classifier, it estimates
the probability that each token in the input sentence is a
boundary of any named entities. We use the same method
as (Shen et al. 2021) proposed to generate token represen-
tation. Given a sentence X = {x1, x2, ..., xN} with N to-
kens, the representation of the i-th token is built by first con-
catenating four components: (1) the encoded result tlmi of a
language model; (2) word embedding twi ; (3) part-of-speech
(POS) embedding tposi ; and (4) character-level embedding
tchari which is generated by a char-level BiLSTM. Then,
we feed them into a token-level BiLSTM layer and regard
its hidden states as the token representation ti. Finally, the
feedforward layer takes ti as input and output a score pl/ri to
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Figure 3: Overview of the proposed method and model structure. Our model first proposes boundary candidates and their
corresponding subsequences. Then, they are feed into a sequence labeling module to generate a set of local hypergraphs in both
directions, which are decoded to extract named entities. The results in two directions are merged to gain the final predictions.
A unidirectional prediction is indicated as a quadruple (left boundary, right boundary, entity type, score). A final prediction is
indicated as a triple (left boundary, right boundary, entity type).

evaluate the likelihood of i-th token being a left/right bound-
ary.

zi = tlmi ⊕ twi ⊕ tposi ⊕ tchari (1)
−→
hi =

−−−−→
LSTM([z0, z1, ..., zN ]) (2)

←−
hi =

←−−−−
LSTM([z0, z1, ..., zN ]) (3)

ti =
−→
hi ⊕

←−
hi (4)

p
l/r
i = sigmoid(FFN(ti)) (5)

Similar to the proposing strategy of span-based methods, we
prefer to obtain a high-recall sampling result in proposing
boundary candidates. Thus, we use a focal loss(Lin et al.
2017) Ll/r as our target function to minimize.

Ll/r =
N∑
i=1

−yl/ri · (1− p
l/r
i )γ log(1− p

l/r
i ), (6)

where y
l/r
i is the ground label of the i-th token. The hyper-

graph builder should be able to drop low-qualified bound-
aries. Thus, during training, we scale the number of token
candidates by a factor of λ to include some low-qualified
boundary candidates.

Hypergraph Builder
As aforementioned, we can represent all the named entities
in the input sentence as a collection of local hypergraphs in
a single direction. In practice, we separately generate local
hypergraphs in both directions and then merge the results
to get the final predictions. To simplify the description of
the model structure, we illustrate the proposed method by
taking the process of building a local hypergraph forward as
an example in the rest of this section.

The hypergraph builder has two text encoders which has
the same structure of the one in the boundary proposer that

separately generate the representation of a left boundary
xli and corresponding subsequence {xli , xli+1, ...xN}, in-
dicated as tbli and {tsli , t

s
li+1, ...t

s
N}.

We use a standard unidirectional LSTM layer to gener-
ate a local hypergraph structure. Its cell memory Ci,k and
hidden state hi,k are initialized with tbli instead of zero vec-
tors to enhance the boundary information. Taking the sub-
sequence as input, it produces a tag at each time step as a
multi-class problem, and then extends the local hypergraph
using the following rules R: (1) The local hypergraph is ini-
tialized as a single B node. (2) At each time step, only the
last B/I node is regarded as the head node. (3) If a clsX
tag is predicted, an I node is connected to the head node by
a hyperedge together with a EclsX node. (4) When an I/O
tag is predicted, an I/O node will be connected to the head
node with a normal edge. (5) Once an O node is predicted,
the local hypergraph stops growing.

Ci,0 = hi,0 = tbli (7)

hi,k+1 = LSTM(tsli+k, hi,k) (8)

pi,k = softmax(FFN(hi,k)) (9)
ŷi,k = argmax

c
(pi,k) (10)

Ŷi = {ŷi,0, ŷi,1, ..., ŷi,N−li} (11)

Gf
i = R(Ŷi), (12)

where k ∈ {0, 1, ..., N− li}. pi,k is the predicted probability
of tags for the k-th token in the subsequence corresponding
to the i-th left boundary xli , and ŷi,k is its predicted tag.
Gf

i is the i-th forward local hypergraph generated by imple-
menting R on the tag sequence Ŷi.

We then decode the named entities from the local hyper-
graph by implementing a depth-first search for the paths that
start with a B node and end at a EclsX node. We use a set
of quadruples Ef/b = {(idxl, idxr, cls, p

f/b)} to represent
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forward/backward predicted named entities, where idxl and
idxr are the boundary indexes, cls is the predicted entity
type, and p is the predicted probability of the last node be-
ing Ecls.

We use cross-entropy Lg as the target function to min-
imize while training the hypergraph builder. We limit the
length of a tag sequence to only contain at most one O tag to
save computation resources since the generation stops grow-
ing. Suppose the i-th tag sequence has a length of Vi:

Lg = − 1

M

M∑
i=1

1

Vi

Vi∑
k=1

∑
c∈ξ

(1[yi,k = c] log(pci,k)

+ 1[yi,k ̸= c] log(1− pci,k)), ξ = {I,O, cls1, cls2, ...}
(13)

where ξ is the set of node types. yi,k is the ground truth type
of the k-th token in the subsequence starts with the i-th left
boundary. pci,k is the predicted probability of the k-th token
in corresponding subsequence being tagged as type c.

We observe that the order of the combination of qualifiers
and headwords in named entities is very diverse, leading to
differences in their ease of recognition from different direc-
tions. Therefore, we first separately identify named entities
in both directions. The sets of named entities Ef and Eb

are then merged to form the final predictions. Specifically,
we compute an average score pm for each entity candidate
(idxl, idxr, cls) in the sets as below

pm =
1

2
(1[(idxl, idxr, cls, p

f ) ∈ Ef ]pf+

1[(idxl, idxr, cls, p
b) ∈ Eb]pb)

(14)

A proposed entity candidate is dropped if pm < θ, where θ
is a hyper-parameter as a threshold.

Experiments
To evaluate the proposed method, we conduct experiments
on four widely used datasets for Nested NER: ACE04,
ACE05, KBP17 and GENIA.

ACE04 and ACE05(Doddington et al. 2004;
Stephanie Strassel and Maeda 2006) are nested datasets
with 7 entity categories, we use the same setup as previous
works(Katiyar and Cardie 2018; Shen et al. 2021) and split
them into train, dev, and test sets by 8:1:1.

GENIA(Ohta et al. 2002) is a nested dataset consisting of
biology texts. There are 5 entity types: DNA, RNA, protein,
cell line and cell categories. Following (Shen et al. 2021),
we use a 90%/10% train/test split.

KBP17(Ji et al. 2017) has 5 entity categories. We split
all the samples into 866/20/167 documents for train/dev/test
set following the same setup as previous works(Shen et al.
2021).

Evaluation Metrics
We employ precision, recall, and F1-score to evaluate the
performance. Here we use strict evaluation metrics that an
entity is considered correctly labeled only if its boundary
and category are correct simultaneously.

Parameter Setting
In the experiments on ACE04, ACE05 and KBP17,
we leverage BERT-large(Devlin et al. 2019) and
GloVe(Pennington, Socher, and Manning 2014) to ini-
tialize our encoders. The dimensions for tlmi , twi , tposi , tchari ,
and ti are 1024, 300, 512, 1024, and 1024, respectively.
We replace BERT and GloVe with BioBERT-large(Lee
et al. 2020) and BioWordvec(Chiu et al. 2016) for GENIA.
Corresponding dimensions of tlmi , twi are 1024, 200. Based
on the performance on the dev sets of ACE04, ACE05,
and KBP17, γ used in equation (6) is set to 0.9, the scale
hyper-parameter λ for sampling boundary candidates is
set to 5, and the merging threshold θ is set to 0.5. For all
the experiments, we train our model for 100 epochs with
an AdamW optimizer and a linear warmup-decay learning
rate. The initial learning rate for BERT modules and other
parameters are set to 1e-5, and 1e-3 respectively.

Baselines
We compare our method with several state-of-the-art
approaches, including span-based, hypergraph-based, se-
quence labeling, and other methods, on ACE04, ACE05,
GENIA, and KBP17 datasets:

• Katiyar and Cardie (2018) make use of the BILOU tag-
ging scheme to learn the hypergraph representation.

• Luo and Zhao (2020) proposes a bipartite flat-graph net-
work with two interacting subgraph modules.

• Wang et al. (2020) designs the normal and inverse pyra-
midal structures to identify entities through bidirectional
interactions.

• Shen et al. (2021) proposes a two-stage entity identifier
to maintain high-quality span candidates.

• Tan et al. (2021) provides a fixed set of learnable vectors
to learn the patterns of the valuable spans.

• Yuan et al. (2022) proposes a novel tri-affine mechanism
including tri-affine attention and scoring.

• Shen et al. (2022) proposes Parallel Instance Query Net-
work (PIQN), which sets up global and learnable in-
stance queries to extract entities from a sentence in a par-
allel manner.

Result and Discussion
Main Result
The performance of the proposed method and baselines is
shown in Table 2 on all four datasets. To make it fair,
we do not compare the proposed approach to those based
on extra-large pre-trained models. Our method outperforms
all the state-of-the-art models on all nested named en-
tity recognition datasets, achieving F1-scores of 88.46%,
87.82%, 82.09%, and 86.55% on ACE04, ACE05, GENIA,
and KBP17 with +0.32%, +0.41%, +0.32% and +1.05% im-
provements, respectively.

We believe that our method outperforms previous ap-
proaches for the following reasons: (1) The boundary in-
formation plays an important role in named entity recog-
nition, especially those contained in the same nested struc-
ture. LHBN enhances this information by initializing a lo-
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Model Pr. Rec. F1

ACE04

Katiyar and Cardie (2018) 73.60 71.80 72.70
Wang et al. (2020) 86.08 86.48 86.28
Tan et al. (2021) 88.46 86.10 87.26
Yuan et al. (2022) 87.13 87.68 87.40
Shen et al. (2021) 88.24 86.82 87.52
Shen et al. (2022) 88.48 87.81 88.14
LHBN 88.78 88.13 88.46

ACE05

Katiyar and Cardie (2018) 72.70 70.60 70.50
Luo and Zhao (2020) 75.00 75.20 75.10
Wang et al. (2020) 83.95 85.39 84.66
Yuan et al. (2022) 86.70 86.94 85.50
Shen et al. (2021) 86.09 87.27 86.67
Tan et al. (2021) 87.48 86.63 87.05
Shen et al. (2022) 86.27 88.60 87.42
LHBN 86.76 88.93 87.83

GENIA

Katiyar and Cardie (2018) 79.80 68.20 73.60
Luo and Zhao (2020) 77.40 74.60 76.00
Wang et al. (2020) 80.33 78.31 79.31
Tan et al. (2021) 82.31 78.66 80.44
Shen et al. (2021) 80.19 80.89 80.54
Yuan et al. (2022) 80.42 82.06 81.23
Shen et al. (2022) 83.24 80.35 81.77
LHBN 81.17 83.03 82.09

KBP17

Luo and Zhao (2020) 77.10 74.30 75.60
Tan et al. (2021) 84.91 83.04 83.96
Shen et al. (2021) 85.46 82.67 84.05
Yuan et al. (2022) 86.50 83.65 85.50
Shen et al. (2022) 85.67 83.37 84.50
LHBN 86.84 86.25 86.55

Table 2: Main result.

cal sequence labeling task for each boundary and sequen-
tially generating a local hypergraph, whereas the usage of
boundaries is limited to the assisted scoring method for span
candidates. (2) The tags of named entities are essentially an
unordered set. However, previous sequence labeling meth-
ods set restrictions on the recognition order, like inner-outer,
which is not required in our method. (3) The local hyper-
graphs can be built forward and backward to handle different
types of nested structures.

Ablation Study

# Model ACE04
Pr. Rec. F1

1 default 88.78 88.13 88.46
2 Forward Only 88.33 87.84 88.09
3 Backward Only 88.50 86.52 87.50
4 w/o Individual Encoder 88.42 87.05 87.73
5 w/o Boundary Initialization 88.37 87.67 88.02

Table 3: Ablation result. w/o Forward/Backward only de-
notes a unidirectional model. w/o Individual Encoder refers
to a reduced model that has no separate encoder for bound-
ary tokens. w/o Boundary Initialization indicates that the
LSTM layer of the hypergraph builder is initialized with
zero vectors.

We conduct several ablation experiments to elucidate im-
portant designs of the proposed method on ACE04, and the
results are shown in Table 3.

Effectiveness of Bidirectional Prediction. There are var-
ious syntactic structures of named entities, which brings dif-
ferences in the difficulty of identifying them from forward
and backward. For example, if an entity starts with a head-
word, and ends with a long attributive clause, like “The law-
maker who served as chief of staff to late President Roh
Moohyun”. It is simple to process forward, first identifying
the head word and then sequentially tagging the qualifiers. In
contrast, it is hard to recognize ‘Moohyun’ as a right bound-
ary. In the proposed method, the final result is generated by
merging predictions from both directions. Compared to uni-
directional results, as shown in line 2 (forward) and line 3
(backward), it brings consistent improvements.

Effectiveness of Individual Encoder for Boundary To-
kens. In this work, we leverage separate encoders to gener-
ate the representation of boundary tokens and subsequences.
Comparing line 4 and line 1 in Table 4, one could observe
that the separate encoders bring +0.73% improvement in F1-
scores on ACE04. One explanation could be that the seman-
tic information of a token is different when it is regarded at
the boundary of or inside a named entity.

Effectiveness of Boundary Initialization. In our method,
the LSTM layer is initialized with each boundary token,
which is similar to some question-answering formulations.
The building of each local hypergraph is regarded as a
query-based process: given a boundary token as a query, the
model is required to predict the named entities in the sub-
sequence as the answer. Compared to the reduced version
that uses zero vectors to initialize the cell memory of the
LSTM unit, it achieves +0.44% improvement of F1-scores,
as shown in line 1 and line 5. We believe that the boundary-
specific initialization enhances the different context infor-
mation for different local hypergraphs.

Analysis
Directional Preference. To further study how bidirec-
tional merging improves the performance, we count the con-
tribution of forwarding and backward prediction to the over-
all true positive predictions on GENIA. The result shows
that 3.44% and 5.93% true positive named entities comes
from forward and backward predictions. In other words,
there is a directional preference for the recognition of dif-
ferent named entities. Thus, merging bidirectional local hy-
pergraphs benefits the overall performance.

Comparison to Span-based Models. For a detailed com-
parison between span-based methods and LHBN, we im-
plement one of the most recent state-of-the-art models that
(Shen et al. 2021) proposed. We illustrate the recognition
F1-score on entities of different length ranges in Table 5. The
results show that our model has significant advantages in the
vast majority of length ranges, especially for the recognition
of named entities with lengths longer than 15. We believe
there are two main reasons: (1) Due to the limited computa-
tion resource, lots of long-span candidates are abnegated in
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# Samples Proposed Entities LHBN (Shen et al. 2021)BI FWD BWD

1

Meanwhile 70 of the 178 people , who were originally
admitted to hospital , are still receiving treatment in
various hospitals in the region , with 22 of them
reported to still be in critical condition after the train
was derailed while traveling at 190 kilometers an hour
on a corner with a speed limit o 80km / h .

1⃝ [PER1, PER13] ✓ ✓ ✓ ✗FN

2⃝ [PER3, PER13] ✓ ✗FN ✓ ✗FN

3⃝ [FAC12, FAC13] ✓ ✓ ✓ ✓
4⃝ [FAC19, FAC24] ✓ ✓ ✓ ✓
5⃝ [LOC22, LOC24] ✓ ✓ ✓ ✓
6⃝ [PER26, PER29] ✓ ✓ ✓ ✓
7⃝ [PER28, PER29] ✓ ✗FN ✓ ✓
8⃝ [PER1, PER6] ✗FP

9⃝ [PER3, PER6] ✗FP

10⃝ [PER7, PER8] ✗FP

11⃝ [LOC49, LOC51] ✗FP

2
A fast track court has been set up at Saket court by the
country ’ s chief justice and the case will be delivered
by this weekend to the fast track court .

1⃝ [ORG0, ORG4] ✓ ✓ ✓ ✓
2⃝ [FAC9, FAC11] ✓ ✓ ✗FN ✗FN

3⃝ [GPE12, GPE14] ✓ ✓ ✓ ✓
4⃝ [PER12, PER18] ✓ ✓ ✓ ✓
5⃝ [ORG28, ORG32] ✓ ✓ ✓ ✓
6⃝ [GPE9, GPE10] ✗FP ✗FP

7⃝ [ORG9, ORG11] ✗FP

Table 4: Case Study. [clsindex1, clsindex2] indicates a named entity that starts at ‘index1’ and ends at ‘index2’, which belongs to
type ‘cls’. The third column, fourth column, and last column separately show the bidirectionally merged (BI), forward (FWD),
and backward (BWD) prediction. The last column shows the predictions of the model of Shen et al. (2021). ✓, ✗FN , and ✗FP

separately indicates true positive, false negative, and false positive prediction.

Datasets Entity length F1 supportShen et al. (2021) LHBN

ACE04

1-4 89.10 89.75 2612
5-9 82.35 84.52 309

10-14 73.44 71.56 60
≥15 51.69 67.31 53

ACE05

1-4 87.71 88.64 2611
5-9 83.51 86.28 274

10-14 69.63 76.26 66
≥15 58.46 64.00 40

GENIA

1-4 81.29 82.84 4979
5-9 77.10 78.20 727

10-14 74.51 72.22 44
≥15 72.73 85.71 7

KBP17

1-4 85.58 87.40 11410
5-9 71.64 77.41 899

10-15 65.94 73.67 186
≥15 54.43 68.02 101

Table 5: Comparison between a state-of-the-art span-based
Model (Shen et al. 2021) and LHBN.

the proposing stage of a span-based method. (2) Although
multiple span-based methods introduce cross-span informa-
tion interaction by implementing an attention mechanism
(Luo and Zhao 2020; Yuan et al. 2022), it is ineffective for
that due to the pursuit of high recall in the span proposing
stage, and low-quality span candidates introduce noise into
the computation. In contrast, sequential generation of local
hypergraphs makes it easier to process information inside
nested structures. Our method also has the advantage of time
complexity over span-based models. They need to classify
almost all possible spans, which leads to the high compu-
tational cost with O(N2) time complexity, which will fur-
ther increases if we take cross-span attention into account.

For the proposed method, the time complexity of proposing
boundaries is O(N). Assuming that the number of entities
in the sentence is q, the time complexity of building local
hypergraphs is O(qN). Thus, the total time complexity is
O(N + qN) where q << N .

Case Study. We provide two cases in Table 4 to show the
identification results of our model. As illustrated in the first
column, LHBN is capable of identifying long entities with
complex nested structures. From both cases, we can see the
directional preference that a named entity is easier to iden-
tify from the direction the headword starts. In addition, bidi-
rectional prediction results can complement each other well.
From the predictions of the two models, we can see that
LHBN outperforms the model (Shen et al. 2021) proposed
on various complex samples.

Conclusion

We propose a novel method that treats nested named en-
tity recognition as building local hypergraphs. First, we pro-
pose a certain number of boundary candidates, and then
we generate a local hypergraph for each candidate with a
sequence labeling method. The local hypergraph structure
avoids an overly complex construction process in previous
works (Muis and Lu 2017; Katiyar and Cardie 2018). In ad-
dition, leveraging local hypergraph makes our sequence la-
beling module free from identifying entities in a certain or-
der that the previous sequence labeling methods suffer from.
Compared to span-based methods, our method has a lower
time complexity. Our method achieves a new state-of-the-
art F1-score on four widely used datasets: ACE04, ACE05,
GENIA, and KBP17.
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