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Abstract

Visual question answering on document images that con-
tain textual, visual, and layout information, called document
VQA, has received much attention recently. Although many
datasets have been proposed for developing document VQA
systems, most of the existing datasets focus on understand-
ing the content relationships within a single image and not
across multiple images. In this study, we propose a new multi-
image document VQA dataset, SlideVQA, containing 2.6k+
slide decks composed of 52k+ slide images and 14.5k ques-
tions about a slide deck. SlideVQA requires complex rea-
soning, including single-hop, multi-hop, and numerical rea-
soning, and also provides annotated arithmetic expressions
of numerical answers for enhancing the ability of numerical
reasoning. Moreover, we developed a new end-to-end docu-
ment VQA model that treats evidence selection and question
answering in a unified sequence-to-sequence format. Exper-
iments on SlideVQA show that our model outperformed ex-
isting state-of-the-art QA models, but that it still has a large
gap behind human performance. We believe that our dataset
will facilitate research on document VQA.

Introduction
Building intelligent agents that can read and comprehend
real-world documents, such as webpages, office documents,
lecture slides, etc., has been a long-standing goal of artificial
intelligence. To achieve this goal, machine reading compre-
hension (MRC), a central task in natural language under-
standing, has been intensively studied. The typical defini-
tion of the MRC task is quite simple, wherein given a short
natural language text as a context and a question about it,
a machine reads the text and then answers the question by
extracting a span from the text (Rajpurkar et al. 2016; Ra-
jpurkar, Jia, and Liang 2018). However, this definition is far
from real-world applications, such as customer service chat-
bots on e-commerce websites (Cui et al. 2017) and assis-
tant systems for reading professional literature (Hong et al.
2019), in that the context is composed entirely of text, with
no graphical elements.

To this end, visual question answering on document im-
ages (document VQA) has received much attention. It is a
challenging vision and language task that requires methods
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to reason about document layout, textual content, and visual
elements (Mathew, Karatzas, and Jawahar 2021; Tanaka,
Nishida, and Yoshida 2021; Mathew et al. 2022). When
the primary content in a document is text (e.g., e-mails
and forms) and the task is to understand it on the basis of
its layout information, state-of-the-art models have already
achieved nearly human-level performance (Xu et al. 2021;
Powalski et al. 2021). On the other hand, challenges remain
when it comes to handling diverse real-world documents.
First and foremost is that current models are not capable of
performing reasoning across multiple images since the ex-
isting datasets focus on testing reasoning ability on a single
image. Moreover, compared with humans, document VQA
models still have trouble understanding documents that con-
tain visual elements and understanding questions that re-
quire numerical reasoning (Mathew et al. 2022).

To address the above challenges, we introduce a new doc-
ument VQA dataset1, SlideVQA, for tasks wherein given a
slide deck composed of multiple slide images and a corre-
sponding question, a system selects a set of evidence im-
ages and answers the question. Slide decks are one of the
most efficient document types that arrange visual and textual
elements for communication. As shown in Figure 1, Slide-
VQA requires complex reasoning over slide images, includ-
ing single-hop, multi-hop, and numerical reasoning. These
reasoning skills play essential roles in MRC tasks (Yang
et al. 2018; Dua et al. 2019).

Our main contributions are summarized as follows:

• We introduce a novel task and dataset, SlideVQA,
wherein to answer its questions, a machine has to read
and comprehend a slide deck composed of multiple
images. It is the largest multi-image document VQA
dataset containing 2.6k+ slide decks (each consisting of
20 slides) and 14.5k questions. It also provides bound-
ing boxes around textual and visual elements for under-
standing document layout and arithmetic expressions for
numerical reasoning.

• We developed a Multi-Modal Multi-image Document
VQA model, M3D, to jointly perform evidence selection
and question answering tasks and to enhance numerical
reasoning by generating arithmetic expressions.

1Our dataset and codes are publicly available at https://github.
com/nttmdlab-nlp/SlideVQA
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Q: What is the difference in the competition media percent age 
between East and the region with 12% of journalists?

Q: What is the tip-off media percentage in the region with 
70% of journalists and South?

…
p.4 p.12

1 2

THE FIRST STEP TO THE BIG STORY

Internal meeting decision

Competition media

Tip-off

Communication agencies

Primary research

Others

An event

Social Network

Online content

North

South
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West

20% 9% 13% 16% 8% 8% 9% 13% 4%

26% 16% 16% 7% 2% 10% 10% 10% 3%

29% 6% 15% 20% 3% 3% 6% 18% 0%

20% 11% 14% 14% 5% 6% 8% 19% 3%

SECTION 1
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25% 7% 14% 16% 8% 6% 10% 13% 1%

19% 11% 10% 17% 11% 11% 8% 9% 4%

19% 9% 13% 19% 8% 3% 13% 14% 2%
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Social Network
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SECTION 1

Answer: 5% (11% – 6% ) Evidence pages:  4, 12 
Answer type: Non-Span

Answer: 13%, 16%                 Evidence pages:  4, 12
Answer type: Multi-Span Reasoning type: Multi-hop, NumericalReasoning type: Multi-hop

PROFILE OF RESPONDENTS

Total =               respondents309

Experience (in years)

North
215

South
45

West
38

East
11

 15%

 70%

 12% 3%

Number of journalists by region

 68%
Male

211  32%

Female
98

Over 21 yrs. 

16-20 yrs. 

11-15 yrs.

6-10 yrs.

Less than
5 yrs.

 7%22

40  13%

110  36%

105  34%

32  10%

Gender ratio

By beat (multiple response)

Science & 
Tech

Business & 
Corporate

21%

Development Political Lifestyle & 
Entertainment

15% 3% 10% 5% 29%12%5%

Legal Sports Others

86 64 21 49 44 20 12113

By media type

10%
Financials

31

6%
Business 
Magazines

19

4%
Trade 
Magazines

13

14%
Other 
Magazines

43

12%
Electronic

38

31%
Mainlines

95

18%
Wire

54

5%
Online

16

By Language

The universe comprised mainstream newspapers and magazines, financial and 
trade papers, wire agencies, online portals and news channels. The journalists 
from various media were represented as reflected in the chart below.

Bengali

Marathi

4 1%
2 1%

Gujarati

Hindi

 0%1

60  20%

Telegu 2  1%

1  0%Tamil

English 77%239

PS: Since there are some 
journalist who cover more than 
one beat, the total will not 
reconcile with the total number 
of respondents i.e. 309 - this 
content needs to be moved to 
the next page. This is applicable 
for "By Beat (multiple 
response)" section.

Figure 1: Examples from our SlideVQA dataset. Some questions can be answered through single-hop, multi-hop, and numerical
reasoning. The colors of the words match the image borders with the same colors. (·) of the right example in the answer denotes
an annotated arithmetic expression to derive the final answer. The slide deck can be viewed at https://www.slideshare.net/
mslgroup/mediainsights-evolving-sources-of-news-for-media.

• Our model outperformed existing state-of-the-art QA
models on SlideVQA, but its performance is still below
that of humans by a large margin.

Related Work
Datasets for VQA on document images. Document
VQA is the task of answering questions about document
images, and some useful datasets have been published,
such as DocVQA (Mathew, Karatzas, and Jawahar 2021),
VisualMRC (Tanaka, Nishida, and Yoshida 2021), Web-
SRC (Chen et al. 2021), and InfographicVQA (Mathew et al.
2022). The task assumes that the datasets have a single rele-
vant image, containing all the facts required to answer.

The work most related to ours is DocCVQA (Tito,
Karatzas, and Valveny 2021), wherein a large collection of
document images is used to answer a given question. Our
dataset differs from DocCVQA, as follows. First, Slide-
VQA consists of 14.5k questions, wheres DocCVQA pro-
vides only 20 questions. Second, SlideVQA requires multi-
hop reasoning over multiple slides to find the answer, while
DocCVQA requires only single-hop reasoning on individual
images to find the answer. Besides these differences, Slide-
VQA provides questions that require numerical reasoning
and arithmetic expression annotations to answer numerical
questions (e.g., “30 - 28” for the answer “2”): no other VQA
dataset, including InfographicVQA that requires numerical
reasoning, provides such annotations. Furthermore, Slide-
VQA provides the largest number of bounding boxes on all
of the collected images among the related datasets.

Document VQA Models. In parallel with the develop-
ment of datasets, Transformer (Vaswani et al. 2017) has
come to be used for understanding unstructured text in docu-
ment images. LayoutLM (Xu et al. 2020), LayoutLMv2 (Xu
et al. 2021), LayoutT5 (Tanaka, Nishida, and Yoshida 2021),
and TILT (Powalski et al. 2021) have achieved impressive
results in single-image document VQA tasks by combining
textual, layout, and visual features. By contrast, we focus on
endowing models with the ability to reason and comprehend
multiple images. Moreover, while Tito, Karatzas, and Val-
veny (2021) used a pipeline of retrieval and reading models
for DocCVQA, we use multi-task learning that jointly per-
forms evidence selection and question answering.

Multi-modal question answering. This type takes textual
and visual information as input contexts, which is different
from document VQA that takes only a document image as
the input context. TQA (Kembhavi et al. 2017) is comprised
of middle-school science lessons containing diagrams and
text. MultiModalQA (Talmor et al. 2021) requires joint rea-
soning over text, tables, and images in Wikipedia. The moti-
vation behind these studies is similar to ours, but their input
is well-formed for machines, and the visual information in
the text such as the document layout is dropped from the text
in these datasets.

VQA on videos or image sets. VideoQA focuses on an-
swering questions about video frames of TV shows (Lei
et al. 2018, 2020) and movies (Tapaswi et al. 2016). A simi-
lar task is VQA on image sets (ISVQA), which involves han-
dling photos taken from different viewpoint indoors (Bansal,
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Dataset Document Multi-images Multi-hop Numerical Answer #QAs #Images #BBoxes #Arithmetic #Evidence
source input reasoning reasoning type annotations candidates

DocVQA industry SS 50k 12k – – 1
VisualMRC web-pages Ab 30k 10k 64k – 1

WebSRC web-pages SS 400k 6.4k – – 1
InfographicVQA infographics ✓ SS, MS, NS 30k 5k – – 1

DocCVQA industry ✓ MS 0.02k 14k – – 14k

SlideVQA (Ours) slide decks ✓ ✓ ✓ SS, MS, NS 14.5k 52k 890k 1.7k 20

Table 1: Comparison of question answering datasets on document images. Answer types can be broken down into abstractive
(Ab), single-span (SS), multi-span (MS), and non-span (NS).

Zhang, and Chellappa 2020). By contrast, our dataset also
requires a model to understand the text in images.

Slide images understanding. Monica Haurilet and
Stiefelhagen (2019); Haurilet et al. (2019) introduced a
benchmark for object segmentation on slide pages. Sun
et al. (2021); Fu et al. (2022) tackled the task of generating
slides from research papers. Our work is the first to focus
on answering questions on sets of slide images.

Reasoning over textual documents. Numerical reason-
ing plays an important role in NLP tasks (Dua et al. 2019;
Zhang et al. 2020, 2021). Moreover, multi-hop reasoning has
taken the spotlight as it aligns with the multi-hop nature of
how humans reason to acquire knowledge, and has led to a
proliferation of benchmarks (Talmor and Berant 2018; Yang
et al. 2018). However, there is as yet no dataset for devel-
oping models to perform both multi-hop and numerical rea-
soning on document images.

The SlideVQA Task and Dataset
Task Overview and Formulation
The SlideVQA task, requires a system to answer a question
about a slide deck, which is composed of an ordered set of
slide images and to select evidence slide images. We formu-
late the end-to-end SlideVQA task as follows:
MAINTASK (SlideVQA). Given a question q and a slide
deck I = {I1, . . . , IK} (K = 20), a model outputs an an-
swer y and selects relevant slides Î = {Î1, . . . , ÎK′}.

The task can be decomposed into two subtasks:

SUBTASK 1 (Evidence Selection). Given a question q and a
slide deck I, a model identifies the images Î from which to
derive the answer y.

SUBTASK 2 (Question Answering). Given a question q and
the slide images (I or Î), a model outputs an answer y.

SlideVQA has three answer types (see the examples in
Figure 1). A single-span answer is a contiguous sequence of
tokens in the reading order extracted from the image, and a
multi-span answer is formed from multiple spans from the
image. A non-span answer is not extracted and is composed
of numerical values and visual appearances.

We can also use annotations of bounding boxes around
the objects (and their categories) to understand the seman-
tic structure of images and annotations of arithmetic expres-

sions to understand numerical reasoning as additional input
at training. These annotations are not given at inference.

Dataset Collection
In this section, we describe the collection process of the
SlideVQA dataset. To control the annotation quality, we re-
cruited crowd workers located in English-speaking countries
and who had passed a rigorous qualification procedure. Ad-
ditionally, we asked other workers to assess the quality of
the annotated samples after each collection step.

Slide decks collection. First, we selected and downloaded
25,327 slide decks composed of more than 20 slides from
slideshare2 and covering 39 topics. We kept the first 20 slides
and truncated the rest of the pages. Then, the workers filtered
the collected decks that did not meet the following criteria:
(i) the main language is English; (ii) the content is easy for
workers to understand; (iii) the decks must contain one or
more graphs, tables, figures, or numerical data to avoid cre-
ating questions requiring only text-level understanding.

Bounding boxes and categories annotation. To facilitate
understanding of the semantic components of images, we
annotated all images with bounding boxes and their cate-
gories. The workers indicated specific objects in each image
by annotating bounding boxes around the objects and classi-
fying them into nine classes that were based on SPaSe (Mon-
ica Haurilet and Stiefelhagen 2019) as follows:

• Title: presentation title, slide title
• Page-text: text in slide, bullet-point text list, text list
• Obj-text: text in a figure, image, diagram or table
• Caption: description of figure, image, diagram, or table
• Other-text: footnote, date, affiliation, code, URL
• Diagram: a graphical representation of data, a process
• Table: data arranged in rows and columns
• Image: drawing, logo, map, screenshot, realistic image
• Figure: graph with data points and coordinates

Single-hop QA creation. We asked the workers to create
12,466 QA pairs by selecting a single slide image from a
slide deck. The selected slide can be used as evidence to
tell whether a system arrived at the right answer for the

2https://www.slideshare.net/
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Figure 2: Distribution of bounding box categories, reasoning types, and answer types in the test set.

right reasons. We encouraged questions that needed numeri-
cal reasoning, including operations of arithmetic expressions
with {+,−, /, ∗}, counting, and comparisons. Additionally,
the workers avoided creating questions that (i) contained se-
lected page numbers; (ii) required external knowledge; (iii)
were common to all of the slides (e.g., “What is the title?”).

Multi-hop questions creation. We created 2,018 QA
pairs for multi-hop reasoning by editing the single-hop ques-
tions created in the previous step. For example at the left
of Figure 1, “North” is replaced by the phrase “the re-
gion with 70% of journals”. To this end, we first identified
one or two bridge entities in the created questions, and the
workers selected related slides as evidence that mentioned
the identified ones. Then, the content of the selected slides
was utilized to replace the entities in the created questions.
The process of creating multi-hop questions by editing may
produce unnatural questions, as mentioned in the “Limita-
tions” section, but is easily scalable. A similar approach was
taken with MultiModalQA (Talmor et al. 2021), which re-
quires multi-hop reasoning over text, tables, and images in
Wikipedia.

Arithmetic expression annotation. We provided arith-
metic expressions like “30 - 28” in which the final numerical
answer can be arrived at with the four arithmetic operations.
The interpretation of the answer generation process is im-
portant for creating explainable QA models.

Statistics and Analysis
SlideVQA contains 14,484 QA pairs from 2,619 slide decks,
consisting of 52,480 slide images annotated with 890,945
bounding boxes. We split the dataset into 10,617 questions
for training, 1,652 (2,215) questions for development (test),
making sure that each deck appears in the same split. We
compare SlideVQA with related datasets in terms of “Im-
ages” and “Questions and Answers”.

Images. SlideVQA provides the largest number of images
covering broad range of topics among the datasets shown
in Table 1. Moreover, SlideVQA provides the largest num-
ber of bounding box annotations, where the number of the
annotations in SlideVQA is 14.7 times that of VisualMRC.

Figure 2a shows the distribution of bounding boxes broken
down into nine categories, which cover all classes, including
visually related ones (Image and Figure), unlike DocVQA
and DocCVQA. To analyze the OCR tokens, we extracted
the text shown in the images by using the Google Cloud Vi-
sion API3. As a result, the number of OCR tokens the sys-
tem should consider simultaneously is larger (1488.88 to-
kens) than those of single-image document VQA datasets;
the largest dataset (InfographicVQA) has 217.89 tokens.

Questions and answers. As shown in Table 1, SlideVQA
requires complex reasoning including single/multi-hop, and
numerical reasoning. Figure 2b shows the diverse distribu-
tion of questions related to reasoning types. 49.3% of the
questions require multi-hop or numerical reasoning. More-
over, SlideVQA is the first dataset to provide annotations of
arithmetic expressions for improving numerical reasoning.
Figure 2c shows that multi-span and non-span account for
32.4% of the answers, indicating systems also need to gen-
erate answers as well as extract multiple spans.

Our Model
Figure 3 shows an overview of our model, called M3D
(Multi-Modal Multi-image Document VQA model). We use
Fusion-in-Decoder (FiD) (Izacard and Grave 2021), which is
a state-of-the-art multi-text encoder-decoder model, as our
base model and initialize FiD with a pre-trained T5 (Raf-
fel et al. 2020). We extend FiD to perform the end-to-end
SlideVQA task (defined in MAINTASK) by (i) performing
evidence selection and question answering tasks as a unified
sequence-to-sequence format using multi-task learning, (ii)
predicting arithmetic expressions as intermediate reasoning
steps instead of generating answers directly to enhance nu-
merical reasoning, and (iii) modifying the input sequence to
learn the visual layout and content of the image.

Multi-modal Task-Specific Input
Input token sequence. For each image Ik, we first use
Faster-RCNN (Ren et al. 2015), which was trained on Slide-
VQA, to extract N semantic regions (bounding boxes) and

3https://cloud.google.com/vision
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Figure 3: (a) Our encoder-decoder model architecture and (b) input representations. Given a question with a task prefix and
a slide deck, the model outputs a corresponding answer/arithmetic-expression and evidence pages. The calculator outputs the
final answer to calculate the generated arithmetic expression.

their labels (e.g., Title and Image). We parse the slide im-
age for each extracted region r by using an OCR engine and
apply a sub-word tokenizer to obtain OCR tokens Wr

k =
{wr

k,1, . . . , w
r
k,n} and corresponding OCR bounding boxes.

To jointly train the evidence selection and question answer-
ing tasks, we add different task prefixes t ∈ {Evidence
Selection, Question Answering} to the encoder
input. Specifically, the input sequence is as follows:

xk = (task:t question:q page:ek context:ck),

where the sequence concatenates each slide and page num-
ber pair (ck, ek) with the question q and task prefix t. To tell
the role of each region, we insert region labels [Rri

k ], cor-
responding to the region label of the i-th region ri in k-th
page, before the OCR tokens Wri

k extracted in ri:

ck = ([Rr1
k ],Wr1

k , [Rr2
k ],Wr2

k , . . . , [RrN
k ],WrN

k )

Input embedding. Following LayoutT5 (Tanaka, Nishida,
and Yoshida 2021), the input embeddings z of the encoder
are defined by utilizing multi-modal information, including
token ztoken, segment zseg, layout zlay, and visual embed-
dings zvis as follows:

z = LN(ztoken + zseg + zlay + zvis) ∈ RL×d,

where LN is a layer normalization (Ba, Kiros, and Hinton
2016), and L and d are the length of the input sequence and
a hidden vector size, respectively. The segment embedding
indicates which regions are included in the input sequence.
The layout embedding denotes the encoded bounding box
coordinates of the token within the image. We normalize all
coordinates by the size of images and use embedding lay-
ers to embed x-axis and y-axis features separately. The vi-
sual embedding is the appearance feature of each region and
the OCR bounding boxes, which were obtained from Faster-
RCNN. Note that the layout and visual embeddings are set to
zero vectors for the task prefix, question, and page number.

Multi-modal Encoder-Decoder
Multi-modal encoder. Our encoder is a stack of m Trans-
former blocks, consisting of a self-attention layer and a
fully-connected layer with residual connections. Following
FiD (Izacard and Grave 2021), all K input sequences are
encoded independently and then concatenated to form a uni-
fied input representation. Formally, we transform each input
sequence xk into xk ∈ RL×d and concatenate them into
X ∈ RK×L×d.

Answer/Arithmetic-expression decoder. Our decoder is
another stack of m Transformer blocks similar to the multi-
modal encoder, where each block has an additional layer
of cross-attention between the output sequence and X. The
answer decoder is modeled as a conditional generation
pθ(y|X), where θ represents the set of all model parame-
ters. To allow the model to perform numerical reasoning, we
train the system to predict annotated arithmetic expressions
y′ (e.g., “30 − 28”) instead of numeric values y (e.g., “2”)
by modeling pθ(y

′|X). During inference, the model itself
decides whether numerical reasoning is required or not for
each question by predicting an indicator token Answer: or
Expression: at the beginning of the output sequence.

Evidence selector. The selector shares the weights and the
architecture of the answer/arithmetic-expression decoder.
Instead of only modeling answer generation, we devise a
simple method to train evidence selection in a unified se-
quence. Specifically, we define the output sequence as Îpages
= (Evidence pages: ê1, . . ., êK′ ), where each ê is the
page number of the selected slide.

Training and inference. Our model is trained by mini-
mizing the weighted sum of two losses L = Ldec + Lsel,
where Ldec and Lsel are the negative log-likelihood between
the ground-truth and the prediction regarding the decoder
and selector, respectively. During inference, we obtain the
final prediction to post-process the decoded sequence by re-
moving the task indicator. If an arithmetic expression is gen-
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erated (i.e., Expression: is generated), we use a calcula-
tor to obtain the final results.

Experiments
Experimental Setup
We conducted experiments on the SlideVQA task, evidence
selection task, and question answering task respectively de-
fined in MAINTASK, SUBTASKS 1 and 2.

Main task baselines. We mainly evaluated pipeline mod-
els as baselines, consisting of evidence selection that pro-
duces top-3 evidences and question answering that takes the
selection results as input. Here, we introduced a hierarchical
LayoutLMv2 (H-LayoutLMv2) inspired by (Tu et al. 2020;
Xu et al. 2021), which encodes all slides simultaneously by
using another Transformer layer, as the evidence selector. It
achieved 96.0% on Recall@3 on the test set. We used three
generative QA models: a textual model T5 (Raffel et al.
2020), a numerical and multi-hop model PreasM (Yoran,
Talmor, and Berant 2022), and a document VQA model
LayoutT5 (Tanaka, Nishida, and Yoshida 2021). We also
used an extractive document VQA model LayoutLMv2 to
predict the single span.

Evidence selection baselines. We also evaluated the ev-
idence selection task alone. BM25 (Robertson, Zaragoza
et al. 2009) is a non-neural retrieval framework to estimate
the relevance of texts to a search query. For the neural mod-
els, CLIP (Radford et al. 2021) encodes the question and
each image to predict the highest similar pair. BM25 and
CLIP used the top-1 slide as the prediction. BERT (Devlin
et al. 2019) is a pre-trained language model which only uses
text information with the Transformer architecture. Lay-
outLM (Xu et al. 2020) incorporates layout information into
the input embeddings of BERT. LayoutLMv2 includes im-
age features produced by a CNN backbone in input embed-
dings. To model the interactions between the slides, we used
H-LayoutLMv2 described in the previous section. For neu-
ral evidence selection baselines (except for CLIP), we use a
hidden state of [CLS] in the last layer to feed into an MLP
classifier with a sigmoid activation. Evidence is selected if
its confidence of binary classification is above the optimal
value on the development set.

To evaluate the effectiveness of our generative evidence
selection module, we introduced BinaryClass as a classifi-
cation baseline, which uses a two-layer MLP classifier with
a sigmoid activation on top of each encoder representation
at the start-of-sequence. We also introduced a generative
baseline, ChainGen, which generates a sequence of selected
slide page numbers before the answer (Wei et al. 2022).

Question answering baselines. In addition to the pipeline
models, we developed Q-only, which takes only the ques-
tion into T5. We also used a VideoQA model UniVL (Luo
et al. 2020) that can take all of the slide images as input.
Furthermore, we evaluated our base model FiD.

Human performance. We asked six crowdworkers (not
among those recruited to collect our dataset) to select slide
images relevant to the question and answer the question.

Evaluation metrics. Following HotpotQA (Yang et al.
2018), we used exact match (EM) and F1 on each question
answering and evidence selection task and also used Joint
EM (JEM) and Joint F1 (JF1) to evaluate both tasks. These
joint metrics penalize models that perform poorly on either
task and assess the accuracy and explainability of the ques-
tion answering models.

Implementation Details
We implemented all of the models in PyTorch and experi-
mented on eight Tesla V100 32GB GPUs. The size of CLIP
was Large and the size of the other models was Base. We
fine-tuned the models using AdamW (Loshchilov and Hutter
2017) with a learning rate of 5e-5 and a dropout rate of 10%,
and we linearly warmed up the learning rate over 1000 steps.
The batch size was set to 32. We evaluated models every 500
steps and selected the best one on the development set on the
basis of the loss. We used a maximum length of 200 tokens
for each input sequence of M3D, and set the maximum target
sequence length to 50. We trained Faster-RCNN (Ren et al.
2015) with a ResNet-101 (He et al. 2016) backbone by us-
ing stochastic gradient descent (SGD) (Ruder 2016) with a
learning rate of 1e-3 and batch size of one. Standard anchor
scales of [8, 16, 32] and anchor ratios of [0.5, 1.0, 2.0] were
used. For the VideoQA baseline, we created a new video at
a rate of five frames per second. We used the Google Cloud
Vision API to extract text and bounding boxes from images.
When the OCR word is tokenized into sub-word tokens, the
bounding box coordinates of a sub-word token are the same
as those of its whole word.

Experimental Results and Analysis
Does our model outperform the baselines? Table 2 sum-
marizes the results of the main tasks. As shown in Table 2a,
M3D outperformed the baselines on joint EM/F1, where
the metrics evaluate the consistency between the predicted
evidence and answers. For the evidence selection task, Ta-
ble 2b shows that H-LayoutLMv2 and M3D performed bet-
ter than the baselines. This indicates that modeling the in-
teraction between multiple slides simultaneously is needed
to improve performance. For the QA task, Table 2c shows
that M3D outperformed the pipeline methods in all met-
rics. Our end-to-end M3D model is better at ignoring the
slides irrelevant to the question than the answer generator
in the pipeline methods that strongly depend on the slides
narrowed down by the evidence selector. However, M3DGT

in Table 2a achieved a significant improvement by know-
ing the ground-truth slides. There is room for improving the
correctness of evidence selection.

What are the characteristics of our dataset? Table 2
shows that adding modality information tended to improve
performance in all tasks. This demonstrates that SlideVQA
requires methods to have the ability to jointly understand the
text, layout, and visual modalities of documents. As shown
in Table 2c, Q-only had the lowest performance, show-
ing that the systems could not answer the question with-
out reading documents in the SlideVQA task. Additionally,
UniVL has a comparative result to Q-only, indicating that
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Model Modal JEM JF1

PreasM T 23.4 34.7
T5 T 22.6 34.2
T5 + zlay TL 23.6 35.7
LayoutT5 TLV 24.3 36.1
LayoutLMv2† TLV 16.5 26.5

M3D TLV 28.0 37.3
M3DGT TLV 35.4 44.7

Human – 88.6 91.9

(a) Performance of main task.

Model Modal EM F1

BM25 T 35.9 47.5

CLIPzero V 30.6 34.4
CLIP V 39.3 43.5
BERT T 50.3 69.2
BERT + zlay TL 52.7 71.0
LayoutLM TL 42.0 59.9
LayoutLMv2 TLV 51.7 71.5
H-LayoutLMv2 TLV 69.8 85.6

M3D TLV 75.0 83.8

Human – 97.7 98.0

(b) Performance of evidence selection task.

Model Modal EM F1

Q-only – 10.7 13.5
UniVL V 10.6 14.1

PreasM T 30.7 38.2
T5 T 29.3 37.9
T5 + zlay TL 31.0 39.7
LayoutT5 TLV 31.7 39.9
LayoutLMv2† TLV 21.4 29.3

FiD T 30.4 38.9
FiD + zlay TL 30.6 38.9
M3D TLV 33.5 41.7

Human – 89.8 93.0

(c) Performance of question answering task.

Table 2: Performance of SlideVQA tasks. “T/L/V” denotes the “text/layout/visual” modality of images. †denotes the extractive
approach. The pipeline models answer the question based on the top-3 evidences obtained by H-LayoutLMv2. M3DGT knows
the ground-truth evidence. + zlay denotes addition of the layout embedding to the input embeddings. LayoutLM was not pre-
trained in any matching task (e.g., text-image matching). CLIPzero denotes CLIP without fine-tuning.
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Figure 4: Performance of models and humans on the answer
types, reasoning types and numerical operation types in the
test set. AE stands for “arithmetic expression”.

SlideVQA requires different abilities from VideoQA (Le
and Hoi 2020), especially the ability to read texts in im-
ages. Tables 2a and 2c show that LayoutT5, a generative
model, significantly outperformed LayoutLMv2, an extrac-
tive approach. This result is inline with observations on the
DROP dataset (Dua et al. 2019), which also has non-span
answers (Geva, Gupta, and Berant 2020). Additionally, all
of the models performed all of the tasks significantly worse
than humans. To be specific, Figure 4 illustrates that (i) bet-
ter multi-hop reasoning and (ii) non-span answers to ques-
tions involving arithmetic operations have to be improved.

Do our sub-modules improve performance? Table 3
lists the results of an ablation study. Here, performance
consistently decreased as individual modules were removed
from M3D. This indicates that each of the modules is ef-
fective. More precisely, the arithmetic expression (AE) gen-
eration was influential on the QA and Joint performance,
meaning that predicting the arithmetic expression instead of
the numerical value enhances the ability to generate answers

Main Select QA
Model JEM JF1 EM F1 EM F1

M3D 36.2 42.8 83.1 87.7 41.3 47.1

w/o AE prediction 35.7 42.3 82.9 87.7 40.5 46.3
w/o Evidence selection – – – – 40.6 46.4
w/o Layout features 35.1 42.0 82.4 87.1 40.3 46.3
w/o Visual features 34.2 40.9 81.5 86.3 39.0 44.9
w/o Text features 1.0 1.5 8.4 9.8 9.8 12.0

Table 3: Ablation study of M3D on dev set.

Main Select QA
Model JEM JF1 EM F1 EM F1

M3D backbone – – – – 39.0 44.8

+ BinaryClass 24.7 34.8 54.5 68.5 38.8 44.8
+ ChainGen 34.0 40.8 81.1 86.1 39.8 45.4
+ MultiGen (Ours) 35.7 42.3 82.9 87.7 40.5 46.3

Table 4: Performance comparison of different evidence se-
lection methods on dev set.

with numerical reasoning. As shown in Figure 4, applying
AE prediction increased F1 by a large margin (+10.4%) in
the arithmetic type.

What are the effective evidence selection methods? Ta-
ble 4 shows that our method, which generates the evidence
selection and question answering results separately, obtained
the highest performance. It seems that the generative meth-
ods (MultiGen and ChainGen) benefited from the text-to-
text pre-training of T5 more than the classification-based
method (BinaryClass). Our MultiGen decoder that sepa-
rately trains evidence selection and question answering had
the advantage of being easier to train than the ChainGen
baseline decoder that trains the two tasks as a single se-
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Class Dev AP Test AP

Title 86.8 87.5
Page-text 76.9 76.9
Obj-text 29.5 33.4
Caption 25.6 24.9
Other-text 40.5 39.4
Image 60.4 62.2
Diagram 65.4 64.0
Figure 74.1 68.8
Table 67.0 65.6

Table 5: Object detection performance of Faster-RCNN
broken down by bounding box categories. We set an
intersection-over union (IoU) threshold to 0.5.

Main Select QA
OCR engine JEM JF1 EM F1 EM F1

Vision API 36.2 42.8 83.1 87.7 41.3 47.1
Tesseract 22.5 28.3 69.6 74.7 28.3 34.0

Table 6: M3D performance comparison with different OCR
engines in the dev set.

quence generation task.

On which categories does the object detection model not
work well? Table 5 lists the object detection performance
of Faster-RCNN broken down by bounding box categories.
These results show that detecting randomly placed and small
boxes, such as Obj-text, is more difficult than mostly fixed
and large boxes, such as Title.

Does the model performance depend on the OCR en-
gine? Table 6 presents the results of M3D for the Vision
API and Tesseract OCR engine. The differences in score
are huge for all tasks and show a clear advantage for Vi-
sion API. The future direction includes that we will create
models showing the robustness to variations in OCR quality.

Qualitative examples. Figure 5 demonstrates our model’s
performance by visualizing a qualitative example. This ex-
ample needs multi-hop reasoning and an answer involving
an arithmetic operation. FiD gave an incorrect answer be-
cause it did not consider the visual layout of the slides.
Moreover, while LayoutT5 could not understand the process
of getting numerical answers, M3D successfully extracted
information (“11%” and “12%”) and generated the same an-
swer as the ground-truth.

Discussion and Limitations
SlideVQA is the largest document VQA benchmark that
uses multiple images as input and requires multi-hop rea-
soning; its limitation is that the multi-hop questions created
by editing are different from the questions humans might ac-
tually ask the system. We argue that developing models that
can reason over multiple images is an important research
direction, and therefore, we employed an editing method
that guarantees multi-hop questions and easily extends the
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ROCK DOMINATES ALBUMS, POP DRIVES SONG 

SALES AND R&B/HIP-HOP LEADS STREAMING 

37% 
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12% 11% 

3% 2% 4% 

24% 23% 
26% 

12% 

2% 
5% 3% 

23% 
26% 

19% 

5% 

10% 
6% 

3% 

Rock R&B/Hip-Hop Pop Country Latin Dance/Elec Christian/Gosp

GENRE SHARE OF TOTAL 
Album Sales % Song Sales % Streams %

Q: What is the combined percentage of Album Sales % and Song 
Sales % for the genre with a 9% Share of Total Activity?
GT A:  23% Evidence pages:  8, 9
FiD A: 57% Evidence pages: None
LayoutT5 A: 68% Evidence pages: 8, 9

p.8

p.9

M3D A: 23%  (11% + 12%) Evidence pages: 8, 9

Figure 5: Qualitative example. GT denotes the ground-
truth. (·) means the generated arithmetic expression. The
slide deck can be viewed at https://www.slideshare.net/
musicbizassoc/nielsen-2015-music-biz-presentation-final.

dataset size. Also, our model uses cross-attention on all ev-
idence candidates, which may cause a computational prob-
lem when there are a lot of input images (e.g., as in the open-
domain QA setting like DocCVQA). To remedy this prob-
lem, we consider that models that train a two-stage selec-
tor that roughly narrows down candidates to a small number
of images and then accurately selects evidence images and
an answer generator in an end-to-end manner are promis-
ing (Sachan et al. 2021a,b).

Conclusion
We introduced a new document VQA dataset, SlideVQA,
focused on the task of understanding slide decks composed
of multiple images. We also introduced a unified end-to-
end model, M3D, that can perform evidence selection and
question answering tasks and enhance numerical reasoning
by generating arithmetic expressions. While our evaluation
highlighted the promise of this approach, it also revealed a
huge gap compared with human performance and several
challenges emerge from multi-hop reasoning on multiple
images and generating answers with arithmetic operations.
We believe that our dataset will contribute to the develop-
ment of intelligent assistant agents that can comprehend di-
verse real-world documents.
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