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Abstract

Utilizing amortized variational inference for latent-action re-
inforcement learning (RL) has been shown to be an effective
approach in Task-oriented Dialogue (ToD) systems for op-
timizing dialogue success. Until now, categorical posteriors
have been argued to be one of the main drivers of performance.
In this work we revisit Gaussian variational posteriors for
latent-action RL and show that they can yield even better per-
formance than categoricals. We achieve this by introducing
an improved variational inference objective for learning con-
tinuous representations without auxiliary learning objectives,
which streamlines the training procedure. Moreover, we pro-
pose ways to regularize the latent dialogue policy, which helps
to retain good response coherence. Using continuous latent
representations our model achieves state of the art dialogue
success rate on the MultiWOZ benchmark, and also compares
well to categorical latent methods in response coherence.

1 Introduction
Task-oriented Dialogue (ToD) systems have reached a de-
gree of maturity, which enables them to engage with human
users and assist them in various tasks. They are able to steer
natural-language conversations in order to complete users’
goals, such as booking restaurants, querying weather fore-
casts and resolving customer service issues. At their core, the
behavior of these systems is controlled by a dialogue policy,
which receives user inputs in the form of utterances and ad-
ditional features or states. Template-based methods (Walker
et al. 2007; Inaba and Takahashi 2016) leverage ranking or
classification approaches to select the most fitting response
from a pre-defined set of responses, i.e. templates. While
template-based methods offer better control over the dia-
logue policy behavior, they are less versatile due to their
dependency on template sets. Moreover, constructing com-
prehensive template sets is a challenge in itself (Gao, Galley,
and Li 2019). In retrieval-based approaches (Yan, Song, and
Wu 2016; Henderson et al. 2019; Tao et al. 2019) candi-
date responses are not pre-defined, but are retrieved from
massive dialogue corpora, e.g. by executing ad-hoc search
queries a priori. Generative models do not require such ad-
ditional inputs as prior knowledge. They enable end-to-end
(E2E) learning of dialogue policies and have the potential
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to generate diverse responses by leveraging a large vocabu-
lary (Serban et al. 2017; Zhao, Zhao, and Eskenazi 2017; Gu
et al. 2018). Even though such fully data-driven approaches
offer great versatility and a faster adoption, they may ex-
hibit degenerate behavior by generating incomprehensible
utterances. This is apparent in multi-turn dialogues, which
span hundreds of words, while the success signal is only ob-
served at the end of dialogues. Reinforcement learning (RL)
based approaches are able to optimize for such long-term,
sparse rewards and have been applied in this setup. Previ-
ous approaches prominently applied word-level RL (Lewis
et al. 2017; Kottur et al. 2017), where the action space is de-
fined over the entire vocabulary. The response utterances are
then generated auto-regressively by consecutive next-word
predictions. Unfortunately, the use of large action spaces of-
ten impedes the convergence of policy learning algorithms,
which makes it hard to ensure coherent responses. Prior work
makes use of latent-action RL to address the dimensionality
problem by utilizing variational inference approaches (Zhao,
Xie, and Eskenazi 2019; Lubis et al. 2020). These methods
rely on a supervised learning stage, where latent action repre-
sentations are learned over response utterances, followed by
fine-tuning via reinforcement learning in the latent space.

In this paper we follow this paradigm, but extend prior
work substantially by introducing the TCUP approach, which
aims to Tame ContinUous Posteriors for latent variational di-
alogue policies. TCUP makes the following contributions: (i)
A new formulation of the variational inference objective for
learning continuous latent response representations without
auxiliary learning objectives. (ii) A more robust approach for
learning from ToD data in an offline RL setup, which utilizes
the fact that we are dealing with expert dialogue trajectories.
Using the MultiWOZ benchmark (Budzianowski et al. 2018),
we show that TCUP is able to improve the state-of-the-art
performance across different metrics. In addition to Mul-
tiWOZ’s context-to-text metrics and following Lubis et al.
(2020), we demonstrate the benefits of the learned continu-
ous latent representations quantitatively, using a clustering
analysis.

2 Preliminaries
Latent-action reinforcement learning methods are trained in
two stages: In the first stage, which we denote as SL Stage,
an encoder-decoder architecture is trained using a supervised
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approach. Leveraging a corpus of real dialogues, the encoder
learns a latent representation over dialogue histories and re-
sponses; the decoder network then learns to generate the ref-
erence responses constrained to the encoder’s representation
as input. The learned representations compress the dialogue
response space and serve as latent actions. In a consecutive
stage, denoted as RL Stage, the encoder is further fine-tuned
by a RL approach to improve the latent action predictions,
optimizing the long-term dialogue success. In the RL Stage
the decoder stays fixed and receives the output of the RL
policy to generate the final response utterance.

2.1 SL Stage – Learning Latent Response
Representations

We denote a dialogue context as c, which contains the dia-
logue history and state. Response utterances are denoted as
x. Provided a dataset of context and optimal response pairs
(c, x), we want to extract a latent representation z, represent-
ing the dialogue responses given context. Approaches based
on variational inference have shown to be beneficial for learn-
ing such latent representations. This is done by optimizing
the evidence lower bound (ELBO)

L(φ, θ) = Eqθ(z|x,c)[− log pφ(x|z)]
+DKL[qθ(z|x, c)||p(z|c)],

(1)

where qθ denotes the variational posterior parameterized by
θ and pφ the decoder parameterized by φ. Prior work (Zhao,
Xie, and Eskenazi 2019) argues that this full ELBO formula-
tion suffers from “explaining away”, i.e. without additional
incentive, the encoder only relies on x for computing z. To
mitigate this overexposure bias to responses, i.e. the insensi-
tivity to the context, the authors introduce the “lite” ELBO:

L(φ, θ) = Eqθ(z|c)[− log pφ(x|z)]
+DKL[qθ(z|c)||p(z)].

(2)

The goal is to be closer to the information available during
testing time, where the decoder only sees z conditionally
sampled on the context qθ(z|c).

2.2 RL Stage – Learning Latent Dialogue Policies
After learning to extract a compressed representation z in
the supervised learning stage, the encoder qφ(z|c) is fine-
tuned via reinforcement learning to optimize the dialogue
reward, which is typically based on a dialogue success /
completion signal. A Markov Decision Process (MDP) is
defined as a tuple (S,A, r, p) of state space S, action space
A, reward function r, and transition density p. The general
goal of reinforcement learning is to optimize the expected
return of policy π, denoted as E[J(π)]. Many works utilize a
Monte-Carlo estimate of the policy gradient

∇φE
[
J(πφ)

]
= E

[
∇φ

∑
(s,a)∈τ

log πφ(a|s)r(s, a)
]
. (3)

The expectation is taken over the trajectory distribution
ηπ(τ), i.e. distribution of sequences of (s, a). In the context of
ToD, we may cast the state s as being the underlying dialogue
state which may be unobserved, in which case the problem

Figure 1: SL Stage Schema. The encoder receives either con-
text or both context and response that is to be decoded from
latent z. When samples from q(z|c, x) are used for decoding,
the architecture acts as a proper conditional autoencoder.

becomes partially observable. In ToD systems based on word-
level RL an action a corresponds to predicting the next word
out of a large vocabulary, where in latent-action RL a is cast
to predicting one element of a latent-space representation. In
our setting, the latent dialogue policy is warm-started by the
parameters of the variational posterior from the SL stage.

3 Method
Our method, called TCUP, is in line with the general latent
action RL paradigm outlined in Sec. 2, i.e. TCUP is also
based on a two-stage approach. However, we propose contri-
butions to both stages, which significantly extend prior work.
In Sec. 3.1 we describe a reformulation of the ELBO for the
SL Stage, which is vital to reach state-of-the-art performance
with continuous variational posteriors. In Sec. 3.2 we dis-
cuss our reinforcement learning setup and introduce methods
to address the deterioration of response coherence in latent
action-based dialogue policies through regularization.

3.1 SL Stage – Revisiting the Full ELBO
As aforementioned, prior work by Zhao, Xie, and Eskenazi
(2019) introduced the “lite” ELBO (described in equation 2),
to alleviate the overexposure bias that emerges when response
information is incorporated in the optimization objective.
Indeed, if we only optimize for samples of q(z|c, x), the
most information about the responses x is found within the
responses themselves, which could encourage the model to
ignore the context c. However, not conditioning on x will
reduce the expressiveness of the variational posterior for
capturing generative factors of responses and for predicting
the best next response given contexts. In this work we rely
on a full ELBO and introduce a conditional prior qpζ (z|c)
indicated by the superscript p which is constrained by the
free prior p(z) and also parametrized.

Proposition 1. For the minimization problem
minqDKL[q||p(z|x, c)], given sufficiently similar p(z|c) and
p(z|x), it suffices to minimize

DKL[qθ||qpζ ] +DKL[q
p
ζ ||p(z)]−

Eqθ [log pφ(x|z)]− Eqpζ [log pφ(x|z)] + C,
(4)

with respect to qθ and qpζ .
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Prop. 1 allows us to optimize equation 4 in the SL Stage,
we defer its proof to the Appendix (Vlastelica, Ernst, and
Szarvas 2022). While equation 4 is agnostic to the choice
of p(z), we base our approach on a multivariate, isotropic
Gaussian distribution. The benefits of incorporating response
information is also confirmed by prior work LAVA (Lubis
et al. 2020). However, to make sure the decoder doesn’t
overly rely on information from x, LAVA needs to introduce
two auxiliary tasks, i.e. one auto-encoding the responses and
one for generating responses based on context information.
We achieve this by leveraging samples from the prior and
the variational posterior for reconstruction during training
time. This considerably simplifies the training procedure and
improves performance (Sec. 4).

3.2 RL Stage – Regularizing for Success and
Coherence

Dialogue success, i.e. the accomplishment of a user’s task, is
the most important reward signal for training RL polices for
ToD systems. The success signal is defined as a system’s abil-
ity to fill all pre-defined reference slots that are necessary to
fulfill the user’s goal, with the correct values. In a restaurant
booking task the slots can be food type, reservation time, etc.
These values are observed at the end of the dialogue and are
usually inferred from the generated responses (Budzianowski
et al. 2018). Success rate is the fraction of dialogues in which
the task was successfully accomplished.

By checking for relevant slots to be present in the response,
success rate permits that long, possibly incoherent responses
achieve success more easily due to higher chance of contain-
ing the correct slot tokens. For measuring response coherence,
we rely on the BLEU metric as specified in the MultiWOZ
benchmark (Budzianowski et al. 2018). Anecdotal evidence
for this phenomenon is presented in Tab. 2. This is not un-
common in reinforcement learning algorithms, which have
shown to exploit weaknesses in simulators of game environ-
ments (Mnih et al. 2013) by finding high reward states which
don’t align with solving the underlying task. In the context of
latent action RL for ToD, the decoder can be seen as a weak
simulator that is prone to exploitation due to the nature of the
success rate metric. In the following subsections we describe
three counter measures to address this challenge.

Penalizing Out of Distribution Samples Depending on
the choice of distribution for the latent actions (e.g. gaus-
sians), the aforementioned issue can be even more severe,
since the model is able to sample out of distribution (OOD)
utterances that provide success. In the SL Stage we apply
variational inference, which implicitly maximizes the BLEU
score through maximizing the ELBO (see equation 4). We
denote this BLEU-maximizing policy with πV I . Since we
constrain our policy with an isotropic Gaussian prior in the
first training stage, we can leverage this information to pre-
vent the policy from deviating from this prior in the form of
a divergence cost which can be efficiently computed. Con-
cretely, the regularized reward function is defined as

r(x, c) = succ(x)− βDKL[π(z|c) || p(z)], (5)

where succ(x) is an indicator function

succ(x) =
{
1 response x entails correct reference slots
0 otherwise.

(6)

ToD as Offline RL We are dealing with an offline reinforce-
ment learning problem, since we have a dataset of optimal
responses without the possiblity of obtaining more samples
via a simulator or users. By shifting the reinforcement learn-
ing problem to the latent space, we are implicitly creating a
surrogate online problem, where we need to obtain samples
form π(z|c) and evaluate them.

We argue that one of the reasons why Gaussian latent
spaces have been reported as under-performing in comparison
to categoricals is the biased and noisy gradient estimate based
on samples from a single dialogue. Contrary to prior work
(Lubis et al. 2020; Zhao, Xie, and Eskenazi 2019), which
estimates the policy gradient over the responses from a single
dialogue sample, we take advantage of a Monte Carlo policy
gradient estimate across multiple dialogues.

Replaying Successful Samples Re-using encountered ex-
perience by storing it in memory (a replay buffer) has proved
to be beneficial for sample-efficiency in reinforcement learn-
ing. However, a naive usage of the buffer has multiple caveats
in the MultiWOZ setting. Firstly, since the success signal is
calculated on the dialogue level, some responses, that might
be successful conditioned on the dialogue state and context,
might be labeled as negative. Intuitively, the policy can start
off the dialogue correctly, but fail to complete it. This can
lead to conflicting examples in the buffer, which destabilizes
training. Secondly, we have a many-to-one mapping from
responses to success, which leads to multimodality, but also
modes that might be incoherent. If the response at time step
t is conditionally independent of the dialogue history given
the dialogue state and input utterance, we can attribute suc-
cess directly to the response independent of past utterances.
This motivates the storage of only successful responses in the
replay buffer, which we sample as a fraction of the training
batch. It mitigates the problem of false negative responses and
ensures fewer conflicting examples in the batch. Replaying
past experience ensures that certain samples are not forgot-
ten, which increases training stability and ensures that the
current policy π stays close to πV I . In practice, we exchange
a certain sample in the batch generated by the current policy
with a sample from the replay buffer with probability λ. As
λ→ 0 we arrive at the simple REINFORCE update, λ = 1
means that we only use replayed samples for updates.

4 Experiments
We provide a detailed evaluation of TCUP’s dialogue policy
in Sec. 4.1. This includes comparing its performance on the
MultiWOZ benchmark; an ablation study to assess the im-
portance of our technical contributions from Sec. 3; and a
qualitative analysis of response coherence. Finally, we ana-
lyze the quality of the latent representations in Sec. 4.2 and
provide evidence that TCUP learns representations, which
yield a good clustering of MultiWOZ domains and actions.
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Model BLEU Inform Success Av. len. CBE # unigrams # trigrams

MarCo? 17.3 94.5 87.2 16.01 1.94 319 3002
HDSA 20.7 87.9 79.4 14.42 1.64 259 2019
HDNO† 17.8 93.3 83.4 14.96 0.84 103 315
SFN† 14.1 93.4 82.3 14.93 1.63 188 1218
UniConv 18.1 66.7 58.7 14.17 1.79 338 2932
LAVA†* 16.2 89.7 77.6 14.41 1.96 272 2365
LAVA†-Cat 10.8 95.9 93.5 13.28 1.27 176 708

TCUP† 10.3 96.3 95.9 15.14 1.44 210 1838
TCUP†-Cat 14.3 96.1 92.1 14.33 1.61 230 1490

Table 1: Competitor comparison on MultiWOZ. RL methods are marked with †, transformer architectures with ?.

USER we are staying [value count] people for [value count] nights starting from [value day] . i need the
reference number?

NAIVE
SYSTEM

[hotel name] [hotel name] [hotel name] [ho-
tel reference] [hotel name] [hotel reference]
[hotel name] [hotel reference] [hotel name] [ho-
tel phone] . . .

TCUP [hotel name] is located at [hotel address]. their
phone number is [hotel phone]. is there anything
else i can help with?

USER just the address please
NAIVE
SYSTEM

[attraction name] is located at [attraction address],
postcode [attraction postcode]. the phone number is
[attraction phone]. [attraction name] is located . . .

TCUP [attraction name] s phone number is [attrac-
tion phone]. it s located on [attraction address],
and their phone number is [attraction phone].

Table 2: Example of successful responses, which are generated by a naive system policy “gaming” the metric and producing
incoherent utterances with low BLEU scores together with the corresponding TCUP responses.

We use a recurrent encoder-decoder architecture with dot-
product attention, details on architecture and training are in
the Appendix (Vlastelica, Ernst, and Szarvas 2022).

SL Stage Here, we learn the mapping from context to re-
sponse using equation 1. In practice, we optimize the pφ(x|z)
part with a weighted cross-entropy loss that puts higher
weights on slot placeholders in the response. The best model
is selected based on its BLEU score.

RL Stage In this stage we fix the parameters of the decoder
and train only the encoder parameters via policy gradient with
two important modifications: (i) we use a batched version
of the policy gradient which contains samples from multiple
dialogues and hence reduces the variance of the gradient, and
(ii) in each batch we sample a mix of newly generated and
old experience (with which we have obtained a success signal
earlier). This implicitly keeps us close to the starting policy
which results in more stable training. It is beneficial to replace
the standard DKL[q||p] term of the variational objective with
a symmetric version 1

2 (DKL[q||p]+DKL[p||q]). This ensures
that regions where the densities of p and q behave differently
are treated equally irrespective of the ordering.

4.1 Context-to-Response Generation
We evaluate TCUP using MultiWOZ 2.1 (Wang et al. 2020)
on the policy learning task for context to response generation.

*Results taken for best runs, mean performance is lower, discus-
sion in the Appendix (Vlastelica, Ernst, and Szarvas 2022).

MultiWOZ contains 10438 dialogues across six different do-
mains, pre-split into 8438 training, 1000 validation, and 1000
testing records. The task’s objective is to generate the next
response at every system turn given the ground-truth dialog
belief state and the previous dialogue. For a fair comparison
we use the same delexicalization approach as in prior work
(Lubis et al. (2020)). Additionally to our proposed approach
based on isotropic Gaussians, we introduce a variant which
is based on categorical latent distributions (coined TCUP-
Categorical). Table 1 shows that TCUP improves the state-of-
the-art inform- and success rate metric across all competitors.
Moreover, it is also competitive in terms of language diversity
metrics. Compared to the currently best performing latent
action reinforcement learning approach (LAVA), we increase
all metrics except for minor decreases in the BLEU metric.
The response coherence is further discussed in Sec. 4.1.

Latent Representations While prior latent-action RL ap-
proaches(Lubis et al. 2020; Zhao, Xie, and Eskenazi 2019)
favor categorical latent distributions with modified attention
mechanisms in the decoder, our results demonstrate that re-
lying on isotropic Gaussian latents is advantageous, even if
we only use simple dot-product attention in the decoder. Fo-
cusing on TCUP-Categorical we observe competitive results
in terms of inform and success rate compared to prior work,
but inferior performance compared to TCUP with continuous
latents. Using categoricals limits us in the sense that we don’t
make full use of the nonlinearity in the decoder to decode
diverse responses, which manifests itself with poor results in
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(a) Success Rate (%) on Test Set (b) BLEU Score on Test Set (c) Inform Rate (%) on Test Set

(d) Number of Unigrams on Test Set (e) Number of Bigrams on Test Set (f) Number of Trigrams on Test Set

Figure 2: Ablation study. TCUP configurations are averaged over three random seeds. sl denotes supervised training, sl+rl
supervised stage followed by reinforcement learning sl+larl work in (Zhao, Xie, and Eskenazi 2019), ctxp contextual prior
without prior on it (qpζ , equation 4), pp identity covariance Gaussian prior on contextual prior (DKL[q

p
ζ ||p(z)], equation 4), shuff

prior and posterior shuffling (Sec. 3.1), rep replay buffer (Sec. 3.2), kl penalty term to identity covariance Gaussian (Sec. 3.2)

the diversity metrics (Tab. 1). By using a continuous distri-
bution, we improve the diversity of the generated responses
compared to those two competitors.

Ablation Study Fig. 2 presents an ablation study over dif-
ferent variants of TCUP. Variants only using the SL Stage (sl)
have the highest BLEU metrics, but show low success rates
compared to approaches with a RL Stage (sl + rl). Our exper-
iments demonstrate that the proposed variational inference
objective Sec. 3.1, i.e. the full ELBO with prior and posterior
shuffling (sl shuff ) and an identity covariance Gaussian prior
on the contextual prior (sl pp shuff ) leads to improvements
across all metrics compared to the objective used in prior
work (sl larl) LaRL (Zhao, Xie, and Eskenazi 2019) and
LAVA (Lubis et al. 2020). Among the two, sl shuff performs
better in the success and inform metrics, where sl pp shuff de-
livers minor improvements in BLEU. Through adding the RL
Stage (sl + rl), significantly higher success rates are achieved
while sacrificing BLEU. The BLEU decrease is alleviated by
applying optimal replay (all variants with rep in their name)
and the constrained rewards with the KL penalty (kl), with
replay being the superior choice between the two. For in-
stance, compare the scores of sl + rl ctxp rep and sl + rl ctxp
kl. Further gains can be achieved by utilizing both sl + rl
pp shuff kl rep. Not using optimal replay introduces higher
variance across runs. Considering the variants with highest bi-
and trigrams (sl + rl kl, sl + rl ctxp kl) we observe that high
scores in these metrics are not indicative of high coherence,
if we compare with their corresponding BLEU scores. In
summary, the results (shuff kl rep) validate the benefits of our
variational inference objective and regularization.

Response Coherence We observed that it is possible to
maximize success rates at the cost of lower coherence in
terms of BLEU scores. Fig. 3a shows that we achieve state-
of-the-art success rates, whilst achieving a BLEU score of
effectively 0. This is an artifact of the success rate metric, i.e.
it disregards response coherence and only checks if the cor-
rect slot values have been addressed by the dialogue policy.

In Fig. 3b we see different runs of our method with dif-
ferent strength of regularization in terms of KL penalty and
optimal replay fraction. Depending on the strength of regu-
larization they form a Pareto front. This further shows the
multi-objective trade-off between success rates and BLEU
scores. The BLEU collapse is to be expected when using
latent-action reinforcement learning, since longer and more
diverse answers have positive impact on the dialogue success,
which leads to the policy selecting degenerate responses. Fur-
thermore, if no additional regularization is used, the latent
policy learns to sample outliers in terms of the prior over z.
We argue that it is not realistic to expect the policy resulting
from the reinforcement learning stage to outperform the re-
sponse coherence of the supervised learning stage in terms
of BLEU (as long as the primary purpose of the RL stage
is to improve dialogue success metrics). Instead, we show
that through regularization and optimal replay, the BLEU
score can be kept from deterioration through the RL stage
while we optimize dialogue level metrics. An alternative ap-
proach to alleviating degenerate policies would be to simply
make the BLEU score or other coherence metrics part of
the reward function. For example, the final comparison of
models in (Budzianowski et al. 2018) is done by comparing
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(a) Influence of replay on success rate and BLEU
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(b) Points depict training runs with a 2nd
degree polynomial showing the Pareto front.

Figure 3: Interdependencies between success rate and BLEU scores

success+inform
2 + BLEU . However, we suggest that there

are multiple problems with the approach of maximizing such
a hybrid metric directly. First of all, constructing reliable
metrics is challenging (Jiang et al. 2021; Mehri and Eskenazi
2020) in itself. More importantly, as soon as the coherence
metric is part of the reward, we encounter the problem of
adequate scaling in comparison to the success rate.

Impact of Regularization When introducing regulariza-
tion in the form of optimal replay sampling and the KL
penalty term, we are able to achieve state-of-the-art perfor-
mance in terms of success rate without lowering the BLEU
score significantly. As depicted in Fig. 3a our method using
optimal replay buffer sampling is more stable during training
in comparison to the naive application of the policy gradi-
ent. Also, we observe that the BLEU deterioration is kept at
bay and roughly deteriorates linearly over time. By increas-
ing the replay fraction λ too much we are over-constraining
the latent dialogue policy to the initial experience, which
leads to biased updates and hurts exploration. Nevertheless,
as shown in the ablation study (Fig. 2) optimal replay and the
KL penalty term are essential for preventing the BLEU score
from deteriorating too rapidly. In this work we aimed to retain
a competitive BLEU score compared to LAVA, while improv-
ing dialogue success. A sensitivity analysis over weights of
the penalty term and the replay fraction λ is described in the
Appendix (Vlastelica, Ernst, and Szarvas 2022).

4.2 Latent Space Analysis
Fig. 4 depicts a UMAP (McInnes, Healy, and Melville 2018)
projection of the learned latent samples z for the Gaussian
case. We observe similar behavior to Lubis et al. (2020). In
the supervised learning stage there is apparent clustering in
terms of domain labels (Fig. 4a). The reinforcement learning
stage with regularization leads to specialization of the clusters
(Fig. 4c). In comparison, a good cluster separation is lost
(Fig. 4b) without applying regularization in the RL stage.
This can be explained by the fact that the z samples are
degenerate samples that lie in low-support regions of qpζ (z|c).

We have calculated the Caliński-Harabasz index (Caliński
and Harabasz 1974), otherwise known as Variance Ratio
Criterion, to evaluate the clustering in the latent space with
respect to domain and action type labels taken from DAMD
(Zhang, Ou, and Yu 2020). In comparison to the results re-

Model SL RL
Domain Action Domain Action

LaRL∗ 93.19 23.20 121.15 17.5
LAVA∗ 104.92 25.28 158.00 41.75
TCUP 345.48 80.76 329.39 78.95

Table 3: Caliński-Harabasz scores (higher is better).

ported by Lubis et al. (2020), our model is able to obtain high
scores in the supervised stage of training already. The scores
drop slightly after RL fine-tuning, but remain at a higher
level than those for categorical latents. It’s important to note
that the scores for LaRL∗ and LAVA∗ were computed with
such categoricals, whereas our scores are based on Gaussian
latents, which are continuous and unbounded. Tab. ?? demon-
strates the value in using continuous latent representations,
rather than to make direct numeric comparisons.

5 Related Work
Supervised Learning The majority of prior work applies
some form of Supervised Learning. For an extensive overview
we refer to Gao, Galley, and Li (2018) and focus on the state-
of-the-art competitors HDSA (Chen et al. 2019) as well as
UniConv (Le et al. 2020). Both approaches demonstrate the
benefits of jointly training multiple dialogue tasks at once,
such as predicting dialogue acts and states.
Variational Inference Inspired by variational autoencoders
(VAEs) (Kingma and Welling 2013), several works employ
variational inference for learning conditional response dis-
tributions. VHRED (Serban et al. 2017) is a variational hi-
erarchical RNN for modeling dependencies between words
and utterances. Stochastic latent variables are introduced to
generate the next utterance. To avoid collapsing posteriors
Zhao, Zhao, and Eskenazi (2017) learn response represen-
tations using an auxiliary task introducing a bag of words
loss. Shen et al. (2018) improves the stability of VHRED by
splitting the training process into two parts. First, text is auto-
encoded into continuous embeddings, which are the starting
point for learning latent representations by reconstructing
the embeddings. To address the degeneration problem, Varia-
tional Hierarchical Conversation RNNs (VHCR) (Park, Cho,

*Best scores of each method obtained by Lubis et al. (2020)
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(a) (b) (c)

(d) (e) (f)

Figure 4: UMAP embeddings of latent representations. Figures a-c: domain labeled embeddings for the SL, SL+RL and SL+RL
with replay sampling, bottom row: same embeddings labeled by response type. Executing the RL stage of the training results in
representations that are difficult to separate (b and e). By applying replay we obtain higher specialization in the clusters (c and f).

and Kim 2018) exploits an utterance drop regularization. Di-
alogWAE (Gu et al. 2018) represents the prior distribution
as Gaussian mixture and adapts WGAN (Arjovsky, Chintala,
and Bottou 2017) for training.

Combined Supervised- & Reinforcement Learning Hen-
derson, Lemon, and Georgila (2008) was the first work to
combine Reinforcement and Supervised Learning introduc-
ing a value function, which relies on SL for predicting the ex-
pected future reward of states not covered by the data directly.
Williams, Asadi, and Zweig (2017) prevent high variance
by performing a SL gradient update, if the RL policy output
deviates from the training data. Fatemi et al. (2016); Su et al.
(2017) apply two-stage approaches, where they pre-train a
dialogue policy supervised, which is then further optimized
by RL. HappyBot (Shin et al. 2019) relies on a weighted
combination of a maximum likelihood and a REINFORCE
objective. Saleh et al. (2020) uses REINFORCE-based policy
gradients to update the prior probability distribution of the
latent variational model trained using supervised learning.
Structured Fusion Networks (SFNs) (Mehri, Srinivasan, and
Eskenazi 2019) apply RL to fuse dialogue modules, where
each module serves a different purpose (NLU, NLG, etc.)
and is pre-trained in individual supervised stages. Apart from

task-oriented dialogues a combination of SL and RL has
also been applied for generating responses for open-domain
dialogues (Xu, Wu, and Wu 2018). The aforementioned ap-
proaches are based on word-level RL, suffering from huge
action-spaces covering the entire input vocabulary. Due to
this, ensuring coherent responses is challenging (Lewis et al.
2017; Kottur et al. 2017), especially in multi-turn dialogues
spanning hundreds of words. LaRL (Zhao, Xie, and Eskenazi
2019) and LAVA (Lubis et al. 2020) address this problem by
learning a low-dimensional latent representation with amor-
tized variational inference followed by RL fine-tuning.

6 Conclusion
We showed that with appropriate modifications to the rein-
forcement learning procedure and the latent space, it is pos-
sible to obtain state-of-the-art results with simple Gaussian
latent distributions. The problem of coherence deterioration
is alleviated with optimal replay and KL regularization, but
points to the fact that better metrics are needed for developing
efficient dialogue policies. TCUP shows promising results in
the policy learning setting with access to ground-truth dia-
logue state, which would be interesting to transfer to the E2E
learning setting.
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