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Abstract

Often a face has a voice. Appearance sometimes has a strong
relationship with one’s voice. In this work, we study how
a face can be converted to a voice, which is a face-based
voice conversion. Since there is no clean dataset that con-
tains face and speech, voice conversion faces difficult learn-
ing and low-quality problems caused by background noise or
echo. Too much redundant information for face-to-voice also
causes synthesis of a general style of speech. Furthermore,
previous work tried to disentangle speech with bottleneck
adjustment. However, it is hard to decide on the size of the
bottleneck. Therefore, we propose a bottleneck-free strategy
for speech disentanglement. To avoid synthesizing the gen-
eral style of speech, we utilize framewise facial embedding. It
applied adversarial learning with a multi-scale discriminator
for the model to achieve better quality. In addition, the self-
attention module is added to focus on content-related features
for in-the-wild data. Quantitative experiments show that our
method outperforms previous work.

Introduction
Voice conversion (VC) (Qian et al. 2019; Kaneko and
Kameoka 2018; Chen et al. 2021; Lin et al. 2021) changes
the voice characteristics of a source speaker to a target
speaker while conserving linguistic information. To do the
conversion, how to disentangle the acoustic and linguistic in-
formation is a thorny problem. Once having a good disentan-
gle strategy, the model can generate a high quality of speech
from the given utterance and style. A successful VC can
be applied to various fields, such as personal electrical sup-
port as an audio assistant (Lu et al. 2021), entertainment us-
age for dubbing (Mukhneri, Wijayanto, and Hadiyoso 2020),
and industrial applications for voice changers, etc.

With the advancement of deep learning, a recent line of
study focuses on solving the VC task using data-driven ap-
proaches (Sisman et al. 2021). Some works use the bot-
tleneck strategy (Qian et al. 2019; Lu et al. 2021), vec-
tor quantization (VQ) (Wu, Chen, and Lee 2020), cycle-
consistent generative adversarial network (Kaneko and
Kameoka 2018), instance normalization (Chen et al. 2021),
etc. They are eager to find a good solution for speech dis-
entanglement. With the bottleneck method, the size of the
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bottleneck should be chosen carefully, as should the VQ-
based method. With cycle-consistent training, style diversity
is bounded by the training domain. However, most research
studies are based on laboratory data, which is quite different
from speech in the real-world scenario. There is still a gap
between research and real-world application.

In addition, we argue that there should be other ways, in
addition to voice, to control the style of speech, such as the
face. Therefore, in this work, we focus on the synthesis of
speech from a given facial image. That is, a face-based voice
conversion (Lu et al. 2021). Face-based VC can be applied
in numerous applications. For example, for movie or anima-
tion dubbing, the face of the character can help to generate a
more suitable voice matching audiences’ minds; for personal
audio assistance, one can change the voice by giving a facial
image without collecting the vocal records. Meanwhile, not
only is it an interesting topic, but it is also an important issue
for how to deal with the cross-modal problem.

To perform face-based voice conversion, there are two
challenges: face-speech transformation and learning how to
use the in-the-wild data. First of all, since the face-speech
transformation is cross-domain learning, there is some re-
dundant facial information for voice, i.e., winking or face
angle, etc. This information perturbs the mapping process
from the facial to the acoustic domain, so the model tends to
synthesize a general voice for each utterance to give the op-
timal result. Second, existing datasets that contain face and
speech are in-the-wild datasets, that is, not recorded in a lab-
oratory environment and not with expert record equipment.
These data include some background noise or echo and thus
are of lower quality than the clean dataset. Moreover, unlike
the clean data recorded in the specific corpus, in-the-wild
data do not contain duplicate sentences and have various ac-
cents. These also make it difficult to train voice conversion
with in-the-wild data or for real-world applications.

To solve these problems, FaceVC (Lu et al. 2021) pro-
posed a three-stage model. Models are based on the back-
bone of AutoVC (Qian et al. 2019), which is trained by pro-
viding a suitable size of content embedding for the decoder
to limit the received information; therefore, it can disentan-
gle speech. This technique is called bottleneck adjustment.
With this skill, a good disentanglement of the speech can
convert the voice. For high-quality data synthesis, FaceVC
trains its model on clean and in-the-wild datasets, respec-
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tively. The model trained with in-the-wild data is used to
teach the face encoder to produce a speaker-related embed-
ding; the model trained with clean data is to be used as a
reference generator. Then, they used a fully connected layer
to warp the facial distribution to the acoustic distribution.

However, it takes at least twice as long to make the bottle-
neck adjustment to learn the facial and acoustic distribution.
Furthermore, since the distribution of in-the-wild and lab-
collected data are varied from each other, it cannot reflect
the actual mapping space for face and voice. Moreover, due
to the fact that FaceVC trains the content encoder on clean
data, in regard to speech in the real-world scenario, the qual-
ity degrades as much as unseen words and noise.

To better address the challenges, we propose a novel
method, called SP-FaceVC, that is bottleneck-free by chang-
ing the data preprocessing to avoid the difficult bottleneck
adjustment. Specifically, since speech is composed of the
frequency response of the vocal track and the glottal pulse,
it can be passed by a lowpass liftering 1 on the cepstrum 2 to
obtain content-related features (in this work, we call it SP ).
We adopted SP as input data instead of the entire Mel spec-
trogram, so the speech can be easily disentangled without
bottleneck adjustment.

For the second challenge of face-speech transformation,
we train our model directly on the in-the-wild data to pre-
vent the facial distribution from fitting into the many-to-
one acoustic distribution. Here, we obtain the facial em-
bedding by taking the arithmetic mean of all frames instead
of choosing only one frame. This can eliminate the bias of
one facial photo from making the general style. Moreover,
we leverage the reparameterization trick, which transfers the
data distribution into a Gaussian distribution by sampling a
hyperparameter from a Normal distribution, to operate for
unseen speakers. However, sampling for reparameterization
may make the generated speech with unstable timbre or low
quality, i.e., the speech may sound like a woman at the be-
ginning and a man afterward. Therefore, we propose a multi-
scale discriminator to teach the generator by differentiating
the good- and bad-quality speech, which makes the speech
more natural for zero-shot voice conversion without multi-
stage learning. Moreover, for adoption in the real-world sce-
nario with in-the-wild data, we add a self-attention module
on the content encoder to aid it in paying attention to the
content-only features to improve the speech quality. Since
noise is not related to the context, the attention module can
learn which part is highly related to the content through the
training process.

Summarize our contributions:

1. We propose a novel bottleneck-free VC for easy disen-
tanglement.

2. We eliminate the bias that causes general style by av-
eraging frame-level facial features and achieve style for
unseen speakers with the reparameterization trick and a
multi-scale discriminator.

1Just like the filter, but by adopting on cepstrum.
2Cepstrum is the thing that takes the inverse discrete Fourier

transform from the Mel spectrum.

3. We adopt a self-attention module for the content encoder
to apply in the real-world scenario with noisy data.

Related Work
Voice Conversion
A recent line for the voice conversion of non-parallel train-
ing data can be categorized mainly into autoencoder-based
approaches (AE-based) (Qian et al. 2019; Chen et al. 2021;
Lin et al. 2021) and generative-adversarial-based approaches
(GAN-based) (Kaneko and Kameoka 2018; Kameoka et al.
2018). AE-based methods usually use the bottleneck to dis-
entangle speech. AgainVC (Chen et al. 2021) further uses
instance normalization to separate global and temporal in-
formation. However, how to select a suitable size of the
bottleneck still relies on experiments. Moreover, the qual-
ity of speech for using adaptive instance normalization is
relatively low, i.e., the converted speech might contain the
original speaker sound, especially when the styles of two ut-
terances are far from each other. This is because the temporal
information might still contain parts of acoustic information
with instance normalization. For GAN-based methods and
their subsequent works, such as CycleganVC (Kaneko and
Kameoka 2018), the discriminator judges the quality of the
synthesized speech only within the training domain style.
The scalability and robustness of handling more than two
domains using cycle consistency learning are limited.

Cross Modality Learning
In addition to FaceVC (Lu et al. 2021) mentioned in the in-
troduction, several works also leverage the high correlation
between voices and faces for different applications. For ex-
ample, Speech2Face (Oh et al. 2019) discusses this idea and
proposes a cross-modal learning method to synthesize faces
from voices. The work mainly focuses on how to make the
voice encoder learn the multimodal relationship with knowl-
edge distillation loss. Additionally, Face2Speech (Goto et al.
2020) inputs facial images and text to generate speech. It
first trains a general text-to-speech (TTS) model and then
trains a face encoder, trying to map the facial style to that of
the speech. Taking a similar thought, HearingFace (Plüster
et al. 2021) trains a face-based TTS with style transfer
learning from the facial to acoustic domain. Taking as in-
put the speech, text transcript, and facial characteristic, FR-
PSS (Wang et al. 2022) applies the prior information and
takes advantage of the idea of residual to remove the main
similar part of the speech, as a result of highlighting the sub-
tle changes that could be caused by the facial characteristics.
However, except for FaceVC, all other works study the text
as an input feature to avoid disentanglement.

Methodology
To achieve the one-to-one face-based voice conversion in the
real world scenario, we introduce the proposed model and
the training strategy in the following. The input data pre-
processing is first presented to alleviate the difficult disen-
tanglement problem for voice conversion and associate the
cross-modality. Then, we present the detailed model struc-
ture that is trained on in-the-wild dataset.
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Figure 1: The demonstration of original Mel spectrogram.

Data Processing
Preprocessing of Facial Feature We leverage
FaceNet (Schroff, Kalenichenko, and Philbin 2015) to
generate speaker embeddings from the images. To make the
speaker embedding more representative, frame-wise fea-
tures obtained from an utterance are taken as the arithmetic
mean. The means of speaker embedding serve as the speaker
style in an utterance. This way, redundant characteristics
can be removed, and it reduces the possible bias caused by
sampling from one facial image.

Preprocessing of Acoustic Feature If we perform the in-
verse discrete Fourier transform (F−1) to convert the Mel
spectrogram into the cepstrum, the data can be divided into
low-quefrency and high-quefrency3 as follows.

Cepstrum = Low(F−1[Mel]) +High(F−1[Mel]), (1)

where Low(-) and High(-) are the functions of low-pass
liftering and high-pass liftering, respectively. The theoret-
ical basis is from audio signal processing (Murphy and
Akande 2007). Low-quefrency components of a cepstrum
represent content-related features. On the other hand, the
high-quefrency components of a cepstrum represent style
features, such as timbre, formants, relative phonemes, etc.
Therefore, we take the low-quefrency part and transform it
back into a speaker-independent Mel spectrogram SP as fol-
lows.

SP = F [Low(F−1[Mel])] (2)

SP replaces the Mel spectrogram as the input for the model.
Figures 1 and 2 demonstrate the Mel spectrogram and the
parts after processing by a low-pass lifter, respectively. As
we can see, only the energy part and the contour of the
linguistic information remain, and the frequency about the
pitch disappears after processing. Equipped with this pre-
processing, the model can better learn the synthesis process
without learning to disentangle the speech, which simplifies
the training process.

Model Architecture
Our goal is to learn a generator that can synthesize natural,
cross-modal, and style-diverse speech from in-the-wild data.
Since the target is not an audio, but an image, unlike a nor-
mal speech synthesis technique, in our case, simplifying data
distribution by providing more conditional information (Ren
et al. 2022; Choi et al. 2021; Lee et al. 2021), such as pitch or
energy, cannot be used. We introduce a discriminator-guided

3Quefrency is the unit of the cepstrum.

Figure 2: The demonstration of a Mel spectrogram being
passed by a low-pass lifter (SP ).

network to teach the decoder how to learn cross-modal infor-
mation to generate high-quality speech. The general struc-
ture of the model is shown in Figure 3. The following de-
scribes the structure in detail.

Content Encoder Previous work (Lu et al. 2021; Qian
et al. 2019) used content encoders to extract the content
by providing a speaker embedding and a whole Mel spec-
trogram, which might confuse the encoder since the acous-
tic information is encoded. Since the proposed SP-FaceVC
takes SP as input, which has already removed the speaker-
related signal, it is easier for the content encoder Econt to
obtain the embedding of the content econt. as follows.

econt. = Econt(SP ). (3)

However, the preprocessed SP could still contain some un-
desired signals, e.g., background noise or some channel
disturbance in the original audio caused by the record de-
vice. Therefore, through the training process, a self-attention
module is used to learn context-related characteristics from
thousands of utterances. The module enhances the linguistic
information and minimizes potential noise from the given in-
the-wild data. We also add a mask before the self-attention
module to help train the model about how to find the rela-
tionship between context and context.

Speaker Encoder Once the facial embedding is obtained,
it serves as input to the speaker encoder. The speaker en-
coder is made up of fully connected layers and an activa-
tion function as ReLU, which are followed by the reparam-
eterization trick. The reparameterization trick can turn the
embedding into a Gaussian distribution. This way, when we
input an unseen facial image, the model will find a suitable
distribution to represent the speaker style instead of just a
point.

Decoder and Postnet The goal of the decoder is to inte-
grate the content embedding from the source speaker and the
style embedding from the facial image for face-based voice
conversion. For the speech synthesis task, since the embed-
dings of speakers are often closely related to their utterances,
traditional speaker extraction approaches (Dehak et al. 2010;
Snyder et al. 2017) take the characteristics of every frame of
speech to accurately represent the style of speech. However,
a facial image cannot represent this kind of information. It
is difficult for the model to map a visual domain distribution
to an acoustic domain distribution.

To solve this problem, the SP-based content embedding
econt. and the reparameterized style embedding estyle are
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Figure 3: The model structure and training process. For simplify the loss flow in the figure, only the reconstruction losses and
feature matching loss are shown. The losses for adversarial training are not shown in the figure.

Figure 4: The architecture of the content encoder. ⊗: matrix
product.

first concatenated as input to the decoder Dec. Since the em-
bedding of SP-based content is independent of acoustic in-
formation, the decoder is forced to learn the style elements
from the reparameterized style embedding. Therefore, it can
transform the style distribution to the acoustic distribution.
Afterward, a postnet P is used to improve speech quality.

Multi-Scale Discriminator Synthesized speech some-
times has distortion and blurriness because it tends to be
over-smooth (Ren et al. 2022) with a simple autoencoder
architecture. To solve this issue, we propose a multi-scale
discriminator to help the decoder generate better results.
The discriminator judges whether the synthesized quality
of speech is good or not. Since audio has a different struc-
ture at each level (Kumar et al. 2019), the discriminator con-
sists of three sub-discriminators. The architecture of the sub-
discriminator is shown in Figure 5. Each sub-discriminator
aims to distinguish different scale data. Therefore, we use
average pooling with kernel size 3 to downsample the Mel
spectrogram. Moreover, we add noise to the input data to in-
crease the data complexity and stabilize the discriminator. A
residual connection and spectral normalization are used in
each Dblock DB(·) for optimization.

Vocoder Since the Mel spectrogram is used as input data,
we need a vocoder to generate a time-domain waveform
from the given spectrograms. We use a flow-based model,

Figure 5: The architecture of the sub-discriminator.

Waveglow (Prenger, Valle, and Catanzaro 2019) as our
vocoder due to the high quality result and efficiency as
WaveNet (Oord et al. 2016), the vocoder used in AutoVC
and FaceVC.

Training Strategy
Reconstruction Loss To avoid the decoder from generat-
ing high-quality speech but ignoring the conditions (that is,
given a low-pitched face style but generating a high-pitched
voice style), two reconstruction losses are used as in 5, 6:

ŷ = P [Dec(econt., estyle)] (4)

Lcont = ∥Econt(y)− Econt(ŷ)∥1 (5)
Lrecons = ∥y − ŷ∥1 (6)

y: the ground truth Mel spectrogram
Adversarial Loss We use the least squares formulation

in LSGAN (Mao et al. 2017) for adversarial training, since
it gets better performance than hinge loss for audio gener-
ation according to MelGAN (Kumar et al. 2019). To dis-
courage sub-discriminators Dk from being too confident,
label smoothing is performed. Instead of setting the real
label to 1, 0.9 is set. Discriminators and generator (G =
Econt., Estyle, Dec, P ) are trained by the following loss:

min
Dk

E [∥Dk(y)− 0.9∥2+∥Dk(ŷ)∥2] , ∀k = 1, 2, 3 (7)
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Ladv = E

[
3∑

k=1

∥Dk(ŷ)− 0.9∥2

]
(8)

Feature Matching Loss To combat mode collapse, a loss
of matching of characteristics for the output feature of the
Dblock is used (Lee et al. 2021) to improve the discriminator
by learning more representative characteristics.

Lfm = E

[
3∑

k=1

4∑
i=1

∥DBi
k(y)−DBi

k(ŷ)∥1

]
, (9)

where DBi
k is the i-th Dblock for the k-th sub-discriminator.

The overall loss of updating generator is with the follow-
ing objective:

min
G

L = αLadv + βLfm + γLrecons + δLcont (10)

where α, β, γ and δ are the hyperparameters controlling
the importance of each term. Empirically, we set α = 1,
β = 0.1, γ = 100, and δ = 0.1. Due to a good speech dis-
entanglement and framewise facial embedding, the model
with self-attention and reparameterization modules can be
adversarially trained end-to-end. The generator and the dis-
criminator are trained one-by-one. Following the previous
work, the small batch size is used to generate a good speech.
Here, we set the batch size to 2.

Experiments
Dataset
LRS3 LRS3 (Afouras, Chung, and Zisserman 2018)
dataset is collected from TED and TEDx videos down-
loaded from YouTube. To extract facial images, a face align-
ment (Bulat and Tzimiropoulos 2017) is first used to detect
whether there is a face in the given frame. If so, the image
would be cropped and sent through MTCNN (Zhang et al.
2016), a face detection network. Here, the margin parameter
is set to 50 in MTCNN.

Evaluation Criteria
NISQA The non-intrusive speech quality assessment
method (Mittag et al. 2021) mimics the mean option score
(MOS) evaluation.

MCD Mel-cepstral distortion (Kubichek 1993) is a mea-
surement to tell the difference of two mel-frequency cep-
strums. The utterance-wise speeches are taken to evaluate
the result. The unit is dB.

Cosine Similarity The speaker embedding of the speech
generated from the same speaker are calculated.

Except for MCD, the higher the values are, the better.

Experiment Setup
The training speakers in the LRS3 dataset are randomly se-
lected. We choose 100, 200, and 400 speakers to evaluate the
performance of the style stability of our model. For fast con-
vergence, the training set of 100 speakers is used for ablation
studies. All audios were first sampled at 22050HZ. For the
generator and discriminator, we use ADAM (Kingma and
Ba 2015) as optimizers. The learning rate for the generator
is set to 0.0001. For the discriminator, it is set to 0.0004 and
with β1 = 0.9, β2 = 0.999.

Model F2F M2M M2F F2M Avg.
GT - - - - 3.294

FaceVC 2.431 2.359 2.317 2.366 2.368
Ours 2.474 2.326 2.427 2.470 2.424

Ours w. M. 2.483 2.636 2.635 2.572 2.582

Table 1: MOS quality of unseen speech evaluated by
NISQA. GT: ground truth speech. F2F: female-to-female;
M2M: male-to-male; M2F: male-to-female; F2M: female-
to-male; Avg.: average scores for the four terms; M.: mask

Model Comparison To demonstrate the power of our
model for real-world data, we compare it with a baseline
model and ground-truth speech. Since FaceVC is the first
and only work for face-based VC, it is adapted as our base-
line model. We use the pre-trained model provided by the
authors. As shown in Table 1, since ground truth speech
comes from the in-the-wild dataset, the MOS quality pro-
vided by the NISQA model is only 3.294. The overall qual-
ity of FaceVC is only about 2.368. Our speech quality, which
is 2.424, is beyond FaceVC. If we add the mask before self-
attention module, the MOS score achieves to 2.582.

Furthermore, the other important factor for face-based VC
is the stability of styles for cross-modal learning. To demon-
strate style diversity and stability, we randomly sample 14
unseen utterances from 7 female and 7 male speakers to be
the source utterances and randomly select 4 unseen female
faces and 4 unseen male faces to be the style providers, as
shown in Figure 6. In Figure 6a, the embedded data from the
unseen target extracted for FaceVC scatter on the projected
two-dimensional surface. On the other hand, in Figure 6b,
our embeddings are well clustered for each unseen speaker.

We also demonstrate the visualization results for the Mel
spectrogram and pitch contour to show the style conversion.
An unseen woman’s speech and a male face are chosen. As
in Figures 7a and 7b, the pitch contour for the woman is
approximately 300 HZ, but it is approximately 200 HZ for
the man. The pitch contour of the FaceVC result in Figure 7c
is much higher than the target pitch in Figure 7b, and the
contour is not similar to the original utterance. This means
that the content information is distorted and that the style
cannot reflect the speaker’s style. However, our model can
generate a more similar contour for the source utterance and
the target style of about 200 HZ, as in Figure 7d.

It can be concluded that our model achieves a higher per-
formance in synthesized speech quality and outperforms in
style representation.

Style Stability for Cross-Modality For most VC works,
the number of training speakers is usually less than 100.
These studies extract acoustic information from the Mel
spectrogram. However, for face-based voice conversion, it
is a cross-modal work. Without a large number of styles
provided, the model cannot learn a moderate relationship
between the facial and acoustic domains. For example,
FaceVC learns only utterances from 20 speakers, so speaker
diversity is low and cannot synthesize a moderate speech
style for the unseen speaker, as in Figure 6a.
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Figure 6: Visualization result for the speaker embedding distribution derived from the conversion speech with t-SNE. We adopt
unseen utterances for FaceVC and our model with 100 and 400 speakers. The same color points stand for the same speakers.
Numbers 0-3 are females, 4-7 are males. Their facial images are shown on the left top corner. Numbers from left to right, top
to down are 0-8, sequentially. Figures from left to right: the result from (a) FaceVC (b) Our model with 100 speakers (c) Our
model with 400 speakers.

Figure 7: The comparision results of Mel Spectrogram. The blue dot line indicates the pitch contour. We use the Parsel-
mouth (Jadoul, Thompson, and De Boer 2018) library. From left to right:(a) Mel Spectrogram of source utterance; (b) Mel
Spectrogram of target utterance; (c) The conversion result with FaceVC; (d) The conversion result with our model.

Therefore, we conduct experiments with different num-
bers of training speakers to show how the synthesized speech
quality of our proposed work will be affected by the train-
ing data. Training in a 100-speaker model gives the highest
overall MOS results among the three models, as shown in
Table 2. When the number of training speakers increases,
the quality starts to degrade. The reason is that when the
number of training samples increases, a large complication
makes the model degrade no matter on the content or style
in Figure 6c. For linguistic information, since various back-
ground noises and ascents appear in the training set, the
model learns hard to distinguish them from the words spo-
ken by the speakers. For acoustic information, the increas-
ing uncertainty for face and voice mapping along with the
growing number of speakers also makes the speaker similar-
ity decrease. However, our models, which are for 200 and
400 training speakers, still outperform FaceVC in all evalu-
ation metrics. This shows that our method works better for
many-to-many and zero-shot voice conversion.

#Spk. F2F M2M M2F F2M Avg.
100 2.483 2.636 2.635 2.572 2.582
200 2.345 2.564 2.562 2.500 2.493
400 2.531 2.294 2.478 2.446 2.437

Table 2: Overall MOS quality for different number of train-
ing speakers evaluated by NISQA.

Ablation Study To demonstrate the contribution of each
component, we first show how the bottleneck will affect our
model. We input the Mel spectrogram and SP into the con-
tent encoder and keep the remaining part the same. We set
a fine bottleneck size and try to make the conversion result
stay speaker diversity as high as our model, and evaluate the
results with MCD. As shown in Figure 8, the model with SP
as input data (bottleneck-free) gets lower values than with
the Mel spectrogram (bottleneck-dependent) regardless of
whether utterances or facial embedding are seen or unseen.
Since deciding to make a better diverse style or clear con-
tent information is a trade-off for the bottleneck-dependent
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Figure 8: MCD values of synthesized speech. We compare
the model result with SP and with Mel spectrogram as input
to see the effect of bottleneck-free and bottleneck-dependent
on the linguistic information. The left bar is for bottleneck-
free, the right bar is for bottleneck-dependent. From top left
to bottom right:(a) seen-to-seen; (b) unseen-to-unseen; (c)
seen-to-unseen; (d) unseen-to-seen. The values are lower,
the better.

Figure 9: The speaker similarity affected by bottleneck size.

technique, the MCD values are therefore high. Some audio
samples can be found on the demo website 4 to show the dif-
ference between these two methods. In Figure 9, we increase
the size of bottleneck from 32 to 128 and decrease the size
from 32 to 16 for bottleneck-free and bottleneck-dependent
models. Since the size of the bottleneck is a hyperparameter
for the model, the performance will have changed slightly
when the bottleneck size is adjusted. But our method should
be more stable than the bottleneck disentanglement method.
As a result, the speaker similarity has a significant drop
when the model is bottleneck dependent, since the acoustic
information is affected by the bottleneck. On the other hand,
our method changes little. That is, our model can learn to
disentangle speech without bottleneck adjustment .

For the overall quality shown in Table 3, the MOS scores
decrease when there is at least one component unavailable.

4https://sites.google.com/view/spfacevc-demo/

A. R. D. F2F M2M M2F F2M Avg.
v v v 2.483 2.636 2.635 2.572 2.582
- v v 2.415 2.398 2.410 2.381 2.401
v v - 2.501 2.479 2.480 2.487 2.487
v - v 2.429 2.512 2.417 2.423 2.445
v - - 2.270 2.506 2.198 2.545 2.380
- - v 2.415 2.327 2.452 2.298 2.373
- v - 2.382 2.282 2.390 2.337 2.347
- - - 2.461 2.305 2.528 2.291 2.397

Table 3: Ablation study with MOS quality evaluated by
NISQA. The first row with all components is our model. A.:
masked self-attention ;R.: reparameterization trick; D.: mul-
tiscale discriminator

For example, if the model only contains the reparameter-
ization module, the quality becomes worse compared to
a good-bottleneck-adjusted plain autoencoder architecture.
This is because the reparameterization module strives to
map the cross-modal distribution into a proper distribution;
however, only a reconstruction loss cannot take care of the
speech quality and the cross-modal distribution at the same
time. Just in reverse, by adding the self-attention modules, it
achieves the highest score within the cases of addition with
a single component. It removes some background echo or
noise for content embedding. In conclusion, it can be said
that simply adding one of the proposed modules might as-
sist in style learning or noise removal, but cannot improve
the overall quality. Both the self-attention module and the
reparameterization trick need to be guided by the discrim-
inator to achieve a better style or quality of speech. Three
modules need to work together to obtain the best style diver-
sity and speech quality from the wild data.

Conclusion

We propose a face-based bottleneck-free voice conversion,
with the aim of mapping a facial acoustic distribution and
synthesizing speech in the real-world scenario. The prepro-
cessing of the cepstrum with low-pass liftering can simply
lead the model without the bottleneck strategy. With the as-
sistance of the self-attention module, the content encoder
can pay attention to preserving linguistic-related informa-
tion without perturbation by background noise. In addition,
we use an average facial embedding with reparameterization
trick, and an adversarial guide decoder on how to find the
relationship between two modalities. Furthermore, the over-
all quality of speech is under the control of the multi-scale
discriminator. Extensive experiments demonstrate that our
model is superior to previous work, regardless of the cross-
modal diversity or the overall quality of speech. We believe
that this work illuminates more possibilities for cross-modal
research for face and speech. In the future, how to improve
the quality to reach excellent performance on the in-the-wild
data and how to make the model more suitable for extra
training samples are the further work to be done.
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