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Abstract

Unsupervised text-graph alignment (UTGA) is a fundamen-
tal task that bidirectionally generates texts and graphs without
parallel data. Most available models of UTGA suffer from in-
formation asymmetry, a common phenomenon that texts and
graphs include additional information invisible to each other.
On the one hand, these models fail to supplement asymmetric
information effectively due to the lack of ground truths. On
the other hand, it is challenging to indicate asymmetric infor-
mation with explicit indicators because it cannot be decou-
pled from the data directly. To address the challenge posed
by information asymmetry, we propose the assumption that
asymmetric information is encoded in unobservable latent
variables and only affects the one-way generation processes.
These latent variables corresponding to asymmetric informa-
tion should obey prior distributions recovered approximately
from original data. Therefore, we first propose a taxonomy
of the latent variable that classifies the latent variable into
transferrable (TV) and non-transferable (NTV) variables and
further distinguish NTV as the dependent variable (DV) and
the independent variable (IV). Next, we propose three latent
VAE-based regularizations on TV, DV, and IV to constrain
their distributions to well-designed prior distributions to in-
troduce asymmetric information into models and enhance the
preservation of shared contents. Finally, we impose the three
proposed constraints on a cycle-consistent learning frame-
work, back-translation (BT), named ConstrainedBT. Exper-
iments on three UTGA tasks demonstrate the effectiveness of
ConstrainedBT on the information-asymmetric challenge.

Introduction
Unsupervised text-graph alignment (UTGA) is the task of
bidirectional text-graph generation without parallel data (Jin
et al. 2020; Schmitt et al. 2020; Ke et al. 2021), which is fun-
damental to producing readable explanations (Cai and Lam
2020; Saha et al. 2021; Chairatanakul et al. 2021; Gai et al.
2021; Tian et al. 2022) and is used to make reasoning (Sinha
et al. 2019; Tian et al. 2021; Huang et al. 2021; Li et al.
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2022b) in NLU. However, most available methods on un-
supervised alignment (Schmitt et al. 2020; Guo et al. 2020;
Prabhumoye et al. 2018; Yi et al. 2020; Xiao et al. 2021; Ma
et al. 2021) cannot solve a critical problem that is very com-
mon in UTGA: information asymmetry. We first illustrate
information asymmetry in UTGA defined in Definition 1.

Information Asymmetry: Yang et al. (Yang et al. 2019)
summarize three information conditions in text genera-
tion tasks: Source ≈ Target, Source > Targe, and Source
< Target. However, there exists a more challenging con-
dition in unsupervised alignment tasks: Source ̸= Tar-
get, the phenomenon of which is defined as informa-
tion asymmetry in Definition 1. For the example in Fig-
ure 1, the text includes the information of the story scene
(such as “visit” and “movie”) that is not visible to the
graph, while the graph also contains the logic (such as
Mother(x, y) ∧Mother(y, z) → Grandmother(x, z)) that
is not necessary to be expressed in the text. It is challeng-
ing to eliminate its impacts on UTGA. Due to the lack of la-
bels, models can hardly extract asymmetric information dur-
ing training, like supervised learning (Yang et al. 2019; Liu,
Wang, and Li 2021). In addition, asymmetric information is
usually entangled in forms and contents so that we cannot
operate on explicit spaces directly (Schmitt et al. 2020).

Definition 1. Information asymmetry in UTGA is the phe-
nomenon that the paired data contain additional informa-
tion with complex forms invisible to each other.

To address the information asymmetry problem in UTGA,
we assume that all information, including asymmetric infor-
mation, is encoded in the latent variable. This latent variable
can be divided into three parts: transferable variable (TV)
and non-transferable parts (NTV) with asymmetric informa-
tion of the text and the graph, respectively. Furthermore,
NTV is classified into the dependent variable (DV) and
the independent variable (IV) according to its correlation
to TV. Aiming at TV, we design a VAE-based transferable
constraint (Kingma and Welling 2014) to preserve shared
information between two generation processes. Consider-
ing NTV, we propose two other CVAE-based regulariza-
tions (Kingma et al. 2014; Jain, Zhang, and Schwing 2017)
for DV and IV that force their distributions to approximate
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prior distributions, which can be recovered from the orig-
inal data. These two constraints can effectively introduce
the missing asymmetric information into one-way genera-
tion models, allowing the better convergence of models. Fi-
nally, we impose the three constraints on a cycle-consistent
learning framework, back-translation (BT) (Sennrich, Had-
dow, and Birch 2016; Hoang et al. 2018), to achieve UTGA.
The proposed model is named ConstrainedBT.

We conduct experiments on three available UTGA tasks.
Logic2Text (Chen et al. 2020) includes a task without asym-
metric information, while LogicNLI (Tian et al. 2021) and
CLUTRR (Sinha et al. 2019) contain two information-
asymmetric tasks. Results show that ConstrainedBT can
converge faster than naive BT on Logic2Text and out-
performs other unsupervised baselines on the information-
asymmetric datasets, which supports that our proposed con-
straints can indeed solve the information asymmetric prob-
lem and enhance the unsupervised alignment model. To
further understand these constraints, we analyze their pri-
ority and interactions from the view of curriculum learn-
ing (Wang, Chen, and Zhu 2021). Finally, we validate Con-
strainedBT’s benefits to downstream NLU tasks based on
prompt learning (Liu et al. 2021b; Li and Liang 2021).

Contributions: Firstly, we analyze a critical problem of
UTGA, information asymmetry. Secondly, we distinguish
transferable and non-transferable latent variables and im-
pose three implicit constraints on BT to introduce informa-
tion asymmetry in latent spaces. Thirdly, experimental re-
sults show that our proposed method can effectively alleviate
the negative impacts of asymmetric information on UTGA.

Related Works
Information Asymmetry in NLG
Information asymmetry is a common phenomenon in NLG.
Some tasks, such as text style transfer,machine translation,
and multi-modal tasks (Chen et al. 2021a), includes asym-
metric information at the formal level. For example, text
style transfer shows asymmetric styles (Prabhumoye et al.
2018; Yi et al. 2020; Xiao et al. 2021; Ma et al. 2021) while
machine translation should bridge the gap between differ-
ent languages (Wang et al. 2021; Li et al. 2022a; Nguyen
et al. 2021). Other tasks, including text summarization and
topic-to-essay generation, exhibit asymmetric information at
the content level. Text summarization is a typical one-way
asymmetric task that the information of the target needs to
be filtered from the source (Lin and Ng 2019; Cao 2022).
Inversely, topic-to-essay generation requires supplementary
information to generate the target (Yang et al. 2019). Al-
though information asymmetry is not a prominent problem
in supervised learning (Chen et al. 2021b), it is a dominant
challenge in unsupervised scenarios. Considering unsuper-
vised text style transfer, it is widely studied due to its dif-
ficulty in introducing asymmetric information of style into
the content (Prabhumoye et al. 2018; Ma et al. 2021).

Text-graph alignment is the bidirectional generation of
the graph and the text from each other. Previous studies
treat them as two independent supervised tasks: text-to-
graph generation and graph-to-text generation (Song et al.

2020; Hoyle, Marasovic, and Smith 2021; Ren et al. 2021;
Ke et al. 2021). Unsupervised text-graph alignment (UTGA)
is a more challenging task because it includes bidirectional
asymmetric information, as shown in Figure 1.

Cycle-Consistent Learning
Cycle-consistent learning (CCL) is commonly used to solve
unsupervised tasks without parallel data (Nguyen et al.
2021; West et al. 2019; Ju et al. 2021), which trains unsu-
pervised models through internally consistent loss functions,
including adversarial loss (Shen et al. 2017), reconstruction
loss (Luo et al. 2019), and auxiliary loss (Prabhumoye et al.
2018). In particular, it achieves surprising performance on
unsupervised text style transfer. Shen et al. (Shen et al. 2017)
first propose a general CCL framework that uses an adver-
sarial loss to achieve unsupervised transferring. Based on the
framework, the following works (Prabhumoye et al. 2018; Yi
et al. 2020; Xiao et al. 2021; Ma et al. 2021) design new CCL
frameworks introducing auxiliary tasks and diverse meth-
ods to balance style conversion and content preservation.
Among these works, back-translation (BT) (Luo et al. 2019;
Lample et al. 2019; He et al. 2020; Lai, Toral, and Nissim
2021) is a simple but effective framework for arbitrary unsu-
pervised alignment tasks, which is first proposed to achieve
data augmentation in NMT (Sennrich, Haddow, and Birch
2016; Pham et al. 2021). Hoang et al. (Hoang et al. 2018)
and Cotterell and Kreutzer (Cotterell and Kreutzer 2018) im-
prove the optimization strategy to an iterative one, named it-
erative back-translation (IBT). Aiming at UTGA, Schmitt et
al. (Schmitt et al. 2020) also propose an LSTM-based cycle-
consistent learning method (GT-BT), which adopts different
initializations to control the generation of text sequence or
the graph sequence with three unsupervised auxiliary objec-
tives. On this basis, Guo et al. (Guo et al. 2020, 2021) intro-
duce a general BT method to text-graph alignment directly
and further optimize such the method through a CVAE mod-
ule (CycleGT), achieving comparable performance with su-
pervised methods on WebNLG (Gardent et al. 2017; Ferreira
et al. 2020) without much asymmetric information. How-
ever, these available methods cannot deal with UTGA with
information asymmetry due to the lack of effective means to
introduce or indicate such complex asymmetric information.

Formulation
The generation process of the text-graph pair can be de-
scribed under two hypotheses.

Hypothesis 1 (Transferable Hypothesis). A graph g
is generated from the conditional distribution p(g|z, zg),
while a text t is generated from the conditional distribution
p(g|z, zt), where z is the transferable latent variable, and
zg and zt are non-transferable latent variables.

Hypothesis 2 (Disentangling Hypothesis). There are
only two cases of dependency between zg (zt) and z. If zg
(zt) and z can be totally disentangled, then zg (zt) and z
are independent; otherwise, zg (zt) is dependent on z.

Based on the two hypotheses, latent variables can be
divided into three types. Definition 2 distinguishes trans-
ferable (TV) and non-transferable variables (NTV) clearly,
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B and her son A went 
to visit her mother C
on a nice Sunday 
afternoon. They went 
out for a movie
together and had a 
good time. How is C
related to A?

→

∧ GM

M M

C

C

B B A

A

Text-to-Graph Generation:
Remove scene information (in yellow);
Add the logic of !"#ℎ%& ', ) ∧

					!"#ℎ%&(), -) → 01234567891(', -).

Graph-to-Text Generation:
Add scene information (in yellow).

Figure 1: An example of information asymmetry in text-graph alignment. “M” and “GM” represent “Mother” and “Grand-
mother”, respectively. Hightlights in yellow represent asymmetric information of the text/graph, while highlights in grey repre-
sent information that is transferable.

zt z zg

t g

zt z zg

t g

Disentangling Condition Entangling Condition

Figure 2: Variable dependencies under disentangling and en-
tangling conditions. Line arrows represent dependencies de-
fined in Hypothesis 1, while dashed arrows represent ones in
Hypothesis 2. White circles mean observed variables, while
grey circles mean latent variables.

while Definition 3 further distinguishes two different non-
transferable variables (IV and DV).

Definition 2. Transferable Variable (TV) is defined as the
part of the latent variable that can be extracted by both “per-
fect” text and graph encoders, while Non-transferable Vari-
able (NTV) is the remained part that can only be encoded by
either “perfect” text or graph encoder.

Definition 3. If the non-transferable variable is totally in-
dependent of the transferable variable, it is defined as In-
dependent Variable (IV); otherwise, it is named Dependent
Variable (DV).

According to the definitions, there are two conditions
among latent variables in UTGA, as shown in Figure 2,
where z represents TVs, while zt and zg are NTVs. As a
result, the text-graph pair can be sampled from joint dis-
tributions of p(t, g) (in Equation 1 and Equation 2 where
independent conditions are also given) based on z, zt, and
zg , under the disentangling and entangling conditions. The
essence of the sampling process includes four steps: 1) sam-
pling the transferable variable z from a prior distribution
p(z); 2) sampling non-transferable variables zt and zg from
prior distributions or conditional distributions; 3) Sampling
the consistent graph g and text t according to z, zt, and zg .

p(t, g) =Ez∼p(z)Ezt∼p(zt)Ezg∼p(zg)[p(t, g|zt, zg, z)]

(zt ⊥ z, zg ⊥ z, zt ⊥ zg)
(1)

p(t, g) =Ez∼p(z)Ezt∼p(zt|z)Ezg∼p(zg |z)[p(t, g|zt, zg, z)]

(zt ⊥ zg|z)
(2)

In UTGA, we can only observe two unpaired datasets
of texts T = {t1, t2, · · · , tn} and graphs G =

{g1, g2, · · · , gm}, and latent variables (z, zt, and zg) are
unobservable. Therefore, our objective is to learn the con-
ditional distributions of p(t|g) and p(g|t) under the genera-
tive assumption (Shen et al. 2017) shown in Equation 3 and
Equation 4 under two conditions in Figure 2.

p(t|g) =Ez∼p(z|g)Ezt∼p(zt)[p(t|zt, z)]

(zt ⊥ g, t ⊥ g|z, zt ⊥ z)

p(g|t) =Ez∼p(z|t)Ezg∼p(zg)[p(g|zg, z)]

(zg ⊥ t, g ⊥ t|z, zg ⊥ z)

(3)

p(t|g) =Ez∼p(z|g)Ezt∼p(zt|z)[p(t|zt, z)]

(zt ⊥ g|z, t ⊥ g|z)
p(g|t) =Ez∼p(z|t)Ezg∼p(zg |z)[p(g|zg, z)]

(zg ⊥ t|z, g ⊥ t|z)

(4)

The objective suggests recovering conditional distribu-
tions based on T and G in three steps: 1) recovering the
transferable conditional distributions based on T and G and
sampling transferable latent variables; 2) constructing the
distribution of the non-transferable distributions and sam-
pling non-transferable variables; 3) modeling the probability
of g and t conditioning on latent variables.

Methodology
Figure 3 shows the overall design of ConstrainedBT. We first
illustrate the selection of neural architectures of ET , EG,
DT , and DG and then explain how BT works on UTGA in
Figure 3 (a). Finally, we focus on our proposed three VAE-
based constraints shown in Figure 3 (b-e).

Neural Architectures
We first introduce the neural architectures to encode la-
tent variables and formulate probabilities of t and g in
Figure 3. In text-to-graph generation, we use a text en-
coder ET (θ1) to extract latent variables and a graph de-
coder DG(θ2) to formulate p(g|z, zg), where θ = [θ1, θ2]
represents trainable parameters. We adopt commonly used
models, RoBERTa (Liu et al. 2019) with adapter (Houlsby
et al. 2019; Gururangan et al. 2020) and GraphRNN (You
et al. 2018), as the text encoder and the graph decoder, re-
spectively. Similarly, in graph-to-text generation, we intro-
duce GAT (Velickovic et al. 2018) and GPT-2 (Radford et al.
2019) with adapter (Houlsby et al. 2019; Gururangan et al.

13657



t EG z’’…

f!4 f!3

DKL
p(zt|z)

q(zt|
g’,z)

z’ EG z’’…

f!1 f!2

DKL
q(z’|t) q(z’’|g’)

z’’ ET z’…

f!2 f!1

DKL
q(z’’|g) q(z’|t’)

ET z’

f!6 f!5

DKL
p(zg)

q(zg|
t’,z)

AT

(b) TC (T-G-T) (c) TC (G-T-G) (d) DC (e) IC

(a) ConstrainedBT

t z’ET DG g’ EG z’’ DT t’’

g’’ z’DG ET t’ DT z’’ EG g

T-G-T

G-T-G

TC (T-G-T) DC

IC TC (G-T-G)

Forward Propagation

Backward Propagation

Constraint

KL Divergence

Variables

Auxiliary Task

Figure 3: The framework of ConstrainedBT. (a) shows a global design based on BT, while (b), (c), (d), and (e) provide local
structures of three constraints. The legend is on the right. E, D, T, G mean encoder, decoder, text, and graph, respectively. TC,
DC, and IC represent transferable constraint, dependent constraint, and independent constraint, respectively.

2020) as the graph encoder (EG(ψ1)) and the text decoder
(DT (ψ2)), which extracts latent variables from graphs and
approximate p(t|z, zt), respectively. ψ = [ψ1, ψ2] means
trainable parameters. We use z′ and z′′ to represent outputs
of ET and EG, respectively. Ideally, z′ encodes z and zt,
while z′′ implies z and zg .

Back-Translation
From Figure 3 (a), BT includes two processes of recovering
t (T-G-T) and g (G-T-G) by 1) translating the original input
to the target, and 2) recovering the input based on the gen-
erated target. Therefore, the reconstruction objectives of T-
G-T and G-T-G are to minimize losses shown in Equation 5,
where z′ = ET (t; θ1), g′ = DG(z

′; θ2), z′′ = EG(g;ψ1),
and t′ = DT (z

′′;ψ2). pDG
(·; θ2) and pDT

(·;ψ2) are con-
ditional probabilities of p(g|z, zg) and p(t|z, zt) approxi-
mated by DG and DT .

LT (ψ) = −Et∼T [Ez′′∼q(z′′|t) log p(t|z′′)]

≈ Et∼T [− log pDT (t|EG(DG(ET (t; θ1); θ2);ψ1);ψ2)]

LG(θ) = −Eg∼G[Ez′∼q(z′|g) log p(g|z′)]

≈ Eg∼G[− log pDG(g|ET (DT (EG(g;ψ1);ψ2); θ1); θ2)]
(5)

Iterative Training: The equations imply an assumption
that p(g′|t) ≈ 1 and p(t′|g) ≈ 1 for the generated g′ and t′.
This assumption requires that DG and DT are functions of
greedy search based on pDT

and pDG
, which cannot back-

propagate gradients. As a result, θ and ψ cannot be updated
simultaneously in a single direction. Instead of multi-task
learning on bidirectional generation, we adopt the iterative
strategy to train modules alternately, which has been proven

effective (Cotterell and Kreutzer 2018). Therefore, the total
training process of one iteration includes four steps: 1) Exe-
cute forward propagation of T-G-T; 2) Update ψ; 3) Execute
forward propagation of G-T-G; 4) Update θ.

VAE-Based Constraints
Constraints on Latent Variables in UTGA: According
to Definition 2, z belongs to TV. According to Definition
3, IV requires a more strict condition that all parts of NTV
should be independent of TV, while DV only needs the ver-
ification of an existential condition. Considering zt, it en-
codes syntactic and asymmetric information of texts. Syn-
tactic information is dependent on TV so that the existential
condition can be satisfied, and thereby zt belongs to DV. As
for zg , it must contain parts that are not independent of z.
However, the core problem in text-to-graph generation is the
introduction of logic, so the asymmetric information of the
graph can be approximately equivalent to the logic rules R.
Under this condition, zg can be modeled as IV because R is
independent of contents absolutely. We design three kinds of
VAE-based constraints, named transferable constraint (TC),
dependent constraint (DC), and independent constraint (IC)
for z (TV), zt (DV), and zg (IV), respectively, which are
illustrated in Figure 3 (b-e).

Transferable Constraint (TC): VAE imposes a distribu-
tional constraint on the reconstruction objective (Kingma
and Welling 2014). In BT, maximizing the recon-
struction terms of T-G-T and G-T-G is equivalent to
minimizing losses in Equation 5. Inspired by VAE,
TC’s objectives are to minimize the second terms
of DKL(q(z|t)||p(z)) = DKL(q(z|g′(t))||p(z)) and
DKL(q(z|g)||p(z)) = DKL(q(z|t′(g))||p(z)) on z, where
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g′(t) = DG(ET (t; θ1); θ2), t′(g) = DT (EG(g;ψ1);ψ2),
and p(z) is the prior distribution of z (TV). To ex-
tract z from z′/z′′ and calculate the posterior distribu-
tions of z, we introduce two more neural functions: fϕ1

and fϕ2
, with trainable parameters ϕ1 and ϕ2. Therefore,

q(z|g′(t)) ≈ qfϕ2
(EG(g

′(t);ψ1);ϕ2) and q(z|t′(g)) ≈
qfϕ1

(ET (t
′(g); θ1);ϕ1). The remained challenge is to de-

sign the prior distribution p(z) directly. In reality, TC al-
lows q(z|t) = p(z) = q(z|g), so we adopt approximate
constraints making the two conditional distributions approx-
imate each other in BT and allowing q(z|t) = q(z|g), which
avoids to design p(z) directly. TC’s objectives of T-G-T and
G-T-G are to minimize KL divergences in Equation 6.

LTC(TGT )(ϕ2, ψ1) ≈Et∼T [DKL(qfϕ2
(EG(g

′(t);ψ1);ϕ2)||
qfϕ1

(ET (t; θ1);ϕ1))]

LTC(GTG)(ϕ1, θ1) ≈Eg∼G[DKL(qfϕ1
(ET (t

′(g); θ1);ϕ1)||
qfϕ2

(EG(g;ψ1);ϕ2))]
(6)

Dependent Constraint (DC): To constrain zt (DV), we
follow the previous work (Guo et al. 2021) that adopts
CVAE to design the prior distribution based on the ground
truth. DC assumes that the text t is generated from the
latent variable zt conditional on z implied by g′(t).
The objective of DC is to minimize the second term of
DKL(q(zt|z, t)||p(zt|z)). Following the setting of amor-
tized variational inference (Gershman and Goodman 2014),
we introduce a neural function fϕ3

with trainable parameters
ϕ3 to approximate the posterior distribution based on z′′,
which means that q(zt|z, t) ≈ qfϕ3

(EG(g
′(t);ψ1);ϕ3).

The prior distribution p(zt|z) is inferred based on the
ground truth t through another neural function fϕ4

with
trainable parameters ϕ4 representing p(zt|z) ≈ pfϕ4

(t;ϕ4).
Therefore, DC’s objective is to minimize the KL divergence
in Equation 7.

LDC(ϕ3, ϕ4, ψ1) ≈Et∼T [DKL(qfϕ3
(EG(g

′(t);ψ1);ϕ3)||
pfϕ4

(t;ϕ4))]
(7)

Independent Constraint (IC): Similar to DC, IC can
also be established by CVAE. The only difference is
that zg ⊥ z, so the objective of IC is to minimize
DKL(q(zg|z, g)||p(zg)) (Pandey and Dukkipati 2016).
Symmetrically, the posterior distribution q(zg|z, g) is ap-
proximated by qfϕ5

(ET (t
′(g); θ1);ϕ5). To design p(zg),

we introduce an auxiliary task (AT) to generate g in an
auto-regressive manner (You et al. 2018). The latent vari-
able of the AT model (zat) has been proven to contain non-
transferable information without transferable content (You
et al. 2018) and can be used to recover p(zg). As a result,
p(zg) ≈ pfϕ6

(zat;ϕ6) where fϕ6
is a neural function with

trainable parameters ϕ6. IC’s loss is shown in Equation 8.

LIC(ϕ5, ϕ6, θ1) ≈Eg∼G[DKL(qfϕ5
(ET (t

′(g); θ1);ϕ5)||
pfϕ6

(zat;ϕ6))]
(8)

Multi-Task Training: During training, we adopt multi-
task learning for complete ConstrainedBT to optimize
LTGT and LGTG in Equation 9 alternately with hyper-
parameters of λ1, λ2, λ3, and λ4.

LTGT (ψ, ϕ2, ϕ3, ϕ4) =LT (ψ) + λ1LTC(TGT )(ϕ2, ψ1)

+ λ3LDC(ϕ3, ϕ4, ψ1)

LGTG(θ, ϕ1, ϕ5, ϕ6) =LG(θ) + λ2LTC(GTG)(ϕ1, θ1)

+ λ4LIC(ϕ5, ϕ6, θ1)

(9)

Experiments and Results
Experimental Settings and Baselines
Dataset: We experiment on three available datasets:
Logic2Text (Chen et al. 2020), LogicNLI (Tian et al. 2021),
and CLUTRR (Sinha et al. 2019). Logic2Text is relatively
easy because the information between its text and graph is
almost symmetric. Different from Logic2Text, both Logic-
NLI and CLUTRR include asymmetric information, which
has been illustrated in Figure 1.

Metric: Following the previous work (Guo et al. 2021),
we adopt F1 scores (node/edge) to measure text-to-graph
generation, while we use BLEU (Papineni et al. 2002),
ROUGE (Lin 2004), CIDEr (Vedantam, Zitnick, and Parikh
2015), and METEOR (Banerjee and Lavie 2005) in graph-
to-text generation.

Training Setting: We pretrain our model with only one
constraint and impose the other two later to avoid interfer-
ence among them. We execute the pretraining with IC on
graph generation, which will be illustrated in Section .

Baselines: We adopt two generative language models
and two unsupervised baselines as the following. 1)
GPT-2 (Adapter) (Radford et al. 2019) and 2) BART
(Adapter) (Lewis et al. 2020) with BT framework. 3) Graph-
Text Back Translator (GT-BT) (Schmitt et al. 2020): This
baseline adopts the same encoder and decoder in both di-
rections. As a result, the graph should be transferred to a
sequence that does not involve the prediction of edges. In
this work, we reproduce its neural architecture and apply
it to our tasks in the same setting as the original. 4) Cy-
cleGT (Guo et al. 2021): We reconstruct CycleGT with our
proposed neural architectures so CycleGT can be regarded
as a basic BT version. Furthermore, CycleCVAE is equiva-
lent to BT+DC. Besides, we also show the results of graph
generation and text generation in a supervised manner.

Results
Text-to-Graph Generation: Table 1 shows the performance
of various models for all metrics. We can observe that
unsupervised LMs (GPT-2 and BART) perform poorly on
all three datasets. GT-BT performs well on CLUTRR but
cannot achieve alignment tasks on the other two datasets.
Practically, we adopt depth-first search (DFS) to simplify
graphs to sequences. However, only on CLUTRR among
the three can sequences effectively represent their corre-
sponding graph because of simple logic and stable struc-
tures. Therefore, GT-BT can only capture such stable fea-
tures on CLUTRR. According to F1 scores of the node and
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Dataset Model Graph Generation Text Generation
F1 (Node) F1(Edge) BLEU-1 BLEU-4 ROUGE-L CIDEr METEOR

Logic2Text
(Symmetric)

Supervised* 99.7 99.8 96.3 91.7 96.5 8.16 66.0

GPT-2(BT) (Radford et al. 2019) 34.8 - 26.0 13.8 25.9 0.1 19.1
BART(BT) (Lewis et al. 2020) 64.9 - 63.8 50.5 59.2 3.15 41.4
GT-BT (Schmitt et al. 2020) 0.2 - 14.4 0 13.9 0 15.9
CycleGT (Guo et al. 2021) 97.2 99.7 89.1 84.3 89.3 7.31 52.9
CycleCVAE (Guo et al. 2021) 96.9 99.2 91.8 87.2 91.1 7.50 54.0
ConstrainedBT 97.8 99.8 91.7 87.3 90.9 7.49 54.0

LogicNLI
(Asymmetric)

Supervised* 99.1 99.9 76.7 36.7 46.8 0.89 41.2

GPT-2(BT) (Radford et al. 2019) 37.1 - 17.0 0 18.8 0 5.4
BART(BT) (Lewis et al. 2020) 36.4 - 19.0 1.0 20.0 0 8.0
GT-BT (Schmitt et al. 2020) 0 - 7.8 0 6.4 0 18.6
CycleGT (Guo et al. 2021) 38.5 58.3 62.3 28.3 41.5 0.57 36.6
CycleCVAE (Guo et al. 2021) 53.9 64.5 69.9 36.7 59.7 1.56 33.1

ConstrainedBT 65.9 74.0 85.3 56.8 76.6 2.47 40.2

CLUTRR
(Asymmetric)

Supervised* 96.0 98.0 38.3 17.7 35.9 0.17 25.4

GPT-2(BT) (Radford et al. 2019) 8.1 - 2.9 0 3.0 0 9.7
BART(BT) (Lewis et al. 2020) 28.4 - 19.1 0 19.9 0 8.0
GT-BT (Schmitt et al. 2020) 42.3 - 34.3 19.6 44.6 0.78 27.5
CycleGT (Guo et al. 2021) 24.4 68.1 15.9 4.3 13.9 0 14.4
CycleCVAE (Guo et al. 2021) 44.6 68.9 36.6 17.2 38.2 0.69 25.2

ConstrainedBT 48.5 69.6 46.6 23.9 46.4 1.27 29.2

Table 1: Results of ConstrainedBT and baselines. GT-BT does not predict edges according to our settings. All metrics except
CIDEr are in percent (%). * means the supervised method.

the edge, we find that our method (ConstrainedBT) outper-
forms all unsupervised baselines on all three tasks. On Log-
icNLI and CLUTRR, constraints bring improvements, es-
pecially on node prediction with 12 points and 3.9 points,
respectively. However, their performance is far from super-
vised learning. All models except GT-BT reach a compara-
ble performance with supervised learning on Logic2Text.

Graph-to-Text Generation: Unsupervised LMs (GPT-2
and BART) are barely able to generate valid text. Cy-
cleGT, CycleCVAE, and ConstrainedBT perform similarly
on Logic2Text. However, consistent with our intuition, our
proposed constraints significantly improve the graph-to-text
generation performance on LogicNLI and CLUTRR with
asymmetric information. We can observe two phenomena
from Table 1: 1) Constraints bring more significant improve-
ments to text generation than graph generation; 2) Con-
strainedBT even beats the supervised method on these two
tasks with information asymmetry. Relatively, graph gener-
ation is much simpler than text generation, so models are
likely to capture critical features of graph generation. Mean-
while, supervised learning regards bidirectional generation
as two independent processes, making it perform almost per-
fectly on the graph generation but fail on text generation.
Instead, ConstrainedBT provides intrinsic dependent con-
straints on the bidirectional generation that allows it to ex-
change information between two tasks, which provides ad-
ditional information for graph-to-text generation.

Training Efficiency: Due to the similar performance on
Logic2Text, we explore the training efficiency by loss curves
of CycleGT, CycleCVAE, and ConstrainedBT. Although

losses of all three models finally converge to a similar level,
CycleGT and ConstrainedBT converge within 20 iterations,
while CycleGT does not converge until 60 iterations. This
evidence supports that our proposed constraints benefit BT
from completing training more efficiently. Moreover, we can
also observe from partial views that naive BT has a slightly
better loss on graph generation, while BT with constraints
has a slightly smaller loss on text generation.

Priority Analysis via Curriculum Learning
Curriculum learning is a strategy that defines a curriculum
for model training. The definition of the curriculum is a
sequence of training criteria C = [c1, c2, · · · , ct], where
ci represents the ith criterion with the design of the ele-
ments in training (Wang, Chen, and Zhu 2021). The orig-
inal study constrains ci as a criterion whose complexity is
monotonically increasing (Bengio et al. 2009), meaning that
the model learns from simple scenes to more complex ones.
From the perspective of curriculum learning, we regard three
constraints and their combinations as criteria. To obey the
monotonically increasing principle, we stipulate that in a
curriculum, if ci includes a constraint, cj(j > i) will not
be allowed to remove this constraint. We only discuss cur-
ricula with sequence lengths not greater than 2 in this work.
Table 2 summarizes the results on CLUTRR.

Priority: Considering the priority of constraints (Red
lines in Table 2), IC is the constraint with the highest prior-
ity, whose curricula result in the best performance on almost
all text-graph alignment tasks. Essentially, the auxiliary task
introduced by IC can stably capture the prior distribution
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Criterion 1 Criterion 2 Graph Generation Text Generation
F1 (Node) F1(Edge) BLEU-1 BLEU-4 ROUGE-L CIDEr METEOR

TC

TC 36.7 68.9 23.9 10.4 22.5 0.28 15.4
TC+DC 37.7 69.1 25.1 11.2 23.8 0.31 16.2
TC+IC 38.6 69.7 24.3 9.9 22.6 0.29 16.8
TC+DC+IC 36.8 69.9 23.5 9.8 22.1 0.28 15.2

DC

DC 44.6 68.9 36.6 17.2 38.2 0.69 25.2
DC+TC 45.9 68.9 36.6 17.4 38.1 0.67 25.4
DC+IC 46.9 69.1 37.2 17.3 37.7 0.67 25.6
DC+TC+IC 44.9 68.8 36.9 16.6 37.5 0.67 24.8

IC

IC 43.8 69.1 43.7 21.2 43.3 0.95 27.8
IC+TC 45.5 69.4 46.5 23.3 45.4 1.09 29.0
IC+DC 46.0 69.4 45.4 22.2 44.5 1.05 28.5
IC+TC+DC 48.5 69.6 46.6 23.9 46.4 1.27 29.2

Table 2: Results of curriculum learning on CLUTRR. We categorize different settings into three groups based on Criterion 1.
Italics represent experiments with only one criterion.

so that IC can provide the most accurate constraints on IV.
Compared with IC, DC can provide similar improvements
on noise-free tasks (Logic2Text and CLUTRR) but is not as
good as IC on LogicNLI. Actually, DC adopts an approx-
imate method to model the prior distribution that is not as
accurate as of the IC’s distribution. TC is the criterion with
the lowest priority because it provides the weakest constraint
without the true prior distribution p(z) but promotes the two
posterior distributions to be close to each other. Overall, the
priority of the single constraint is IC > DC > TC.

Interaction: It is necessary to understand interactions
among the three. Based on results of curriculum learning,
DC and IC bring positive gains to TC as DC/IC further con-
strains the prior distribution to enhance TC. However, im-
posing DC and IC simultaneously in Criterion 2 does not
necessarily lead to better performance because of their mu-
tual interference. Considering DC, TC tends to bring neg-
ative gains, while IC benefits DC in most scenarios, which
matches their priority. However, a surprising result is that the
combination of TC and IC brings significant improvements
to DC on LogicNLI. IC itself can provide a stable constraint
so that TC and DC hardly impact IC negatively. Besides, the
combination of TC and DC can bring stable positive gains
to IC. Based on the analysis, we select the most stable cur-
riculum of C=[IC, IC+TC+DC] as ConstrainedBT.

Downstream Applications
To further explore our proposed constraints’ impacts on
downstream applications, we adopt prompt learning to ex-
periment on the generalization NLU tasks of LogicNLI and
CLUTRR. Specifically, we use the latent variables out of
the text encoder ET as prompts and adopt P-Tuning v2
with reparameterization (Liu et al. 2021a) initialized by the
prompts. We compare the randomly initialized prompt (Ran-
dom), prompts out of CycleGT and CycleCVAE, and the
prompt of ConstrainedBT. Results are shown in Table 3. On
LogicNLI, if models achieve 51.3% accuracies, they predict
all instances to the same label. Therefore, ConstrainedBT
provides the only valid prompt that benefits the NLI task
with an accuracy of 74.4%, while other prompts do not
work. As for CLUTRR, accuracies are 56.9% (Random),

Dataset Random CycleGT CycleCVAE ConstrainedBT
LogicNLI 51.3 51.3 51.3 74.4
CLUTRR 56.9 59.5 64.3 66.6

Table 3: Results of prompt learning on downstream NLU
tasks (Accuracy %).

59.5% (CycleGT), 64.3% (CycleCVAE), and 66.6% (Con-
strainedBT). These results prove that our proposed con-
straints can help capture critical information that benefits
downstream tasks through prompt learning.

Limitations of ConstrainedBT
There are three main limitations of ConstrainedBT. In
theory, when revisiting Equation 7 and q(zt|g′(t), z) =
qfϕ3

(EG(g
′(t);ψ1);ϕ3), we actually adopt an implicit as-

sumption that z = f(z′′), zt = h(z′′), where f and h can
be seen as feature extractors. Nevertheless, z′′ should be the
mixture of z and zg which means that z′′ should not contain
the information of zt under ideally decoupling conditions.
The same problem also occurs in Equation 8. However, this
limitation does not affect the effectiveness of DC and IC
because encoders in CVAE also receive feedback informa-
tion from decoders during the back-propagation processes.
Therefore, EG (ET ) can encode the invisible information of
zt (zg). In addition, interactions among the three constraints
are not controllable under a fixed ratio given by λ. In prac-
tice, we cannot exhaust all possible curricula to find the best
curriculum for three constraints.

Conclusions
To solve UTGA, we assume that asymmetric information
is encoded in latent variables and propose three VAE-based
constraints to introduce asymmetric information into the la-
tent space and apply them to BT. Experiments on three tasks
show that our proposed method can effectively improve the
performance of UTGA with information asymmetry. Future
works focus on: 1) designing more reasonable constraints to
solve information asymmetry; 2) introducing explicit rules
into UTGA.

13661



Acknowledgements
This work was supported by the National Key Research
and Development Program of China (2022YFC3340904),
and the Shanghai Municipal Science and Technology Ma-
jor Project (2021SHZDZX0102).

References
Banerjee, S.; and Lavie, A. 2005. METEOR: An Automatic
Metric for MT Evaluation with Improved Correlation with
Human Judgments. In IEEvaluation@ACL.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In ICML.
Cai, D.; and Lam, W. 2020. AMR Parsing via Graph-
Sequence Iterative Inference. In ACL.
Cao, M. 2022. A Survey on Neural Abstractive Summariza-
tion Methods and Factual Consistency of Summarization.
CoRR.
Chairatanakul, N.; Sriwatanasakdi, N.; Charoenphakdee, N.;
Liu, X.; and Murata, T. 2021. Cross-lingual Transfer for Text
Classification with Dictionary-based Heterogeneous Graph.
In EMNLP(Findings).
Chen, W.; Tian, J.; Fan, C.; He, H.; and Jin, Y. 2021a. De-
pendent Multi-Task Learning with Causal Intervention for
Image Captioning. In IJCAI.
Chen, W.; Tian, J.; Li, Y.; He, H.; and Jin, Y. 2021b.
De-Confounded Variational Encoder-Decoder for Logical
Table-to-Text Generation. In ACL.
Chen, Z.; Chen, W.; Zha, H.; Zhou, X.; Zhang, Y.; Sun-
daresan, S.; and Wang, W. Y. 2020. Logic2Text: High-
Fidelity Natural Language Generation from Logical Forms.
In EMNLP(Findings).
Cotterell, R.; and Kreutzer, J. 2018. Explaining and Gener-
alizing Back-Translation through Wake-Sleep. CoRR.
Ferreira, T. C.; Gardent, C.; Ilinykh, N.; van der Lee, C.;
Mille, S.; Moussallem, D.; and Shimorina, A. 2020. The
2020 Bilingual, Bi-Directional WebNLG+ Shared Task:
Overview and Evaluation Results (WebNLG+ 2020). In
WEBNLG.
Gai, Y.; Jain, P.; Zhang, W.; Gonzalez, J.; Song, D.; and
Stoica, I. 2021. Grounded Graph Decoding improves
Compositional Generalization in Question Answering. In
EMNLP(Findings).
Gardent, C.; Shimorina, A.; Narayan, S.; and Perez-
Beltrachini, L. 2017. The WebNLG Challenge: Generating
Text from RDF Data. In INLG.
Gershman, S.; and Goodman, N. D. 2014. Amortized Infer-
ence in Probabilistic Reasoning. In CogSci.
Guo, Q.; Jin, Z.; Qiu, X.; Zhang, W.; Wipf, D.; and Zhang,
Z. 2020. CycleGT: Unsupervised Graph-to-Text and Text-
to-Graph Generation via Cycle Training. In INLG.
Guo, Q.; Jin, Z.; Wang, Z.; Qiu, X.; Zhang, W.; Zhu,
J.; Zhang, Z.; and Wipf, D. 2021. Fork or Fail: Cycle-
Consistent Training with Many-to-One Mappings. In AIS-
TATS.

Gururangan, S.; Marasovic, A.; Swayamdipta, S.; Lo, K.;
Beltagy, I.; Downey, D.; and Smith, N. A. 2020. Don’t Stop
Pretraining: Adapt Language Models to Domains and Tasks.
In ACL.
He, J.; Wang, X.; Neubig, G.; and Berg-Kirkpatrick, T.
2020. A Probabilistic Formulation of Unsupervised Text
Style Transfer. In ICLR.
Hoang, C. D. V.; Koehn, P.; Haffari, G.; and Cohn, T. 2018.
Iterative Back-Translation for Neural Machine Translation.
In NMT Workshop of ACL.
Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
de Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and Gelly,
S. 2019. Parameter-Efficient Transfer Learning for NLP. In
ICML.
Hoyle, A. M.; Marasovic, A.; and Smith, N. A. 2021. Pro-
moting Graph Awareness in Linearized Graph-to-Text Gen-
eration. In ACL(Findings).
Huang, Y.; Fang, M.; Cao, Y.; Wang, L.; and Liang, X. 2021.
DAGN: Discourse-Aware Graph Network for Logical Rea-
soning. In NAACL.
Jain, U.; Zhang, Z.; and Schwing, A. G. 2017. Creativity:
Generating Diverse Questions Using Variational Autoen-
coders. In CVPR.
Jin, Z.; Guo, Q.; Qiu, X.; and Zhang, Z. 2020. GenWiki: A
Dataset of 1.3 Million Content-Sharing Text and Graphs for
Unsupervised Graph-to-Text Generation. In COLING.
Ju, J.; Liu, M.; Koh, H. Y.; Jin, Y.; Du, L.; and Pan, S. 2021.
Leveraging Information Bottleneck for Scientific Document
Summarization. In EMNLP(Findings).
Ke, P.; Ji, H.; Ran, Y.; Cui, X.; Wang, L.; Song, L.; Zhu,
X.; and Huang, M. 2021. JointGT: Graph-Text Joint Rep-
resentation Learning for Text Generation from Knowledge
Graphs. In ACL(Findings).
Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling,
M. 2014. Semi-supervised Learning with Deep Generative
Models. In NeurIPS.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Vari-
ational Bayes. In ICLR.
Lai, H.; Toral, A.; and Nissim, M. 2021. Generic resources
are what you need: Style transfer tasks without task-specific
parallel training data. In EMNLP.
Lample, G.; Subramanian, S.; Smith, E. M.; Denoyer, L.;
Ranzato, M.; and Boureau, Y. 2019. Multiple-Attribute Text
Rewriting. In ICLR.
Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. In ACL.
Li, L.; Fan, K.; Li, H.; and Yuan, C. 2022a. Structural Su-
pervision for Word Alignment and Machine Translation. In
ACL(Findings).
Li, X. L.; and Liang, P. 2021. Prefix-Tuning: Optimizing
Continuous Prompts for Generation. In ACL.

13662



Li, Y.; Tian, J.; Chen, W.; Fan, C.; He, H.; and Jin, Y.
2022b. To What Extent Do Natural Language Understand-
ing Datasets Correlate to Logical Reasoning? A Method for
Diagnosing Logical Reasoning. In COLING.
Lin, C.-Y. 2004. ROUGE: A Package for Automatic Evalu-
ation of Summaries. In Text Summarization Branches Out.
Lin, H.; and Ng, V. 2019. Abstractive Summarization: A
Survey of the State of the Art. In AAAI.
Liu, X.; Ji, K.; Fu, Y.; Du, Z.; Yang, Z.; and Tang, J. 2021a.
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-
tuning Universally Across Scales and Tasks. CoRR.
Liu, X.; Zheng, Y.; Du, Z.; Ding, M.; Qian, Y.; Yang, Z.; and
Tang, J. 2021b. GPT Understands, Too. CoRR.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. CoRR.
Liu, Z.; Wang, J.; and Li, Z. 2021. Topic-to-Essay Gen-
eration with Comprehensive Knowledge Enhancement. In
ECML/PKDD.
Luo, F.; Li, P.; Zhou, J.; Yang, P.; Chang, B.; Sun, X.; and
Sui, Z. 2019. A Dual Reinforcement Learning Framework
for Unsupervised Text Style Transfer. In IJCAI.
Ma, Y.; Chen, Y.; Mao, X.; and Li, Q. 2021. Collaborative
Learning of Bidirectional Decoders for Unsupervised Text
Style Transfer. In EMNLP.
Nguyen, X.; Joty, S. R.; Nguyen, T.; Wu, K.; and Aw, A. T.
2021. Cross-model Back-translated Distillation for Unsu-
pervised Machine Translation. In ICML.
Pandey, G.; and Dukkipati, A. 2016. Variational methods for
Conditional Multimodal Learning: Generating Human Faces
from Attributes. CoRR.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W. 2002. Bleu:
a Method for Automatic Evaluation of Machine Translation.
In ACL.
Pham, H.; Wang, X.; Yang, Y.; and Neubig, G. 2021. Meta
Back-Translation. In ICLR.
Prabhumoye, S.; Tsvetkov, Y.; Salakhutdinov, R.; and Black,
A. W. 2018. Style Transfer Through Back-Translation. In
ACL.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language Models are Unsupervised
Multitask Learners. CoRR.
Ren, L.; Sun, C.; Ji, H.; and Hockenmaier, J. 2021. HySPA:
Hybrid Span Generation for Scalable Text-to-Graph Extrac-
tion. In ACL(Findings).
Saha, S.; Yadav, P.; Bauer, L.; and Bansal, M. 2021. Expla-
Graphs: An Explanation Graph Generation Task for Struc-
tured Commonsense Reasoning. In EMNLP.
Schmitt, M.; Sharifzadeh, S.; Tresp, V.; and Schütze, H.
2020. An Unsupervised Joint System for Text Generation
from Knowledge Graphs and Semantic Parsing. In EMNLP.
Sennrich, R.; Haddow, B.; and Birch, A. 2016. Improv-
ing Neural Machine Translation Models with Monolingual
Data. In ACL.

Shen, T.; Lei, T.; Barzilay, R.; and Jaakkola, T. S. 2017.
Style Transfer from Non-Parallel Text by Cross-Alignment.
In NeurIPS.
Sinha, K.; Sodhani, S.; Dong, J.; Pineau, J.; and Hamilton,
W. L. 2019. CLUTRR: A Diagnostic Benchmark for Induc-
tive Reasoning from Text. In EMNLP.
Song, L.; Wang, A.; Su, J.; Zhang, Y.; Xu, K.; Ge, Y.; and
Yu, D. 2020. Structural Information Preserving for Graph-
to-Text Generation. In ACL.
Tian, J.; Li, Y.; Chen, W.; Xiao, L.; He, H.; and Jin, Y.
2021. Diagnosing the First-Order Logical Reasoning Ability
Through LogicNLI. In EMNLP.
Tian, J.; Li, Y.; Chen, W.; Xiao, L.; He, H.; and Jin, Y. 2022.
Weakly Supervised Neural Symbolic Learning for Cognitive
Tasks. In AAAI.
Vedantam, R.; Zitnick, C. L.; and Parikh, D. 2015. CIDEr:
Consensus-based image description evaluation. In CVPR.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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