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Abstract

User Satisfaction Estimation is an important task and increas-
ingly being applied in goal-oriented dialogue systems to es-
timate whether the user is satisfied with the service. It is
observed that whether the user’s needs are met often trig-
gers various sentiments, which can be pertinent to the suc-
cessful estimation of user satisfaction, and vice versa. Thus,
User Satisfaction Estimation (USE) and Sentiment Analysis
(SA) should be treated as a joint, collaborative effort, con-
sidering the strong connections between the sentiment states
of speakers and the user satisfaction. Existing joint learn-
ing frameworks mainly unify the two highly pertinent tasks
over cascade or shared-bottom implementations, however
they fail to distinguish task-specific and common features,
which will produce sub-optimal utterance representations for
downstream tasks. In this paper, we propose a novel Speaker
Turn-Aware Multi-Task Adversarial Network (STMAN) for
dialogue-level USE and utterance-level SA. Specifically, we
first introduce a multi-task adversarial strategy which trains
a task discriminator to make utterance representation more
task-specific, and then utilize a speaker-turn aware multi-task
interaction strategy to extract the common features which
are complementary to each task. Extensive experiments con-
ducted on two real-world service dialogue datasets show that
our model outperforms several state-of-the-art methods.

Introduction
The proliferation of complaint and impolite language within
service dialogues can create salient social and financial is-
sues, such as marketing harassment and brand reputation
damage. Many platforms have built their serving rating sys-
tems that rate the suitability and quality of online service.
For example, over 77% of buyers on Taobao1 communicated
with sellers before placing an order (Gao and Zhang 2011).
User satisfaction estimation (USE) is an important yet chal-
lenging task, which has drawn great attention from both in-
dustries and research communities (Song et al. 2019; Liu
et al. 2021b; Higashinaka et al. 2019; Deng et al. 2022).
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Unsatisfied

Hi, I applied for a return yesterday,
and have already sent the product :).

OK

How do you return the freight to
me, I paid 10 CNY.

It is not a quality problem, so
you should pay the freight.

The sleeves are too fat, isn’t
it a quality problem?

This is not a quality problem.

If it is not a quality problem, what else is?

You means no sleeves?

Is it broken?
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Figure 1: A typical serving rating system and an unsatisfied
service dialogue with sentiment and speaker turn change la-
bels. Graphic emoji denotes positive, neutral or negative. La-
bel 1 or 0 denotes whether speaker turn changes or not.

Intuitively, whether the user is satisfied with a service staff
largely depends on the fulfillment of the user’s needs. The
workflow of a typical service rating system is displayed in
Figure 1. The user interacts with the online service staff in
the free-form multi-turn dialogue, which is the basic service
mode on E-commerce platform. A complete dialogue will
be input into the rating system for satisfaction rating. The
user expresses positive sentiments in the beginning and in-
teracts with the service staff by using a textual smiley face
“:)”. As the conversation progresses, sentiment states of the
user gradually change from positive to negative, and the user
is ultimately very unsatisfied and fails to reach an agreement
with the service staff on the return issue. Automatically de-
tecting such low-quality and unsatisfying service is impor-
tant. For the retail shopkeepers, they can quickly locate such
service dialogue and find out the reason to take remedial ac-
tions, such as “user return visit” and “staff service improve-
ment”. For the platforms, by detecting and analyzing such
cases, they can define clear-cut rules, say “not fitting well is
not a quality issue, and the buyers should pay the freight.”

User satisfaction often relates to many linguistic and sta-
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tistical properties from content and syntax (Shan et al. 2019;
Song et al. 2020; Liu et al. 2021a), speaker profiles (Yao
et al. 2020; Abraham and Choe 2021) to sentiment (Gadri
et al. 2021; Song et al. 2021), act (Deng et al. 2022) and deep
semantics (Sun et al. 2021; Kachuee et al. 2021), which are
regularly considered as key challenges in semantic under-
standing of dialogues. Different from previous studies that
focus on modeling various properties, we find the sentiment
states of the speakers provide rich clues for explicitly as-
sisting with user satisfaction estimation. Without guidance
of utterance-level sentiment clues, user satisfaction estima-
tion may become very difficult to understand semantically
for long dialogues. Multi-task learning (MTL) allows two
or more tasks to be learned jointly, thus sharing informa-
tion and features between the tasks (Caruana 1997). In this
work, we focus on the dialogue-level user satisfaction esti-
mation; hence we refer to it as the main task, while the task
that is used to provide additional sentiment knowledge, i.e.,
utterance-level sentiment analysis, is referred to as the aux-
iliary task. Thus, we aim to capture the sentiment feature
resulting from a joint learning setup through shared param-
eters. This will encompass the sentimental content of utter-
ances that is likely to be predictive of user satisfaction.

Earlier MTL studies on USE often resort to implicit or ex-
plicit sentiments, which can not resolve correlated interfer-
ence between task-private feature and shared feature well.
Song et al. (2019) aggregated the predictive utterance-level
latent sentiments as the estimation of dialogue-level user sat-
isfaction via multiple instance learning (Angelidis and Lap-
ata 2018). However, such cascade implementation will drag
performance greatly because sentiment features and satis-
faction features will interfere with each other. Liu et al.
(2021b) considered users’ negative sentiments as unsatisfied
signals to handover chatting from machine to human. Their
shared-bottom implementation alleviates previous problem
by simply introducing separate shallow fully-connected lay-
ers to derive task-specific utterance features from the same
inputs. Despite the effectiveness of incorporating sentiment
clues on USE in previous works, there are several issues that
remain to be tackled. (i) The performance of task models
is influenced by the task-specific input features. Because
the shared utterance features can exist in the task private
space and the task-specific features creep into the shared
space (Zhou et al. 2021). (ii) The task models should in-
teract with each other via soft-parameter sharing instead of
hard-parameter sharing. Because the later will produce sub-
optimal utterance representation for downstream tasks. (iii)
Turn-taking modeling across different speakers is necessary,
which determines whether sentiment and topics of the con-
secutive utterances are consistent. For instance, given a neg-
ative utterance from a user, if the following utterance is from
a service staff, then the following sentiment is likely to be
positive or neutral; however, if there is no change in speak-
ers, then the sentiment is probably still negative.

In this paper, we address the joint user satisfaction estima-
tion and sentiment analysis by proposing a novel and exten-
sible Speaker Turn-Aware Multi-Task Adversarial Network
(STMAN) model, which contributes in three ways:
• We propose a novel multi-task adversarial strategy which

uses a task discriminator to differentiate task-specific ut-
terance features explicitly by classifying each utterance
into different task categories, i.e, USE and SA.

• We propose a novel speaker-turn aware interaction strat-
egy which can extract the common sentiment features of
each utterance while each task can still learn its task-
specific semantic and speaker-turn change features.

• Extensive experiment conducted on two real-world dia-
logue datasets validate the effectiveness of our approach.

Related Work
User Satisfaction Estimation. User satisfaction, which is
related to fulfillment of a specified desire or goal, is essential
in evaluating and improving user-centered goal-oriented di-
alogue systems. Song et al. (2019) studied the question-and-
answer utterance matching within dialogues and proposed
a context assisted multiple instance learning model to pre-
dict user satisfaction. Yao et al. (2020) conducted a more
in-depth exploration of the interactive relationship of multi-
ple rounds of human-computer interaction. They introduced
personal historical dialogue to model satisfaction bias. How-
ever, both the methods predict satisfaction solely based on
content features. Therefore, several efforts have been made
on modeling user satisfaction from temporal user behav-
iors or actions when interacting with the systems (Mehro-
tra et al. 2019; Liu et al. 2021b; Deng et al. 2022). Mehro-
tra et al. (2019) extracted informative and interpretable ac-
tion sequences (e.g., Click, Pause, Scroll) from user interac-
tion data to predict user satisfaction towards the search sys-
tems. Liu et al. (2021b) conducted machine-human chatting
handoff and service satisfaction analysis jointly. Deng et al.
(2022) leveraged the sequential dynamics of dialogue acts to
facilitate USE in goal-oriented conversational systems via a
unified joint learning framework. However, these methods
utilize task-specific features in a rough way, thus producing
sub-optimal utterance representation for downstream tasks.

Dialogue Sentiment Analysis. This task assigns a proper
sentiment label to each utterance within any dialogue. Wang
et al. (2020) learned topic enriched utterance representa-
tions for utterance-level sentiment classification. Qin et al.
(2021) treated an utterance as a vertex and added an edge
between utterances of the same speakers to construct cross-
utterances connections; such connections are based on spe-
cific speaker roles. Majumder et al. (2019) kept track of the
individual party states throughout the conversation and used
this information for emotion classification. However, such
personalized models have low generalizability because they
are severely limited by large amounts of learnable person-
related parameters. Previous methods incorporate speaker
information by proposing more complex and specialized
models, which inevitably introduce a large number of pa-
rameters to train. Recently, He et al. (2021) considered
speaker-aware turn changes by concatenating turn embed-
ding and utterance embedding together in a rough way. Here,
we utilize sentiment states of speakers to assist with user sat-
isfaction estimation, which is rarely studied before.

Multi-Task Learning. USE and SA can be studied in a
joint framework. Bodigutla et al. (2020) proposed to jointly
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Figure 2: The architecture of Basic model.

predict turn-level labels and dialogue-level ratings, which
used a BiLSTM variant to weight each turn’s contribution
towards the ratings. Ma, Gao, and Wong (2018) proposed a
joint framework that unifies two highly pertinent tasks. Both
tasks are trained jointly using weight sharing to extract the
common and task-invariant features. However, these frame-
works can not be directly adapted to our dialogue scenario
well. Firstly, the same dialogue inputs should be treated in a
more task-specific way. Secondly, speaker turn change infor-
mation is ignored, which determines whether sentiment and
topics of the consecutive utterances are consistent. Finally,
features should be shared in a more controllable way.

Basic Multi-Task Learning Network
Figure 2 shows the overall architecture of our basic model,
which consists of four components. This paves way for in-
troducing our fully configured model.

Shared Utterance Encoder
Let any dialogue D as [s1, s2, ..., sL], where L is the number
of consisted utterances. The shared utterance encoder Enc
is established to map each utterance st ∈ D to a latent rep-
resentation: vt = Enc(st), where function Enc can be a
standard BiLSTM (Schuster and K.Paliwal 1997) with atten-
tion mechanism (Song et al. 2019; Liu et al. 2021b) or pre-
trained language models, like BERT (Devlin et al. 2019).
Thus, the dialogue D can be represented as a list of utter-
ance vectors, i.e., V = [v1,v2, ...,vL]. Here, we omit the
details of the shared utterance encoder due to limited space.

Multi-Task Interactive Layer
The performance of task models is influenced by the task-
specific features. We first apply two dense layers over the
shared utterance vectors V respectively to make them task-
specific, which can be formulated as below:

Xm = Densem(V) , Xa = Densea(V) (1)

where vectors Xm = {xm
1 ,xm

2 , ...,xm
L } and Xa =

{xa
1 ,x

a
2 , ...,x

a
L}, superscripts “m” and “a” denote the main

(USE) and auxiliary (SA) tasks, respectively. To model the
correlations between the separate tasks, we adopt a multi-
task interaction strategy which consists of two hidden layers
for each task: one is used to extract the common patterns
via the shared parameters, and the other is used to capture
task-specific features via the separate parameter sets. Ac-
cordingly, each task is assigned a shared GRU layer and a
task-specific GRU layer, which hopefully can be used to cap-
ture the shared and task-private representations for different
tasks. For the main task, the USE-specific features Xm are
fed into a soft-parameter sharing standard GRUs unit (Cho
et al. 2014). Meanwhile, we use a variant GRUm unit for
producing USE-specific utterance representations based on
Xm and outputs of GRUs. The GRUs and GRUm units are
formulated as below:

hs
t = GRUs

(
hs
t−1,x

m
t

)
hm
t = GRUm

(
hm
t−1,h

s
t ,x

m
t

) (2)

where the hidden output hm
t ∈ RK of the GRUm unit at step

t is dependent on the hidden state hs
t ∈ RK from the sharing

layer, the previous hidden state hm
t−1 from the USE-specific

layer, and the current input xm
t . The hidden state hm

t of our
GRUm can be computed as below:

rmt = δ
(
Wm

r xm
t +Um

r hm
t−1 +Usm

r hs
t

)
zmt = δ

(
Wm

z xm
t +Um

z hm
t−1 +Usm

z hs
t

)
ĥm
t = τ

(
Wm

h xm
t +Um

h (hm
t−1 ⊙ rmt ) +Usm

h hs
t

)
hm
t =

(
1− zmt

)
⊙ hm

t−1 + zmt ⊙ ĥm
t

(3)

where Usm
∗ denotes the weight matrix which connects the

sharing layer and the task-specific layer, Wm
∗ and Um

∗ are
similar to the parameters of GRUs, δ(·) is the sigmoid func-
tion, τ(·) is the hyperbolic tangent function and ⊙ is the
hadamard product. For the auxiliary SA task, we also have
the similar operation via the GRUs from the sharing layer
and a GRUa from a SA-specific layer as below:

hs
t = GRUs(hs

t−1,x
a
t )

ha
t = GRUa(ha

t−1,h
s
t ,x

a
t )

(4)

Decoder for User Satisfaction Estimation
User satisfaction is influenced by role and position informa-
tion (Song et al. 2019; Liu et al. 2021b). Intuitively, user
satisfaction is more related to the utterances of users rather
than that of service staffs who usually express positive and
neutral emotions, and utterances at the end of a dialogue tend
to reflect the user’s final attitude. Thus, we first adopt a role-
selected mask mechanism to reserve the hidden states of all
the user utterances and then produce a user-specific vector.
Besides, we measure the importance of each user utterance
through a scoring function as below:

ut = tanh(Wuh
m
t + bu)

αt =
exp

(
maskr

(
uT
tUu

))
∑L

k=1 exp
(
maskr

(
uT
kUu

)) (5)

13584



where Wu ∈ RH×K , bu ∈ RH and Uu ∈ RH are train-
able model parameters, function maskr(x) returns value x
if speaker role r = user, otherwise −∞. Therefore, we ob-
tain the user-specific vector via the weighted sum of the hid-
den states of all the user utterances. In order to balance roles
and positions, the final dialogue representation can be ob-
tained by concatenating the user-specific vector and the last
hidden output of GRUm as follow:

om =
[( ∑

t∈[1,L]

αth
m
t

)
,hm

L

]
(6)

where [, ] denotes the vector concatenation, the vector om ∈
R2K will be input into a linear layer and then a softmax layer
for obtaining user satisfaction estimation as below:

pm = softmax(Wmom + bm) (7)
where Wm ∈ R|Ω|×2K and bm ∈ R|Ω| are learn-
able model parameters, and user satisfaction labels Ω =
{unsatisfied,met, well satisfied}.

Decoder for Sentiment Analysis
For the SA task, each utterance vector ha

t ∈ RK from GRUa

unit will be first input into a linear layer and then a softmax
layer for calculating the sentiment probability pa

t ∈ R|G|:
pa
t = softmax(Waha

t + ba) (8)
where Wa ∈ R|G|×K , ba ∈ R|G| are learnable parameters,
G = {negative, neutral, positive} are sentiment classes.

The Training Procedure
For the USE and SA tasks, we have the single-task loss func-
tions LUSE and LSA, respectively, in Formula 9. To train
our multi-task basic model, we sum the above loss functions
up as the final multi-task loss function:

LTask = −
∑
l∈Ω

gm
l log(pm

l )︸ ︷︷ ︸
LUSE in main task

− 1

L

∑
s∈D

∑
l∈G

ga
sl log(p

a
sl)︸ ︷︷ ︸

LSA in auxiliary task

(9)

where gm
l and pm

l are respectively the ground truth and
the predicted probability corresponding to the l-th satisfac-
tion class. ga

sl and pa
sl are respectively the ground truth and

the predicted probability corresponding to the l-th sentiment
class for each utterance. We use back propagation to calcu-
late the gradients of all the trainable parameters, and update
them with momentum optimizer (Qian 1999).

STMAN: Speaker Turn-Aware Multi-Task
Adversarial Network

In conventional multi-task learning, the performance of task
models is influenced by the task-specific features. Intu-
itively, the dense layers in Basic model can not produce task-
specific features well without supervision signals. Thus, we
introduce additional Multi-Task Adversarial Layer which
uses a Task Discriminator to differentiate task-specific input
features explicitly. Besides, we consider speak-turn change
information and introduce additional Speaker Turn-Aware
MT Interactive Layer. Finally, we build a novel and exten-
sible Speaker Turn-Aware Multi-Task Adversarial Network
(STMAN) and display its architecture in Figure 3.
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Figure 3: The architecture of our enhanced model: STMAN.

ST-Aware MT Interactive Layer
Different from speaker role-based methods (Qin et al. 2020),
our method focuses on speaker turns and thus is still useful
when speakers are not associated with specific roles. Specifi-
cally, we relabel the speakers and flip the speaker label (from
0 to 1 and vice versa) when there is speaker turn change.
For the example in Figure 1, if the original speaker se-
quence is <U,S,U,S,U,S,U,U,S>2, the relabeling sequence
is <0,1,0,1,0,1,0,0,1>, which can be represented by the two
introduced speaker turn embeddings in further. Given the ut-
terance representation x∗

t and its binary speaker turn label
rst ∈ {0, 1}, we have role enhanced utterance representa-
tion [x∗

t , ct], where ct = Emb(rst) denotes any speaker
turn embedding and ct ∈ RZ . Finally, the task-specific GRU
units in Formulas 2 and 4 can be reformulated as below:

hm
t = GRUm

(
hm
t−1,h

s
t , [x

m
t , ct]

)
ha
t = GRUa

(
ha
t−1,h

s
t , [x

a
t , ct]

) (10)

Obviously, hm
a and ha

t contain speaker turn change informa-
tion, which are helpful for downstream USE and SA tasks.

MT Adversarial Layer
Without any supervised signals, the two dense layers (see
Formula 1) can not differentiate task-specific features accu-
rately, thus the shared features can exist in the task private
space and the task-specific features creep into the shared
space. Intuitively, adversarial learning can be further applied
to multi-task learning, thus task-specific features Xm and
Xa will be more distinguishable. Here, we introduce a Task
Discriminator (TD). Specifically, we exploit the min-max
game between the shared utterance encoder and the task-
specific dense layer with the task discriminator (Goodfellow
et al. 2014). TD is composed of a GRU layer stacked with
a softmax layer to estimate what kind of tasks the utterance
representations come from, i.e., it maps the task-specific fea-
tures into a probability distribution pk ∈ R|K|, where task
type k ∈ K and K = {USE, SA}. Thus, we use a task

2U denotes a user and S represents a service staff.
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Algorithm 1: Multi-Task Adversarial Learning
Input: Training set {D};
Initialized Parameters: shared utterance encoder θEnc, task pri-
vate decoders {θk|k ∈ K} and task discriminator θTD;
1: for mini-batches in {D} do
2: Minimize LAdv in Eq. 11 to update θEnc;
3: Maximize LAdv in Eq. 11 to update θTD and {θk};
4: end for
5: for mini-batches in {D} do
6: Minimize LTask in Eq. 9 to update all the trainable param-

eters except for θTD;
7: end for

Output: The well trained θEnc, θTD and {θk}

Statistics items Clothes Makeup
# Dialogues 10,000 3,540
# US (unsatisfied) 2,302 1,180
# MT (met) 6,399 1,180
# WS (well satisfied) 1,299 1,180
# Utterances 123,242 46,255
# NG (negative) 12,619 6,130
# NE (neutral) 97,380 33,158
# PO (positive) 13,243 6,976

Table 1: The statistics of the two benchmark datasets.

adversarial loss LAdv to limit the task-specific features into
their private feature space, which is defined as follow:

LAdv = min
θEnc

(
max

θTD, θk

∑
s∈D

∑
l∈K

gk
sl log

(
pk
sl

))
(11)

where gk
sl and pk

sl are respectively the ground-truth and the
predicted probability corresponding to the l-th task class
for each utterance in the dialogue D. θEnc, θTD and {θk}
are the learnable parameters of Shared Utterance Encoder,
Task Discriminator and respective Decoders. And the whole
training procedure is shown in algorithm 1.

Experiments and Results
In this section, we conduct extensive experiments on two
publicly available service dialogue datasets to evaluate the
effectiveness of our approach. Clothes and Makeup datasets
are collected by Song et al. (2019) from E-commerce plat-
form taobao.com and split into training/development/testing
sets with splits 8/1/1. The Clothes is a larger imbalanced
dataset and the Makeup is a smaller balanced dataset. The
statistics of datasets are given in Table 1.

Experimental Settings
We encode utterances with BiLSTM as that used in works
(Song et al. 2019; Liu et al. 2021b) because BERT-based
encoder is a sub-optimal choice considering different types
of pre-training corpus. Trainable model parameters are ini-
tialized by sampling values from a uniform distribution
U(−0.01, 0.01). The hyper-parameters are tuned to the best
on the development set. The size of hidden states K is 100,
speaker turn embedding size Z is 100, H is 50, the dropout

rate is 0.2, the learning rate is 0.1, the learning rate decay
is 0.8, the batch size is 32 and the number of epochs is 30.
We use Macro F1 and Accuracy as the evaluation metrics.
Our programs are implemented by tensorflow3 and run on a
server configured with a Tesla V100 GPU, 2 CPU and 32G
memory. All the resources are publicly available4.

Comparative Study
In Table 2 and Table 3, we compare our approach with sev-
eral state-of-the-art USE single-task models (1-4) and the
multi-task models (5-8) over the two dialogue datasets.
• BERT+LSTM encodes each utterance with BERT-based

encoder and uses the last hidden state of LSTM for satis-
faction estimation (Liu et al. 2021b).

• MILNET represents a Multiple Instance Learning Net-
work for document-level and sentence-level sentiment
analysis (Angelidis and Lapata 2018). In Song et al.
(2019), USE is considered as a special SA task by treat-
ing dialogue as document and utterance as sentence.

• CAMIL is a Context-Assisted Multiple Instance Learn-
ing model which predicts the utterance-level sentiments
of all the user utterances and then aggregates the senti-
ments into user satisfaction estimation (Song et al. 2019).

• SLUP denotes a session-level user satisfaction estima-
tion method trained on a sequence of question-answer
pairs. To adapt to this method, we produce Q-A pairs by
considering consecutive user utterances as questions and
consecutive staff utterances as answers (Yao et al. 2020).

• MT-ES is an Enhanced Shared-layer Multi-Task archi-
tecture with two hidden layers: one is used to extract the
common patterns via the shared parameters, and the other
is used to capture task-specific features via the separate
parameter set (Ma, Gao, and Wong 2018).

• MT-US is a simplified version of MT-ES with the uni-
form shared-layer (Cerisara et al. 2018). This belongs to
a kind of shared-bottom multi-task model.

• Meta-LSTM is a shared meta-network to capture the
meta-knowledge of semantic composition, which con-
ducts text classification and sequence tagging (Chen et al.
2018). We input the utterance vectors directly, and output
dialogue-level USE label and utterance-level SA labels.

• RSSN conducts machine-human chatting handoff (i.e.,
transferable or normal) and service satisfaction analysis
jointly. For the three-class SA task, RSSN is tailored and
tuned best on the development sets (Liu et al. 2021b).

Note that MILNET and CAMIL output utterances’ senti-
ment predictions implicitly derived from satisfaction labels.

Results and Analysis: From Table 2 and Table 3, we
can find MILNET performs worse than SLUP because it ig-
nores dialogue structure information. SLUP achieves sub-
stantial improvements by modeling dialogue interactions
precisely, but it still ignores the usage of sentiment knowl-
edge. CAMIL performs better than BERT+LSTM by aggre-
gating sentiment predictions directly into satisfaction po-
larity, however its cascade structure may introduce noisy

3https://tensorflow.google.cn/
4https://sites.google.com/view/ssa-sa/
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USE (main) SA (auxiliary)Methods
Macro F1 Accuracy Macro F1 Accuracy

BERT+LSTM (Liu et al. 2021b) 67.90 75.50 - -
MILNET (Song et al. 2019) 63.81 75.34 55.32 71.33
SLUP (Yao et al. 2020) 66.56 75.70 - -
CAMIL (Song et al. 2019) 70.40 78.31 64.44 82.43
MT-US (Cerisara et al. 2018) 68.25 74.60 80.10 92.65
MT-ES (Majumder et al. 2019) 68.04 74.20 80.19 90.78
Meta-LSTM (Chen et al. 2018) 69.05 77.40 80.08 92.56
RSSN (Liu et al. 2021b) 69.51 77.20 80.29 91.15
STMAN (See Figure 3) 71.11 78.60 81.90 93.05

Table 2: Comparison among different models on Clothes.

USE (main) SA (auxiliary)Methods
Macro F1 Accuracy Macro F1 Accuracy

BERT+LSTM (Liu et al. 2021b) 74.80 74.80 - -
MILNET (Song et al. 2019) 75.30 75.19 41.71 41.09
SLUP (Yao et al. 2020) 76.31 76.28 - -
CAMIL (Song et al. 2019) 78.60 78.59 59.54 64.73
MT-US (Cerisara et al. 2018) 76.37 75.98 82.12 90.77
MT-ES (Majumder et al. 2019) 76.06 76.83 80.51 89.96
Meta-LSTM (Chen et al. 2018) 76.65 76.55 80.13 90.48
RSSN (Liu et al. 2021b) 79.18 79.17 83.36 90.42
STMAN (See Figure 3) 80.11 80.22 84.18 91.54

Table 3: Comparison among different models on Makeup.

features. MT-US, MT-ES and Meta-LSTM are typical MT
models, which perform not as well as RSSN because they
are general frameworks and ignore dialogue structure which
influences model performance greatly. Compared with all
these baselines, our STMAN achieves the best results in
both the tasks because it obtains better task-specific features
by MT adversarial strategy and models utterance interaction
well by ST-aware MT interaction strategy.

Ablation Study
Different model configurations can largely affect the model
performance. In Table 4, we implement several model vari-
ants for ablation study by removing (“-”) and adding (“+”)
different model components. Basic is the basic method ig-
noring all the strategies (see Figure 2). Basic-Mask re-
moves mask operation in Formula 5 and reserves all the
speakers’ utterances. Basic-Aux removes auxiliary SA task.
Basic+TD enhances Basic by considering task discrimina-
tor. Basic+ST enhances Basic by considering speaker turn
changes. Basic+TD+ST is our fully configured model.

From Table 4, we can find that Basic model performs bet-
ter than Basic-Mask and Basic-Aux, which validates the
usefulness of considering user utterances and speaker senti-
ments. Basic+ST perform better than Basic because speaker
turn change provides helpful clues for utterance representa-
tion. Although TD is a simple classifier and its capability
can be limited, Basic+TD still contributes stable and con-
sistent performance improvements. The performance of Ba-
sic+TD+ST performs best among all these methods, which
implies the effectiveness of different components.

USE (main) SA (auxiliary)Methods on Clothes
Macro F1 Accuracy Macro F1 Accuracy

Basic (See Figure 2) 67.67 74.40 81.05 92.36
Basic-Mask 67.29 73.70 79.70 92.26
Basic-Aux 67.03 73.31 - -
Basic+TD 68.92 75.80 81.52 92.64
Basic+ST 69.53 76.70 81.54 92.48
Basic+TD+ST (STMAN) 71.11 78.60 81.90 93.05

USE (main) SA (auxiliary)Methods on Makeup
Macro F1 Accuracy Macro F1 Accuracy

Basic (See Figure 2) 78.69 78.71 83.01 88.96
Basic-Mask 77.12 77.11 82.41 88.62
Basic-Aux 74.64 74.57 - -
Basic+TD 79.05 79.09 83.03 91.30
Basic+ST 79.03 79.05 83.30 91.22
Basic+TD+ST (STMAN) 80.11 80.22 84.18 91.54

Table 4: Comparison among different model configurations.
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Figure 4: The influences of TD on USE and SA tasks.

Influences of Adversarial Learning
To investigate the influences of our multi-task adversar-
ial learning strategy, we perform a in-depth study on
Task Discriminator (TD). Specifically, we randomly sam-
ple x% (x = 0, 25, 50, 75, 100) training instances from
the original training set, and further study the testing perfor-
mance of USE and SA tasks, respectively. The experimental
results are displayed in Figure 4.

From Figure 4, we can find that our method performs bet-
ter as the size of training data increases. Our method per-
forms worst when x = 0 because TD is not trained and it can
not differentiate between USE and SA tasks. Our method
performs quite well when x ≥ 75 because TD achieves
stable classification performance, which indicates that input
features are more task-specific.

Correlation between USE and SA
To gain further insight into the correlation between USE and
SA tasks, we enumerate all the (initial/final user sentiment,
user satisfaction) combinations and calculate its proportion
over the two datasets. Note that the initial/final user senti-
ment corresponds to the first/last user utterance in any dia-
logue. Figure 5 displays the statistical results, from which
we can find some interesting patterns: (i) Initial/final neu-
tral sentiment will trigger any user satisfaction class, which
is more intuitive on the Makeup dataset. (ii) Initial negative
sentiment is not effectively alleviated, but it gets worse at
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Figure 5: The proportion of all the (initial/final user senti-
ment, user satisfaction) combinations over the datasets.

Clothes MakeupMethods
Macro F1 Accuracy Macro F1 Accuracy

Initial-User-Sentiment 53.83 68.60 43.23 47.74
Final-User-Sentiment 65.96 72.30 64.51 64.40
STMAN 71.11 78.60 80.11 80.22

Table 5: Initial/final user sentiments versus user satisfaction.

the end. Because the proportion of (US, NG) increases from
7.2% to 15.3% on Makeup and 8.7% to 12.9% on Clothes,
respectively. (iii) Compared with initial sentiment, final sen-
timent plays more critical roles on deciding the user satis-
faction. Specifically, we directly map the initial/final neg-
ative, neutral and positive sentiment to the corresponding
user satisfaction, i.e., unsatisfied, met and satisfied, respec-
tively. Given final sentiment, the total proportion of (US,
NG), (MT, NE) and (WS, PO) combinations is significantly
larger that under initial sentiments. All these verify that USE
and SA are correlated tasks and can be learned together.

Besides, we follow the heuristic sentiment-satisfaction
mapping method introduced above, and display the exper-
imental results in Table 5. From the results, we can find that
although SA and USE are highly pertinent tasks, sentiments
can not be mapped to the user satisfaction directly, especially
for met satisfaction which has less connection with senti-
ments. This again verifies that SA task only provides limited
helpful sentimental clues to assist with USE.

Case Study
To better understand the usefulness of our model, we choose
three example dialogues from Clothes testing set and display
the prediction results of Meta-LSTM, RSSN and STMAN in
Table 6. The original Chinese dialogues have been translated
into English dialogues for understandability. We denote user
as “U” and service staff as “S” to differentiate speakers.

For the 1st example, the user expresses negative sentiment
in the beginning, but he is well comforted and expresses neu-
tral sentiment in the end after the service staff explains the

Exemplar Dialogues (Chinese → English)
U: Can you speed up logistics? Too slow! (NG,NG,NG,NG)

S: The logistics is running normally. (NE,NE,NE,NE)
——-Omit staff explanation——-

U: Try to help me speed up the progress. (NG,NG,NE,NE)
S: Dear, I’ll try my best to give feedback. (PO,PO,PO,PO)

S: Thanks for your support! Bye! (PO,PO,PO,PO)
Meta-LSTM:US RSSN:US STMAN:MT Truth:MT

U: Hello! (NE,NE,NE,NE)
S: What can I do for you, dear? (PO,PO,PO,PO)

U: What about the back of the pants?
Do you have any pictures? (NE,NE,NE,NE)

S: Dear, there is no real picture here. (PO,PO,PO,PO)
S: Dear, please check other people’s reviews. (PO,PO,PO,PO)

U: If you don’t know your product, how can you
introduce it to your customers? ? (NE,NE,NG,NG)

S: Not every item has pictures. :):) (PO,PO,PO,PO)
Meta-LSTM:MT RSSN:MT STMAN:US Truth:US

U: I don’t want ZTO Express. (NE,NE,NE,NE)
U: Are you there? (NE,NE,NE,NE)

S: Please wait a moment. (NE,NE,NE,NE)
——-No reply for a long time——-

U: ? ? ? (NE,NE,NE,NE)
Meta-LSTM:MT RSSN:MT STMAN:MT Truth:US

Table 6: The predicted results of three example dialogues
in Clothes. The sentiment and satisfaction are displayed in
Quadruple (Meta-LSTM, RSSN, STMAN, Truth).

reason very sincerely (detail content is omitted). However,
Meta-LSTM and RSSN mispredict the 3rd utterance which
is similar to the 1st utterance in content. For the 2nd ex-
ample, Meta-LSTM and RSSN can not predict the correct
sentiment of 6th utterance which implies accusation. For the
3rd example, all the three methods make wrong predictions
because it lacks of useful information and its sentiment is
dependent on time factor which is not considered in model-
ing. For the hard-to-solve case, we leave it for future study.

Conclusion and Future Work
In this paper, we propose a novel and extensible STMAN
for joint USE and SA. Firstly, we introduce a basic model
which adopts two hidden layers for each task: one is used
to extract the common patterns via the shared parameters,
and the other is used to capture task-specific features via the
separate parameter set. Then, we enhance the basic model
by introducing speak turn information to enhance the inter-
action layer. Finally, we introduce a multi-task adversarial
strategy which makes inputs more task-specific via a task
discriminator. Experiments conducted on two public service
dialogue datasets indicate the effectiveness of our approach.

In the future, we will investigate how to estimate user sat-
isfaction in low-resource scenario.
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