
Reducing Sentiment Bias in Pre-trained Sentiment Classification
via Adaptive Gumbel Attack

Jiachen Tian, Shizhan Chen, Xiaowang Zhang*, Xin Wang, Zhiyong Feng
College of Intelligence and Computing, Tianjin University, Tianjin, China

Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China
{jiachen6677, shizhan, xiaowangzhang, wangx, zyfeng}@tju.edu.cn

Abstract

Pre-trained language models (PLMs) have recently enabled
rapid progress on sentiment classification under the pre-train
and fine-tune paradigm, where the fine-tuning phase aims to
transfer the factual knowledge learned by PLMs to sentiment
classification. However, current fine-tuning methods ignore
the risk that PLMs cause the problem of sentiment bias, that
is, PLMs tend to inject positive or negative sentiment from
the contextual information of certain entities (or aspects) into
their word embeddings, leading them to establish spurious
correlations with labels. In this paper, we propose an adaptive
Gumbel-attacked classifier that immunes sentiment bias from
an adversarial-attack perspective. Due to the complexity and
diversity of sentiment bias, we construct multiple Gumbel-
attack expert networks to generate various noises from mixed
Gumbel distribution constrained by mutual information min-
imization, and design an adaptive training framework to syn-
thesize complex noise by confidence-guided controlling the
number of expert networks. Finally, we capture these noises
that effectively simulate sentiment bias based on the feedback
of the classifier, and then propose a multi-channel parame-
ter updating algorithm to strengthen the classifier to recog-
nize these noises by fusing the parameters between the clas-
sifier and each expert network. Experimental results illustrate
that our method significantly reduced sentiment bias and im-
proved the performance of sentiment classification.

Introduction
Sentiment classification (SC) aims to automatically detect
the sentiment polarity of an opinion, e.g. positive, neutral,
or negative (Phan and Ogunbona 2020). An opinion can be
defined as a tuple <Target, Context>, where the target
refers to any entity or aspect of the entity on which the opin-
ion has been expressed, and the context forms the setting
that the opinion expresses or implies the specific semantic
and sentiment towards the target (Liu 2012; Ito et al. 2020).
Taking the sentence “Apple’s apps are plentiful” as an ex-
ample, the target is “Apple”, and the context is “ ’s apps
are plentiful” that clarifies the semantic of “Apple” being
a company and expresses positive sentiment. Therefore, an
effective SC model typically needs to make full use of the
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(a) Traditional (b) Ours

Figure 1: Contextual word embedding of the target (i.e., Ap-
ple): traditional PLMs vs. our method.

context information to distinguish the semantics of the tar-
get and determine the sentiment polarity of the opinion.

With the development of large-scale pre-trained lan-
guage models (PLMs) such as BERT (Devlin et al. 2019),
RoBERTa (Liu et al. 2019), ALBERT (Lan et al. 2020) and
ELECTRA (Clark et al. 2020), SC models based on fine-
tuned PLMs have achieved state-of-the-art performances
due to their extraordinary context modeling ability. How-
ever, as shown in Figure 1(a), while most PLMs capture the
semantic properties of words under diverse contexts (Mi-
aschi and Dell’Orletta 2020; Phan and Ogunbona 2020;
Michalopoulos et al. 2022), they also apply the sentiment
information of the context to representation learning, thus
the contextual word embeddings of some targets are biased
toward a specific sentiment. Consequently, spurious correla-
tions between targets and labels are established as shortcuts
of decision-making, resulting in the SC model no longer de-
termining the sentiment polarity of the opinion according
to the context. Unfortunately, current fine-tuning methods,
such as ULMFiT (Howard and Ruder 2018), ITPT (Sun et al.
2019), and IDPT (Sun et al. 2019), mainly focus on perform-
ing the cross-domain (or task) knowledge generalization, but
neglect to reduce sentiment bias of the target.

Based on the aforementioned, as shown in Figure 1(b), the
key point of reducing sentiment bias is to encourage PLMs
for encoding the target with the semantic information, with-
out the sentiment information of its context. However, since
the self-supervised learning process of PLMs is hard to be
controlled, we only try to use adversarial examples to simu-
late sentiment bias and prompt the classifier to reduce sen-
timent bias. As shown in Figure 2(a), traditional adversar-
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(a) Traditional (b) Ours

Figure 2: Differences between the computational graphs of
traditional and our adversarial attacks/defenses.

ial attacks/defenses keep feeding the benign texts perturbed
by noises into the trained classifier and capture adversarial
texts, which successfully simulate sentiment bias to attack
the trained classifier, to further train new classifier (Xu et al.
2020). However, the following properties of sentiment bias
hinder the feasibility of this idea.

• Complexity: Every target possibly involves sentiment
bias from the other targets. For example, in the sentence
“Apple’s excellent products include iPhone and Mac,
etc.”, where the entity “Apple” may contain sentiment bi-
ases from “iPhone” and “Mac” respectively.

• Diversity: Every target possibly involves various senti-
ment biases. For example, in the sentence “Apple’s prod-
ucts are very expensive”, different from the example in
the first paragraph, the sentiment of “Apple” is biased to-
wards negative.

To this end, we propose an adaptive Gumbel-attacked
classifier (Gater), as the downstream application of PLMs,
to perform debiased sentiment classification in real-time.
Firstly, we introduce noises sampled by multiple Gumbel-
attack experts to perturb the benign texts. Concretely, each
expert maintains a unique Gumbel distribution, which is
friendly to the semantic consistency of the benign texts as
the type-I generalized extreme value distribution (Lin, Zou,
and Ding 2021). Meanwhile, the mixed Gumbel distribution
from multiple Gumbel-attack experts can effectively satisfy
the complexity of sentiment bias. Secondly, we propose an
adaptive trainable framework, which adjusts the number of
experts according to the feedback on classification confi-
dence, to satisfy the diversity of sentiment bias. Finally, we
leverage a multi-channel parameter updating algorithm to
replace the traditional gradient descent algorithm, which ef-
fectively integrates the parameter-updating knowledge from
multiple experts, to reduce sentiment bias. As shown in Fig-
ure 2(b), different from the traditional adversarial attack-
s/defenses, our method achieves adversarial attacks/defenses
end-to-end, without the trained classifier. To summarize, the
main contributions of this paper are as follows:

• We propose an adaptive sentiment debiasing method us-
ing various Gumbel-attacks, which can flexibly simulate
sentiment bias without losing the original semantics of
the benign text, and satisfies the diversity and complex-
ity of sentiment bias.

• We propose a multi-channel parameter updating algo-
rithm that can distill the parameter-updating knowledge
of multiple expert networks to optimize any traditional
gradient descent algorithm.

• Experiments show that our method can be applied
to most large-scale pre-trained language models. Un-
like other PLMs-based SC methods that require further
within-domain or within-task fine-tuning, our method is
end-to-end and does not require any extra domain data.

Related Work
Contextual Language Models Contextual representation,
output by pre-training language models, has recently led to
significant progress in various NLP tasks. In contrast to ear-
lier distributed representation, such as Skip-Gram (Mikolov
et al. 2013) and GloVe (Pennington, Socher, and Manning
2014), contextual representation, such as BERT (Devlin
et al. 2019), RoBERTa (Liu et al. 2019), ALBERT (Lan
et al. 2020) and ELECTRA (Clark et al. 2020), provide
diverse embeddings for each word based on different con-
texts. This enables them to capture the various uses of words
across different contexts and encode knowledge that can be
transferred across languages. Based on this, numerous ef-
fective fine-tuning methods, such as ULMFiT (Howard and
Ruder 2018) and IDPT (Sun et al. 2019), have been proposed
and have proven successful in enhancing the applicability of
contextual representations to downstream tasks.

Bias in Natural Language Processing It is common for
machine learning models to inadvertently capture and even
amplify unintended dataset biases, which may hurt the gen-
eralization of classification models (Qian et al. 2021; Zhao
et al. 2017). For example, entity bias often affects false news
detection tasks, that is the news pieces containing a certain
entity have a strong correlation with the news veracity (Zhu
et al. 2022). With the wide application of PLMs, studies on
bias of contextual word embeddings have gained significant
popularity. The training corpus of PLMs is large-scale, un-
processed real data, containing many social biases such as
gender, profession, race, and religion (Nadeem, Bethke, and
Reddy 2021). Many studies proved that contextualized word
embeddings obtained by PLMs have bias and show how
bias propagates to downstream tasks (Bolukbasi et al. 2016;
Jentzsch et al. 2019). In the field of sentiment analysis, nu-
merous studies investigated sentiment bias in texts generated
by language models, and proposed methods for performing
identification and measurement of sentiment bias (Huang
et al. 2020). Besides, sentiment bias of each word in the
PLMs is also researched by the prompt as a probe, the identi-
fication and measurement of bias can improve the effective-
ness of fine-tuning methods (Wang et al. 2021; Garg et al.
2022). Different from them, under the premise of ensuring
semantic consistency, this paper focuses on reducing senti-
ment bias of entities that are originally neutral words.
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Figure 3: The framework of Gater.

Adversarial Attacks and Defenses The research on ad-
versarial attacks/defenses provides robustness to deep learn-
ing algorithms (Sharma et al. 2022). They use various pertur-
bations to analyze the defects existing in the model. Adver-
sarial attacks can be roughly divided into black-box (Swenor
2022; Ye et al. 2022) and white-box attacks (Ebrahimi et al.
2018). In the black-box setting, the adversary tries differ-
ent perturbations and evaluates the quality of perturbations
by querying the model to get the classification result or the
output score. In the white-box setting, the adversary has ac-
cess to the model and thus is capable of generating more
sophisticated adversarial examples. Besides, some studies
utilized adversarial attacks to detect bias, and proposed the
corresponding defense strategies (Emelin, Titov, and Sen-
nrich 2020; Lin, Zou, and Ding 2021). In the field of NLP,
the selection of perturbation is based on word-level and
character-level transformation. However, the effectiveness
of such methods is limited by the uniqueness of entities, that
is, the word-level (Swenor 2022) and character-level (Mor-
ris et al. 2020) transformations of entities have the potential
to drastically change the semantics of entities.

Method
Problem Statement
Let D := {xm, ym | m = 1, . . . ,M} be a sentiment dataset
with M texts x and their labels y. Traditional SC model con-
tains an encoder and a classifier, where the encoder learns a
representation x ∈ RD with the length D for each x, and
then the classifier assigns the corresponding prediction label
ŷ to x. For the SC model based on PLMs, the encoder is re-
placed by the pre-trained PLMs, and some sentiment biases

mislead the classifier to make the error prediction, that is,
ŷ ̸= y. In this paper, we prompt the classifier to reduce sen-
timent bias in the output of the encoder, without modifying
its structure.

Overall Architecture
As shown in Figure 3, during the forward propagation phase,
Gater adaptively deploys H experts for the original classifier
g, and each expert contains an attack-network gah and a base-
network gbh, where h ∈ [1, . . . ,H ]. The inputs of gah and gbh
are the same text representations with the masked context of
entities. gbh is responsible for simulating the situation with
sentiment bias, while gah is responsible for simulating the
situation without sentiment bias.

To train each expert, Gater uses the loss function
L(θbh, ωb

h) to freeze sentiment bias of gbh, uses the loss func-
tion L(θah, ωa

h) to perturb gah with Gumbel noise, and uses
loss function L(θah, ω̃) to increase the diversity of Gumbel
noise. Furthermore, each expert obtains the simulated sen-
timent bias by comparing the outputs of gah and gbh, and
uses this Gumbel noise to attack the original text represen-
tations (i.e., the output of g) without the masked context of
entities. Whereafter, the attacked and the original text rep-
resentations are simultaneously fed into the following full-
connected layer g′ and softmax layer to calculate their log-
its respectively. In the beginning of the training epoch, only
the first expert (i.e., ga1 and gb1) are activated. Subsequently,
Gater uses the adaptive training unit (ATU) to dynamically
decide whether to activate the next expert according to the
changes in the logits.

During the backward propagation phase, the goal of the
multi-channel parameter updating algorithm combines the
parameters of g with each gah and gbh.

In the test phase, Gater only uses the g and g′ to perform
the sentiment classification. In other words, experts only par-
ticipate in the training process of g.

Gumbel-Attack Expert
The goal of the expert is to capture sentiment bias that comes
from targets with spurious correlations between them and
labels. Therefore, we first perform part-of-speech tagging to
mask the context of entities, and then we use Gumbel noise,
sampled by gah, to simulate sentiment bias. The obstacle is
how to train gah, because we have no training data with-
out sentient bias. To this end, we propose a positive sam-
pling method (PS) and a negative sampling method (NS),
respectively. Assuming that the input of both gah and gbh is v,
and the output of gah is va

h := {gah(v; θah)1, . . . , gah(v; θah)D},
the gah(v; θah)d is the value of vah on the d-th dimension,
where d ∈ {1, . . . , D} and θah is the parameters of gah.
The output of gbh is vb

h := {gbh(v; θbh)1, . . . , gbh(v; θbh)D}, the
gbh(v; θbh)d is the value of vb

h on the d-th dimension, where
d ∈ {1, . . . , D} and θbh is the parameters of gbh. The specific
details are as follows:

• Positive Sampling: Based on inverse transform sam-
pling (Jang, Gu, and Poole 2017), we first draw noise
ε := [ε1, . . . , εd] from uniform distribution U(0, 1), due
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to the cumulative density function of Gumbel distribu-
tion is F (ϱ) = e−e−ϱ

, we can define the Gumbel noise
as ϱ = − log(− log(ε)), where ε ∼ U(0, 1). If we add
the Gumbel noise to vd and derive a new representation
(vd − log(− log(εd))), which obeys the Gumbel distri-
bution with location parameter vd and scale parameter
1. Based on the proof of the Gumbel-Max trick (Jang,
Gu, and Poole 2017), Gumbel noise can preserve the se-
mantic consistency of text. That is, our Gumbel-attack
reduces sentiment bias without changing the original se-
mantics of neutral words. Based on this, we use softmax
function to scale the degree of debiasing, that is,

v′d =
exp((vd − log(− log(εd)))/τ)∑j=D

j=1 exp((vd − log(− log(εd)))/τ)
, (1)

where τ = h
10 . Finally, we perform inverse transform

sampling for each vd in v to derive the final positive sam-
ple v+

h := {v′1, . . . , v′D}.
• Negative Sampling: Negative samples are constructed

in the opposite direction to the positive sampling. There-
fore, we perform negative sampling in terms of destroy-
ing feature permutation importance and improving bias,
respectively. Specifically, in each patch of training data,
We first randomly sample 50% of text representations
to destroy the importance of feature ranking, that is, we
shuffle v+

h . The other 50% of them deteriorate sentiment
bias, that is, v′′d = vd+log(− log(εd)). Finally, we derive
the final negative sample v−h := {v′′1 , . . . , v′′D}.

For M training texts, we obtain a set of PLMs’ out-
puts V := {v1, . . . , vM}, a set of gah’s positive sam-
ples V +

h := {v+
h,1, . . . , v+

h,M}, a set of gah’s negative
samples V −

h := {v−
h,1, . . . , v−h,M}, a set of gah’s outputs

V a
h := {vah,1, . . . , vah,M}, a set of gbh’s outputs V b

h :=

{vb
h,1, . . . , vbh,M}. Then, let V a

h similar with V +
h but differ-

ent from V −
h . This goal can be finished with the Mutual In-

formation Neural Estimator (MINE) (Belghazi et al. 2018;
Hjelm et al. 2019; Tian et al. 2021; Mroueh et al. 2021).
Specifically, we use a discriminator Tωa

h
with parameters ωa

h

to maximize the mutual information between V a
h and V +

h ,
and the loss function can be defined as follows:

L(θah,ωa
h) = max

θa
h,ω

a
h

I
(
V +
h , V a

h

)
= DKL

(
p
(
V +
h , V a

h

)
∥ p(V +

h )⊗ p
(
V a
h

))
≥ ÎDV

(
p(V +

h ); p
(
V a
h

))
= Ev+h,m∈V +

h ;vah,m∈V a
h

[
Tωa

h

(
v+h,m; va

h,m

)]
− logEv−h,m∈V −

h ;vah,m∈V a
h

[
e
Tωa

h

(
v−h,m;vah,m

)]
.

(2)

We first freeze the parameters θah of gah and train the dis-
criminator Tωa

h
based on the Donsker-Varadhan method

(DV ) (Donsker and Varadhan 1975) to distinguish between
samples coming from the joint distribution p

(
V +
h , V a

h

)
and

the product of marginal distributions p(V +
h )⊗ p

(
V a
h

)
. Con-

cretely, we train Tωa
h

as a classifier by using the concatena-
tion between va

h,m and v+
h,m as the positive example, and the

concatenation between va
h,m and v−h,m as the negative exam-

ple. At a high level, we freeze the parameters ωa
h of Tωa

h
to

optimize the parameters θah of gah, maximizing I
(
V +
h , V a

h

)
.

Meanwhile, we train gbh with the other MINE Tωb
h

with
parameters ωb

h. The loss function can be defined as follows:

L(θbh,ωb
h) = max

θb
h,ω

b
h

I
(
V, V b

h

)
= DKL

(
p
(
V, V b

h

)
∥ p(V )⊗ p

(
V b
h

))
≥ ÎDV

(
p(V ); p

(
V b
h

))
= Evm∈V ;vbh,m∈V b

h

[
Tωb

h

(
vm; vbh,m

)]
− logEṽm∈Ṽ ;vbh,m∈V b

h

[
e
T
ωb
h

(
ṽm;vbh,m

)]
.

(3)

Similar with the training method of Tωa
h

, we use the con-
catenation between vm and vb

h,m as the positive example,
and the concatenation between ṽm and vbh,m as the negative
example, where ṽm comes from the shuffled set Ṽ of V .

Adaptive Training Architecture
We propose an adaptive training architecture that controls
ATU to decide whether to activate more experts based on
classification confidence. First, in order to increase the diver-
sity of Gumbel noise, we minimize the mutual information
between the noises generated by each expert:

L(θah,ω̃) = min
θa
h

max
ω̃

I
(
V a
h , Vot

)
= DKL

(
p
(
V a
h , Vot

)
∥ p(V a

h )⊗ p(Vot)
)

≥ Îω̃
(
p(V a

h ); p
(
Vot

))
= Evah∈V a

h ;vot∈Vot

[
Tω̃

(
va
h; vot

)]
− logEvah∈V a

h ;ṽot∈Ṽot

[
eTω̃

(
vah;ṽot

)]
,

(4)

where Vot =
1

H−1

H∑
t=1,t ̸=h

V a
t , and Ṽot is the shuffled set of

Vot. We set a new MINE Tω̃ with the concatenation between
vah and vot as the positive example, and the concatenation
between vah and ṽot as the negative example. Concretely, we
first freeze the parameters θah of gah, and train the discrim-
inator Tω̃ to correctly distinguish positive and negative ex-
amples. Subsequently, we freeze the parameters ω̃ of Tω̃ to
optimize gah, minimizing I

(
V a
h , Vot

)
.

Finally, we use the output of each expert at the t-th train-
ing epoch, V b

h − V a
h , to attack the output Vg of g. Formally,

the attacked output can be defined as Vh = Vg − V b
h + V a

h .
Furthermore, Vh and Vg are fed into the following full-
connected layer and the softmax layer, and obtain the av-
erage confidences Ct

h and Ct
g . Note that, the confidence is
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usually represented by the maximum element of the soft-
max output, and the average confidence is the mean of the
confidence of all samples in classification tasks (Huang et al.
2018; Yang et al. 2020). Based on this, if Ct

g ⩽ λ, we add
a new expert at the next training epoch. If Ct

g > λ, then the
expert is no longer added. Ct

h and Ct
g are further used during

the parameter-updating process.

Multi-Channel Parameter Updating Algorithm
We adapt a novel parameter-updating method about g, which
first adapt any traditional gradient-based method as basic
parameter-updating method to update the parameters of g
and g′, then fuse the parameters of each gah and gbh into g.
For example, we select the traditional stochastic gradient de-
scent algorithm to update the parameters of the g′ as follows:

W⊤(g′)t+1 = W⊤(g′)t − γ · ∇W⊤(g′)tL(W
⊤(g′)t), (5)

where γ is the learning rate. W⊤(g′)t is the parameters of
the network g′ at the t-th training-epoch. L is the selected
loss function such as cross-entropy, etc.

Then, for the parameter-updating of g, we first use the
gradient descent algorithm to update the parameters of g,
and further fuse the parameters of g, each gah and gbh. The
specific update method is as follows:

W⊤(g)t+1 = W⊤(g)t − γ · ∇W⊤(g)tL(W
⊤(g)t)

+

H∑
h=1

µh · γ ·
(
W⊤(gbh)t −W⊤(gah)t

)
, (6)

and 
µh = −1, Ct

h < Ct
g;

µh = 1, Ct
h > Ct

g;

µh = 0, Ct
h = Ct

g.

(7)

As shown in Equation (7), when µh = −1, it indicates
that the h-th expert fails to reduce sentiment bias, so the
parameter-updating direction of g should be away from that
of h-th expert. When µh = 1, it indicates that the h-th ex-
pert achieves sentiment de-bias, so the parameter-updating
direction of g should be close to that of h-th expert. When
µh = 0, it indicates that the h-th expert has no effect and
keeps the original parameter-updating direction of g.

Experiments
Experimental Setups
We connect Gater after PLMs to perform sentiment classi-
fication. During the fine-tuning phase, the input of PLMs is
a degenerate text-∅ pair, where the text comes from each
training data and ∅ means the second sentence is empty.
Subsequently, the output of each PLMs is fed into Gater.

Datasets We conducted experiments on seven datasets.
IMDb is a binary film review dataset, which is widely used
as a benchmark for sentiment classification (Maas et al.
2011). SST-2 is the Stanford Sentiment Treebank (SST) con-
sists of sentences from movie reviews and human annota-
tions of their sentiments (Socher et al. 2013). YELP-2 and

Datasets Train
Samples

Test
Samples

Classes

IMDb 25,000 25,000 2
SST-2 67,000 1,800 2
YELP-2 560,000 38,000 2
YELP-5 650,000 50,000 5
Amazon-2 3,600,000 400,000 2
Amazon-5 3,000,000 650,000 5
SemEval 6,086 1,600 4

Table 1: The statistics of datasets.

YELP-5 are subsets of Yelp’s businesses, reviews, and user
data, respectively (Xie et al. 2020). Amazon-2 and Amazon-
5 are the Amazon review datasets from the Stanford Net-
work Analysis Project, respectively (Xie et al. 2020). Se-
mEval is an English aspect-level sentiment classification,
which has 4 pre-defined aspect categories with 4 sentiment
polarities (Yang et al. 2021).

Pre-trained Language Models We selected BERT (De-
vlin et al. 2019), RoBERTa (Liu et al. 2019), ALBERT (Lan
et al. 2020) and ELECTRA (Clark et al. 2020) as PLMs.
They are all official LARGE versions without any re-
pretraining.

Evaluation Metrics On the one hand, we adopt the accu-
racy metric to evaluate classification performance. On the
other hand, we selected the sentiment shift test to detect the
sentiment distribution of entities in the PLMs, where the sen-
timent score of each entity is identified by predicting the
sentiment polarity shift after appending it 10 times to var-
ious sentiment-oriented reviews (Garg et al. 2022).

Model Settings To ensure a fair comparison, we maintain
the same hyper-parameters (e.g., maximum length, warm-
up steps, etc.) for each dataset. The only variations made
involve tuning the initial learning rate from 1e-5 to 5e-5 for
each dataset and adjusting the threshold of the average con-
fidence λ from 0.6 to 0.8. Besides, the number of experts
H is set to 7, and the batch size is set to 32. The classifier
has a hidden layer of size 50. We use Adam as the basic
parameter-updating algorithm with β1 = 0.9, β2 = 0.999.
We tune the number of epochs on the validation set of each
dataset. To demonstrate the significance of experimental re-
sults, we report the average score and the range of accuracy.

Model Comparisons We selected four fine-tuning meth-
ods and four debiasing methods as model comparisons.

• ULMFiT proposes multiple fine-tuning techniques to
preserve the least general knowledge and avoid catas-
trophic forgetting during the fine-tuning phase (Howard
and Ruder 2018).

• BERT-ITPT involves an additional step of pre-training
BERT using unsupervised masked language model and
next text classification tasks, followed by further fine-
tuning of BERT on each dataset (Sun et al. 2019).
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Models IMDb SST-2 YELP-2 YELP-5 Amazon-2 Amazon-5 SemEval
BERT 95.4 94.9 98.1 70.6 97.3 62.2 84.1
RoBERTa 95.7 96.4 97.9 71.1 96.0 68.1 85.6
ALBERT 94.6 96.9 97.4 67.4 95.3 66.3 84.3
ELECTRA 95.2 96.9 97.7 69.2 95.3 66.8 84.1
ULMFiT 95.4 (—) – 97.8 (↓ 0.3) 70.0 (↓ 0.6) – – –
BERT+ITPT 95.7 (↑ 0.3) – 98.1 (—) 71.3 (↑ 0.7) – – –
BERTPair – – – – – – 85.9 (↑ 1.8)
UDA 95.8 (↑ 0.4) – 97.9 (↓ 0.2) 67.9 (↓ 2.7) 96.5 (↓ 0.8) 62.8 (↑ 0.4) –
Sent-Debias – 91.5 (↓ 3.4) – – – – –
Context-Debias – 92.8 (↓ 2.1) – – – – –
FairFil – 91.7 (↓ 3.2) – – – – –
Auto-Debias – 94.0 (↓ 0.9) – – – – –
BERT+Gater 95.8 (↑ 0.4) 95.2 (↑ 0.3) 98.1 (—) 71.5 (↑ 0.9) 97.3 (—) 62.8 (↑ 0.6) 86.1 (↑ 2.0)
RoBERTa+Gater 95.7 (—) 96.6 (↑ 0.2) 98.0 (↑ 0.1) 71.1 (—) 96.2 (↑ 0.2) 68.4 (↑ 0.3) 85.8 (↑ 0.2)
ALBERT+Gater 94.7 (↑ 0.1) 97.0 (↑ 0.1) 97.5 (↑ 0.1) 67.5 (↑ 0.1) 95.4 (↑ 0.1) 66.4 (↑ 0.1) 84.5 (↑ 0.2)
ELECTRA+Gater 95.4 (↑ 0.2) 96.9 (—) 97.7 (—) 69.7 (↑ 0.5) 95.3 (—) 66.9 (↑ 0.1) 84.1 (—)

Table 2: Comparison with state-of-the-art results on each dataset. Bold represents the optimal performance in all model com-
parisons. The underscore indicates that Gater outperforms all systems. ↑ and ↓ represent the performance increase or decrease,
respectively. — represents that the performance remains unchanged.

• BERTPair generates an paired one for each original sen-
tence based on its aspect, and further transforms aspect-
based sentiment classification into a task of classifying
sentence pairs (Sun, Huang, and Qiu 2019).

• UDA improves consistency training by substituting tra-
ditional noise injection methods with high-quality data
augmentation methods (Xie et al. 2020).

• Sent-Debias is a post-processing debias method which
aims to remove the estimated gender-direction from sen-
tence representations (Webster et al. 2020).

• Context-Debias suggests a debias approach for pre-
trained language models (PLM) that involves a loss func-
tion designed to promote orthogonality between stereo-
type words (Kaneko and Bollegala 2021).

• FairFil employs a contrastive learning strategy to rectify
biases in sentence representations (Cheng et al. 2021).

• Auto-Debias presents a modified version of the beam
search technique to automatically search for biased
prompts (Guo, Yang, and Abbasi 2022).

Main Results
The previous research found that the current debiasing meth-
ods might over-debias, leading to downstream tasks’ perfor-
mance degradation (Meade, Poole-Dayan, and Reddy 2022).
As shown in Table 2, the accuracy of BERT is reduced
from 0.9 to 3.4 by Sent-Debias, Context-Debias, FairFil, and
Auto-Debias. In contrast to our method, due to the adaptabil-
ity of ATU, over-debias can be effectively avoided. As a re-
sult, each PLM improved from 0.0 to 2.0 over their original
version. Not only that, our approach also outperforms most
fine-tuning methods. This shows that sentiment debias for

named entities is a feasible fine-tuning method, which makes
classifiers rely more on contextual information to make de-
cisions. The training tricks on all datasets are as follows:

• The threshold of the average confidence can be inspired
by the training of the original PLMs. For example, if the
average confidence λ of BERT on IMDb is 0.7, the hyper-
parameter of BERT+Gater should be set as 0.85 = λ +

1−λ
#Classes .

• We used slanted triangular learning rates (Howard and
Ruder 2018), that is, we set different learning rates for
each layer of g and g′. Suppose that g and g′ have L
hidden layers, then we split the parameters W of them
into {W 1, . . . ,WL} where W l contains the parameters
of the l-th hidden layer. Then the learning rate γ of Equa-
tions (5) and (6) are updated by γl−1 = ξ · γl where the
γl is the learning rate of W l, and ξ ∈ [0, 1] as a decay
factor is set by the size of dataset. We found that a larger
ξ is more suitable for the small-scale dataset. Concretely,
we adopt 0.9, 0.85 and 0.8 for SemEval, IMDb and SST-
2, 0.75 and 0.7 for YELP-2 and YELP-5, 0.55 and 0.6
for Amazon-2 and Amazon-5, respectively.

Model Analysis
Sentiment Debiasing We used the NLTK version 1 of the
part-of-speech tagging tool to randomly select 400 entities
from each dataset, and then calculated the sentiment scores
of these entities by sentiment shift testing. The larger the
sentiment score, the more severe the sentiment bias.

Figure 4 reflects the change in sentiment bias of these en-
tities before and after using Gater. For each dataset, Gater

1NLTK: https://www.nltk.org/
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(a) BERT (b) RoBERTa (c) ALBERT (d) ELECTRA

Figure 4: Comparison of sentiment distribution of each language model with and without Gater.

Figure 5: The number of experts on each dataset.

keeps sentiment bias at a low level, that is the sentiment
scores of these entities are closer to 0. In contrast, with-
out using Gater, each language model assigned high sen-
timent scores to these entities. This illustrates Gater effec-
tively reduced sentiment bias. Besides, we found that senti-
ment bias indeed has a high correlation with accuracy. Con-
cretely, for IMDb, SST-2, YELP-2, and Amazon-2, each lan-
guage model has slight sentiment bias and obtains high ac-
curacy, and otherwise for the other datasets.

Adaptive Learning Gater adaptively decided the number
of experts based on average confidence. Hence, we mea-
sured the accuracy of Gater on each dataset when we freeze
the adaptive training architecture and manually assign the
number of experts.

As shown in Figure 5, the most suitable number of experts
is different for each dataset. For IMDb, SST-2, YELP-2, and
amazon-2 with slight sentiment bias, Gater only used two or
three experts to achieve the best performance. In contrast,
for YELP-5 and Amazon-5, Gater needs five or six experts
to deal with the severe sentiment bias, respectively. Besides,
we found that Gater utilizes up to six experts to outperform
or reach the state of the art, and more experts do not achieve
higher accuracy. On the contrary, the accuracy drops when
we use excessive experts on all datasets. Therefore, it is nec-
essary to adaptively adjust the number of experts.

Parameter Updating We adopt the change rule of accu-
racy to reflect the parameter updating method when Gater
faces different levels of sentiment bias. According to the
above analysis, PLMs generally have severe sentiment bias
on Amazon-5, and slight sentiment bias on SST-2. There-
fore, we evaluate the parameter updating method on these
two datasets. For a fair comparison, we adjust the number of
parameters of the classifier followed by the original PLMs

(a) SST-2 (b) Amazon-5

Figure 6: Comparison between parameter updating algo-
rithm and Adam algorithm.

to be the same as that of Gater. Taking SST-2 as an example,
since Gater uses two experts to obtain the best result, the
number of parameters of the ALBERT’s classifier is equal
to the sum of parameters of g, ga1 , g

b
1, g

a
2 , g

b
2 and g′. Further,

we selected Adam with the same hyper-parameter settings
as Gater to update the parameters of ALBERT’s classifier.

As shown in Figure 6, for SST-2, the accuracy of Gater
and Adam has sharp fluctuations at the initial training
steps, but Gater is significantly faster than Adam to achieve
the best performance. This illustrates that when sentiment
bias is slight, the parameter updating method can effec-
tively shorten the training time. For Amazon-5, compared to
Adam, Gater has obvious performance fluctuations from the
250th step to the 400th step, which may be caused by contin-
uously adjusting the number of experts. After the 400th step,
the Gater’s performance improvement tends to stabilize, and
at the 550th step reaches the optimum. This shows that the
parameter updating method has the ability to flexibly change
the parameter-updating direction and find a better optimal
route. Conversely, Adam does not have this flexibility.

Conclusions
In this paper, we propose an adaptive Gumbel-Attack classi-
fier, namely Gater, to reduce sentiment bias in PLMs from an
adversarial-attack perspective. As we know, named entities
in the real world are complex and diverse, and their features
and attributes are subject to change over time and in different
circumstances. With the widespread application of PLMs in
real-world scenarios, our method enables PLMs to quickly
adjust the sentiment orientation of named entities, thereby
effectively improving the robustness of sentiment classifica-
tion systems.
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