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Abstract

Low-resource relation extraction (LRE) aims to extract rela-
tions from limited labeled corpora. Existing work takes ad-
vantages of self-training or distant supervision to expand the
limited labeled data in the data-driven approaches, while the
selection bias of pseudo-labels may cause the error accumu-
lation in subsequent relation classification. To address this is-
sue, this paper proposes fmLRE, an iterative feedback method
based on feature mapping similarity calculation to improve
the accuracy of pseudo-labels. First, it calculates the similar-
ity between pseudo-label and real-label data of the same cate-
gory in a feature mapping space based on semantic features of
labeled dataset after feature projection. Then it fine-tunes the
initial model via the iterative process of reinforcement learn-
ing. Finally, the similarity is used as a threshold for screening
high-precision pseudo-labels and the basis for setting rein-
forcement learning rewards, which also acts as a penalty term
for the relation classifier loss. Experimental results demon-
strate that fmLRE achieves the state-of-the-art performance
compared with strong baselines on two public datasets.

Introduction
Relation extraction (RE) (Bach and Badaskar 2007)
aims to extract semantic relations of given entity pairs
and convert unstructured text into the form of triple
(head entity, relation, tail entity). Supervised learning
methods (Liang et al. 2022; Li et al. 2022; Zhang et al. 2022;
Wu and He 2019), which are based on large-scale datasets
and deep neural networks, have shown excellent perfor-
mance on relation extraction tasks. However, the large-scale
and high-quality labeled data is often not available in in-
dustrial scenarios, which is called the low-resource relation
extraction (LRE) problem (Deng, Zhang, and Chen 2022).

Current LRE work can be roughly divided into two cat-
egories: task-oriented and data-oriented. The former com-
bines relation extraction with few-shot learning such as
meta-learning (Qu et al. 2020), enables the model to learn in-
formation apart from feature representation when perform-
ing relation extraction, or to learn novel relations with the
help of external knowledge (Levy et al. 2017), pre-trained
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Figure 1: Comparison with two similarity calculations. The
gradient similarity calculation does not consider the relation
category information, but calculates the average similarity
of the entire dataset. In the right example of metric based
similarity, the dotted box is a type of support set feature,
and the solid circle is the mean of this type of feature. The
predicted pseudo-label bornplace is a query sample and
the average feature of bornplace is the support set. Their
distance in the mapping space is the similarity.

models (Soares et al. 2019), etc. For instance, Ren et al.
(2020) propose the two-stage prototype network with proto-
type attention alignment and triple loss to improve the gener-
alization of the model, which can dynamically identify new
relations with a small number of supporting instances with-
out catastrophic forgetting. However, this method has draw-
backs on task generalization and model complexity. To han-
dle these problems, Dong, Pan, and Luo (2021) leverage the
idea of metric learning to optimize the LRE problem in the
pre-training stage. Peng et al. (2020) also discuss the impact
of different semantic feature selections on classification net-
work performance in low-resource situations to reduce the
complexity. Therefore, the metric learning is beneficial for
better task generalization and less model complexity.

For the data-oriented LRE work, a traditional way is dis-
tant supervision (Mintz et al. 2009), while it often introduces
noise due to the assumption that the same relation must exist
between the same entity pair (Hu et al. 2019). To take full ad-
vantage of the unlabeled data in the low-resource scenario,
Rosenberg, Hebert, and Schneiderman (2005) propose self-
training by labeling the unlabeled data to expand the labeled
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dataset. However, poor classifier performance trained on few
labeled data leads to insufficient precision of the pseudo-
label, resulting in selection bias problem (Zhang et al. 2021).
Selection bias means that the poor quality of pseudo-label
could cause errors to accumulate on the classification model.
Therefore, improving the quality of pseudo-label can allevi-
ate the selection bias problem and improve the model per-
formance. To this end, iterative feedback methods are pro-
posed to handle this problem. Hu et al. (2021a) combine it-
erative feedback with meta-learning to obtain pseudo-labels.
However, when the classification network is trained directly
by a large number of pseudo-labels, the selection bias in-
evitably appears. Furthermore, iterative feedback and rein-
forcement learning are employed to make the gradient of the
pseudo-label gradually approximate to the real labels (Hu
et al. 2021b), which shows the great potential of reinforce-
ment learning in low-resource relation extraction.

In order to alleviate the selection bias, this paper pro-
poses fmLRE which adopts the idea of metric learning and
reinforcement learning iterative process. On the one hand,
we argue that metric learning can be used to make self-
adaptive evaluation process of pseudo-labels, which is simi-
lar to meta-learning to improve selection bias. As shown in
Figure 1, compared with the general gradient, fmLRE can
add category information and be more adapted to the spe-
cific task due to metric feature embedding layers can be pre-
trained on task-specific datasets. In fmLRE, the pseudo-label
generator is trained with labeled data, and optionally a pre-
trained model specialized for relation extraction can be used
to further improve model performance. On the other hand,
reinforcement learning is used to evaluate the pseudo-labels
in the process of iterative pseudo-label generation, and the
idea of metric learning like relation network (Sung et al.
2018) is combined to project the labeled data as the sup-
port set and the pseudo-labeled data as the query set into
the pre-trained mapping space to calculate the feature sim-
ilarity. Such similarity has two advantages. One is used to
filter the high-precision pseudo-labels and then expand the
labeled dataset to fine-tune the original model, achieving the
positive feedback effect. Another is used as the basis for set-
ting rewards in reinforcement learning and penalty term in
relation classifier loss for overall optimization. Moreover,
for the first time to our knowledge, we are among the first
to utilize prototype network and relation network in metric
learning to handle the low-resource relation extraction task.

The main contributions of this paper are summarized as:

• We propose fmLRE, which utilizes a combination of re-
inforcement learning and metric learning to compute fea-
ture similarities under the feature mapping space to filter
high-precision pseudo-labels, performing positive feed-
back iterations and reducing selection bias.

• We improves the pre-trained model in the pseudo-
label generator by replacing the commonly used BERT
model (Devlin et al. 2019) with the pre-trained model
specializing on relation extraction, and propose a filter
mechanism to further reduce the proportion of noisy data
and improve the stability of the model in the process of
eliminating low-precision pseudo-labels.

• Experimental results demonstrate that fmLRE outper-
forms current state-of-the-art low-resource relation ex-
traction methods on two public benchmarks of SemEval
2010 Task 8 and TACRED.

Related Work
Relation Extraction: Current relation extraction methods
can be divided into unsupervised learning, semi-supervised
learning, and supervised learning methods. The unsuper-
vised methods are mainly based on clustering, such as the
Rel-LDA1 model (Yao et al. 2011), which considers the re-
lations as topics and constructs a distribution of relation cat-
egories. The semi-supervised methods are based on the boot-
strap idea (Gupta, Roth, and Schütze 2018), and the classic
model is the DIPRE (Brin 1998). Data augmentation meth-
ods are often used to improve the semi-supervised relation
extraction, such as the label propagation model (Chen et al.
2006). Early supervised relation extraction methods utilize
feature-based methods (Xu, Mou, and Li 2015) or kernel-
based methods (Pawar, Palshikar, and Bhattacharyya 2017).
After the emergence of deep neural networks, CNNs (Lin
et al. 2016), RNNs, LSTMs (Hochreiter and Schmidhu-
ber 1997) and hybrid neural network structures are com-
bined to improve the supervised relation extraction mod-
els. Kim (2014) proposes a CNNs-based relation extraction
model with multilayer filter as well as a maximum pooling.
Zhang and Wang (2015) combine the mechanism of bidirec-
tional RNNs to improve the relationship extraction perfor-
mance. Xu, Mou, and Li (2015) construct a relation extrac-
tion model using LSTMs.

Low-resource Relation Extraction: Current LRE work
can be roughly divided into distant supervision based meth-
ods, semi-supervised learning based methods, meta-learning
based methods, and external knowledge based methods. The
idea of distant supervision was first introduced by Mintz
et al. (2009), and later more work focused on alleviating
noise affections, such as RESIDE (Vashishth et al. 2018).
The in-depth self-training idea on low-resource problems
based on semi-supervised learning mainly introduces the
pre-training process into traditional methods to further im-
prove the performance, such as GradLRE (Hu et al. 2021b)
which uses the gradient similarity to evaluate pseudo-
labeling in real time and improve the performance. Hu et al.
(2021a) use the idea of combining LRE with meta-learning
to mitigate the noise problem caused by pseudo-labeling. In
meta-learning methods, the idea of metric learning is usu-
ally used, such as Peng et al. (2020), while the limitation
of this method is that at least one data of each relation
category needs to be used as a support set, so the metric
learning methods cannot work well for zero-shot learning or
low-resource problems with extreme lack of data. External
knowledge can also be utilized to LRE, such as Cetoli (2020)
to transform the LRE task into the question-and-answer task.

Methodology
Problem Statements
This paper explores relation extraction in the low-resource
scenarios and aims to extract the relational triples in the form
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Figure 2: The framework of fmLRE. We iteratively generate pseudo-labels for unlabeled data. In order to evaluate the quality
of pseudo-labels, the distance between them and support relation prototypes is calculated as the similarity in the pre-trained
feature mapping space. The similarity is used to filter high-precision pseudo-labels and update the labeled dataset, and it is also
used as the basis for setting rewards in reinforcement learning and penalty term in relation classifier loss.

of < e1, r, e2 > with few labeled data. The whole dataset is
denoted as X and a sample in the dataset is represented as
x. Following previous work (Soares et al. 2019), the entity
pair needs to be given in advance and labeled with marks.
In addition, special tokens also needs to be added to the text
sentences, where [CLS] is used to obtain the feature repre-
sentation afterwards and [SEP] is used for the sentence sep-
aration. The final form of the sample sentence can be shown
with an example in Figure 2. Similarly, the whole set of la-
bels in X is denoted as Y , the label of sample x is denoted
as y in the dataset, and the generated pseudo-label for the
unlabeled sample x̃ is denoted as ỹ.

Framework Overview
The framework of fmLRE is shown in Figure 2. Based on
the idea of self-training, pseudo-label is applied to the exist-
ing unlabeled data so as to expand the labeled dataset and
transform the LRE problem into a normal supervised rela-
tion extraction task. Due to the selection bias, fmLRE adopts
a combination of reinforcement learning and metric learning
to provide positive iterative feedback.

Pseudo-Label Generator
The pseudo-label generator acquires feature representations
of sentences based on pre-trained models, where specifi-
cally the hidden layer representations of head and tail en-
tities are concatenated as the features for sentence classi-
fication. Let h[k] be the hidden layer when it is a k-th to-
ken, then the feature of each sentence is represented as
h = [h[e1], h[e2]], h ∈ R2lR , where lR denotes the length of
the feature representation, R denotes all possible categories
of relations. We design a simple classification network, in-

cluding a hidden layer and a fully connected layer for clas-
sification. In this paper, the classification network is consid-
ered as a functional form f . Then the predicted pseudo-label
expression is as follows:

ỹ = argmax(f(h)) (1)
Here the one with the highest probability is selected as the
pseudo-label for prediction. And in this classification pro-
cess, the traditional cross-entropy loss is used for the loss
function setting. N indicates the number of all samples in
the dataset, and then the predicted pseudo label expression
is as follows:

loss(yi, ỹi) =
1

N

N∑
i=1

CrossEntropy(yi, ỹi) (2)

Feature Mapping Space Based on Metric Learning
The training idea of fmLRE is to use the feature representa-
tion of labeled data to pre-train a classification network sim-
ilar to a pseudo-label generator. The fully connected layer of
the network is mapping the sample sentence features into a
specific space and making simple classification prediction.
In other word, the hidden layer state of the fully connected
layer is considered as the feature after the projection of the
original sample features through the mapping space. Finally,
projected features are used in the similarity calculation.

Firstly, the feature representation needs to be selected. In
order to enhance the adaptability to low-resource problems,
we use both relational and contextual representations grel
and gcon as feature representations for training, where the
feature representation in the mapping space is denoted as g.
Then the input sample feature representation is:

grel(x, h[e1], h[e2]), gcon(x, h[CLS]) (3)
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In the feature representation composition, relation informa-
tion is the hidden state of the head and tail entities. For
the context representation of the whole sentence, since it is
mainly used for classification here, we use the hidden layer
of the [CLS] as the context representation of the relation
classification. The final feature representation is:

feature(x) = [grel(x, h[e1], h[e2]); gcon(x, h[CLS])] (4)

The projection process of the mapping space can be regarded
as a function F (x). The features in the mapping space can be
obtained after transforming the feature representations of the
corresponding sample sentences, which is then expressed as:

G(x) = F (feature(x)) (5)

After obtaining the features in the mapping space, the simi-
larity of the metric learning can be computed. The accuracy
of the pseudo-label can be evaluated and the loss function of
the pseudo-label generator can be improved.

Reinforcement Learning Iterative Feedback
For unlabeled data divided by the batch, after obtaining the
feature representations in the pre-trained mapping space, the
similarity between the support set and the query set can be
calculated. On the one hand, the similarity is used to evalu-
ate the confidence of the pseudo-label to expand the original
dataset. On the other hand, the similarity can be used to set
different rewards to improve the pseudo-label generator.

Feedback on Pseudo Labels Let the set of real labeled
data with the same pseudo-label be denoted as Xỹ . With the
pre-trained mapping space, we can obtain the corresponding
feature representations as:

Ḡ(Xỹ) =
1

Nỹ

Nỹ∑
j=1

G(xj) (6)

For the real labeled dataset, we first obtain its average fea-
tures, and then calculate the similarity s between the support
set and the query sample:

s = similarity(Ḡ(Xỹ), G(x̃), ỹ) (7)

Here, s ∈ [0, 1], and s is also important for judging the con-
fidence of pseudo-label. We set a hyper-parameter θ as the
similarity threshold. If the similarity is greater than θ, then
it is considered that the query sample and the support set are
the same type. The updated true label dataset is used to train
the pseudo-label generator with a second fine-tuning. The
expanded data is used to facilitate the model fitting to it for
improving the performance of the pseudo-label generator.
After obtaining the high-precision pseudo-label, it updates
the true label dataset and synchronizes the average features
of the support set used for similarity calculation with:

Ḡ(Xỹ) =
Ḡ(Xỹ) ∗Nỹ +G(x̃)

Nỹ + 1
, Nỹ = Nỹ + 1 (8)

Feedback on Pseudo-Label Generator To improve the
loss function in the pseudo-label generator, we use the sim-
ilarity between the support set and the query samples to set

the reward in reinforcement learning. If the similarity be-
tween a pseudo-label and the support set is high, it means
that the consistency between real label and pseudo-label is
high. Therefore, reward R can be set for the threshold θ set
above, which indicates a positive feedback. A reward less
than 1 can be set when R > θ and a reward greater than 1
when it is less than θ. The range is also set to control the
specific range of the reward, and it is added to the original
loss function of the pseudo-label generator in the form of
weights:

L =
T∑

t=1

loss(y, ỹ) ∗R(t) (9)

where t denotes the time step of reinforcement learning and
T is the total number of sequences.

Noise Filtering Mechanism For low-precision pseudo-
labels eliminated in iterative feedback, there are two error
cases: (1) incorrect predictions in known relation types; (2)
the presence of noise or unknown relation types. The first
case is the problem that the model itself should solve. For
the second case, fmLRE takes a special process to deal with
it, as shown in Algorithm 1. We limit the number of elim-
inations of pseudo-labels. If the pseudo-labels do not reach
the similarity threshold, we first delete the pseudo-labels and
return to the unlabeled data set, and then record the number
of eliminations. If the number of eliminations reaches the
threshold, the unlabeled data is regarded as noisy data or
unknown relation type data, and is deleted from the entire
dataset. That can improve the impact of noise on the model
as much as possible. Even the strategy of adaptive learning
is a better choice, it is more difficult for integer. Therefore,
fmLRE uses a simple and effective strategy.

Algorithm 1: Filtering mechanism

Input: l dataset, ul dataset
Output: Updated l dataset, ul dataset

1: filer flag = [0] ∗ number of feedback
2: Sample ul data i from ul dataset
3: while iterative feedback process do
4: p l← pseudo label generator(ul data i)
5: s f ← mean feature(l dataset[p l])
6: q f ← feature(ul data i)
7: s← similarity(s f, q f)
8: if s > θ and filter flag[i] < n then
9: ul data→ l dataset

10: break
11: else if filer flag[i] > n then
12: Delete ul data i from ul dataset
13: else
14: ul data i→ ul dataset
15: end if
16: end while
17: Update pseudo label generator based on l dataset
18: return ul dataset, l dataset
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Dataset SemEval TACRED FewRel1.0
Train 8,000 68,124 44,800
Test 2,717 15,509 44,800

# of relation 19 42 100

Table 1: Statistics of datasets.

Deepening Module
There are two components in the deepening module. The
first one is data augmentation. When there is a lack of un-
labeled data in the low-resource scenario, we use the setting
in GradLRE (Hu et al. 2021b) to perform data augmenta-
tion and unify the model input, which masks the sample sen-
tences with a certain span. The span can be set as a hyper-
parameter, which is a proportion of the sentence length and
usually sampled from a given data distribution. However,
this data augmentation often has difficulties in data diver-
sity, so its performance may lower than that with unlabeled
data. The second component is the replacement of the pre-
trained model. fmLRE uses the MTB (Soares et al. 2019)
model for the relation extraction task to replace the BERT,
which can further improve the performance of the model. In
order to ensure the fairness of the performance comparison,
the MTB is not used for comparison with baselines.

Experiments
Datasets and Settings
To evaluate the proposed fmLRE model, we select two
public datasets to conduct experiments: SemEval 2010
Task 8 dataset (Hendrickx et al. 2010) and the TACRED
dataset (Zhang et al. 2017). We also evaluate the generaliza-
tion of fmLRE on the FewRel 1.0 dataset (Han et al. 2018).
The detailed statistics of the datasets are shown in Table 1.
Considering the low-resource scenario, fmLRE only splits
a small ratio of the data as labeled dataset, and the rest is
used as the unlabeled dataset, which follows common ex-
perimental setups: 5%, 10%, and 30% of the data are split
into labeled data on SemEval, and the rest is used as unla-
beled data. On the TACRED dataset, 3%, 10%, and 15% of
the data are split as labeled data.

In the implementation of fmLRE, the max length of the
sample sentences is 128, the batch size for training and divi-
sion of unlabeled data is 32, and the initial learning rate of
the model is 5e-5. In addition, there are some hyperparame-
ters: the threshold θ of similarity is set to 0.7, the constraint
range of reward is set to 0.2, and the number of filtering for
noisy data n is set to 2. The code of fmLRE and the datasets
can be accessed via https://github.com/seukgcode/fmLRE.

Baselines
We choose strong LRE methods as baselines.
Self-train (Rosenberg, Hebert, and Schneiderman 2005): It
proposes the idea of self-training to generate pseudo-labels
and expand the labeled dataset.
MRefG (Li and Qian 2020): It constructs semantic con-
nections between labeled and unlabeled data via citation

graphs.
GradLRE (Hu et al. 2021b): It improves the self-training
via calculating the gradient similarity between labeled and
unlabeled data to reduce the selection error of the model.
MetaSRE (Hu et al. 2021a): It uses a classifier as an
additional meta-learning target and then generates pseudo-
labels, which is among the best reported models.
UREVA (Yuan and Eldardiry 2021): It utilizes an unsu-
pervised learning with a variable auto-encoder, breaking
the restriction that the model needs to follow a prior
distribution.
BERTw.gold labels: It is the upper performance of a model
that can be obtained from the self-training by bringing the
truth labels of unlabeled data into the training process. We
call it the gold model in the evaluation.

Moreover, in order to evaluate the generalization, we also
compare fmLRE with strong few-shot learning models.
IncreProtoNet (Ren et al. 2020): It uses a two-stage pro-
totype network to dynamically identify novel relations by a
few support instances without catastrophic forgetting.
HCRP (Han, Cheng, and Lu 2021): It uses a combination of
contrastive learning and hybrid prototype networks to han-
dle fine-grained relation extraction.
MapRE (Dong, Pan, and Luo 2021): It is a pre-trained
method based on metric learning and fine-tuning on the few-
shot task to deal with relation extraction.

Main Results
Main experimental results are shown in Table 2, indicating
that fmLRE achieves the best performance with all ratios of
labeled data. On the SemEval, fmLRE achieves the best per-
formance and is close to the gold model. Note that the per-
formance gap between different models is illustrated clearly
in Figure 3. In 5% ratio, fmLRE is 2.5% higher than the
optimal baseline GradLRE, and only 2.5% away from gold
model. In 10% ratio, due to the increase in the scale of la-
bels, the model performance is also enhanced to a certain
extent, which nearly 2%. And the performance gap between
the gold model and fmLRE is about 2%. Furthermore, in
30% ratio, the advantages of the low-resource models have
not been reflected, and fmLRE has only a 0.5% advantage.
On the TACRED, fmLRE has the best performance, but the
performance gap between it and the gold model is bigger.
With the increase on the ratio of labeled data, the perfor-
mance gap between fmLRE and gold model is constantly
narrowing meanwhile maintaining the optimal performance,
from more than 10% in 3% ratio to less than 5%. We believe
that the scale of labeled data and the proportion of unknown
relations affect the performance of the model and the perfor-
mance gap based on the characteristics of TACRED.

Moreover, there is a high correlation between the eval-
uation of pseudo-labels and the classification results. Ac-
tually the selection bias can be seen from the accuracy of
the pseudo-label, that is, the classification performance of
the model. The above results demonstrate that fmLRE can
improve the selection bias problem caused by the insuffi-
cient accuracy of the pseudo-label. Note that the effect with
data augmentation is generally lower than that of the orig-
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Dataset SemEval(%) TACRED(%)
Ratio 5% 10% 30% 3% 10% 15%

Self-train 71.34 74.25 63.87 42.11 54.17 56.52
GradLRE 79.65 81.69 85.52 47.37 58.20 59.93
MEefG 75.48 77.96 83.24 43.81 55.42 58.21

MetaSRE 78.33 80.09 84.81 46.16 56.95 58.94
UREVA 77.46 78.44 82.71 - - -

BERTw.gold labels 84.64 85.40 87.08 62.93 63.66 64.69
fmLRE 82.11 83.83 85.97 50.83 58.94 60.62

fmLRE(data augmentation) 80.04 80.77 82.32 46.21 52.88 56.83

Table 2: Main experimental results. The results are F1 scores, and the bold ones are the best results.

Model comparison on TACRED dataset

Model comparison on SemEval dataset

5% 10% 30%

3% 10% 15%
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Figure 3: Comparison of performances on SemEval and TA-
CRED datasets.

inal model. In low-resource scenarios, if we have few la-
beled data, there is definitely deviation from the real distri-
bution due to the limitations of data size and diversity. Con-
sequently, the unlabeled data obtained by data augmentation
based on these labeled data tends to have poor diversity as it
has high similarity among each other, which is also a general
drawback of data augmentation. Therefore, the performance
of fmLRE with data augmentation does not perform as well
as the original fmLRE.

Generalization Experiments
In view of the relevance between few-shot learning and low-
resource problem and the comprehensiveness of the experi-
mental study, we also evaluate the generalization of fmLRE.
In the comparison, we uses the N -way K-shot method of
few-shot learning as the test strategy, that is, there are N

Strategy 5w1s 5w5s 10w1s 10w5s
InrceProtoNet 82.10 84.64 - -

HCRP 90.90 93.22 84.11 87.79
MapRE 95.73 97.84 93.18 95.64
fmLRE 84.43 88.88 87.51 88.11

Table 3: Generalization comparison experiment on FewRel
1.0 dataset.

categories each time, and each category has K samples. The
experimental results are shown in Table 3. Note that fmLRE
only perform well in the prediction performance of the novel
relations, but there is a performance gap compared with the
current few-shot learning models. Few-shot learning is ap-
plicable to rare-data scenarios, while the low-resource prob-
lem is more general, including few-shot learning. However,
there are still differences between two tasks. Few-shot learn-
ing adopts the episode training strategy to learn the com-
monality of similar tasks, but low-resource problem is more
inclined to adopt semi-supervised methods which based on
data. Due to the fmLRE is aimed at the low-resource prob-
lem with the limited relations and has no special processing
mechanism for novel relations, it is reasonable to have a gap
comparing with the few-shot learning methods.

Ablation Experiments
Iterative Feedback As shown in Table 4, after adding the
feature mapping space to calculate the similarity, the perfor-
mance of fmLRE has greatly improvement compared with
the basic model. One reason is the positive impact of iter-
ative feedback. Another reason is that fmLRE filters high-
precision pseudo-labels. Namely, it uses the mapping space
to classify and calculate the similarity of each pseudo-label,
not only has the category information of each relation, but
also can measure the similarity more accurately, adjusting
according to the characteristics of different datasets.

Filter Mechanism The improvement brought by the filter
mechanism is not very stable, and it plays a role of reduc-
ing the negative impact of the noise data. Therefore, it can
be seen that it has a greater effect on the dataset with many
unknown relations like TACRED. In the training process,
special data is also one of the important factors that have in-
consistent effects on the model. The noise filter mechanism
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Dataset SemEval(%) TACRED(%)
Ratio 5% 10% 30% 3% 10% 15%

Only Self-train 71.68 74.25 75.52 44.31 53.76 55.73
+fm Similarity 80.94 82.04 83.08 47.93 57.54 58.29

+Filter 82.11 83.83 85.97 50.83 58.94 60.62
Model+BERT 82.11 83.83 85.97 50.83 58.94 60.62
Model+MTB 83.40 84.12 85.94 54.66 64.23 61.91

Table 4: Performance comparison of different pre-trained models or different modules. The upper part is the performance after
the model gradually adds important modules, and the lower part is the performance comparison of the model using different
pre-trained models

E.g1: [CLS] Conflicting loads were stalled while pending <e1>stores</e1> were draining into <e2>memory</e2>.[SEP]

store(Entity)

E.g2: [CLS] The <e1>battle</e1> caused a <e2>panic</e2> on the frontier, and settlers in the surrounding counties fled.[SEP]

GradLRE

E.g3: [CLS] As a general rule, <e1>chapters</e1> later in the <e2>book</e2> are designed to be studied after earlier ones.[SEP]

E.g4: [CLS] <e2>Tom Thabane</e2> resigned in October last year to form the <e1>All Basotho Convention</e1>.[SEP]

memory(Destination)
battle(Other) panic(Other)
chapter(content) book(Container)
All...(Member) Tom...(Collection)

store(Collection) memory(Member)

chapter(content) book(Container)

store(Entity) memory(Destination)
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MetaSRE
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Figure 4: Experimental case analysis. In the examples we use different colors to label entities and special tokens, and in the
prediction results, we use blue to indicate that the prediction is correct, and red indicates wrong.

is based on the number of pseudo-label eliminations and still
has limitations: (1) Data may be mistakenly filtered with the
increase of elimination times, reducing the diversity of the
data; (2) The hyperparameter setting needs to be manually
tuned or selected by validation set. Therefore, self-adaptive
learning may be a further improving way.

Embedding Layer As mentioned before, BERT could be
replaced with the pre-trained model MTB (Soares et al.
2019) to further improve the performance upper limit of
fmLRE. According to the experimental results, MTB is ben-
eficial to the LRE task. In addition, it helps to reach conver-
gence faster and has higher efficiency in the training process.

Case Study
We further compare fmLRE with other baselines through
case studies. Due to the space limitation, we only compare
fmLRE with GradlRE and MetaSRE. The instances of the
module is consistent with the setting in the ablation exper-
iments. In addition, it tends to be predicted as unknown
when the model makes a wrong prediction, which has simi-
lar phenomenon in module comparison. Three examples are

presented in the two comparisons and illustrated in Figure 4.
First, in the model comparison, since the performance of
each model is similar, there is no obvious difference in these
cases. However, the performance of fmLRE is more stable
encountering random samples compared to its counterparts.
Second, in the module comparison, it can be clearly seen that
the performance of the model is improved after using the two
modules. The reason why the model predicts incorrectly and
always predicts as unknown is that it has not learned the
useful features of this relation category. Such phenomenon
is more frequent on TACRED with many unknown relations.

Conclusions
This paper proposes a positive iterative feedback mechanism
based on the self-training, using a combination of reinforce-
ment learning and metric learning, fmLRE, to calculate the
similarity between the support and query sets and to allevi-
ate the selection bias. The limitations of fmLRE model are
two-fold: First, it has no advantage in generalization perfor-
mance. Second, fmLRE cannot solve the zero-shot problem.
The generalization and more few-shot learning methods will
be studied in the future improvement work.
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