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Abstract

Distantly-Supervised Named Entity Recognition (DS-NER)
effectively alleviates the data scarcity problem in NER by
automatically generating training samples. Unfortunately, the
distant supervision may induce noisy labels, thus undermin-
ing the robustness of the learned models and restricting the
practical application. To relieve this problem, recent works
adopt self-training teacher-student frameworks to gradually
refine the training labels and improve the generalization abil-
ity of NER models. However, we argue that the perfor-
mance of the current self-training frameworks for DS-NER
is severely underestimated by their plain designs, including
both inadequate student learning and coarse-grained teacher
updating. Therefore, in this paper, we make the first attempt
to alleviate these issues by proposing: (1) adaptive teacher
learning comprised of joint training of two teacher-student
networks and considering both consistent and inconsistent
predictions between two teachers, thus promoting compre-
hensive student learning. (2) fine-grained student ensemble
that updates each fragment of the teacher model with a
temporal moving average of the corresponding fragment of
the student, which enhances consistent predictions on each
model fragment against noise. To verify the effectiveness of
our proposed method, we conduct experiments on four DS-
NER datasets. The experimental results demonstrate that our
method significantly surpasses previous SOTA methods. The
code is available at https://github.com/zenhjunpro/ATSEN.

Introduction
Named Entity Recognition (NER) aims to detect entity men-
tions in the text and classify them into predefined types,
such as person, location, and organization. It is a fundamen-
tal task in information extraction and benefits many down-
stream NLP applications (e.g., relation extraction (Cheng
et al. 2021), co-reference resolution (Clark and Manning
2016), entity linking (Gu et al. 2021) and event extraction
(Zhu et al. 2022)). In recent years, deep supervised mod-
els (Li et al. 2022; Gu et al. 2022; Li et al. 2020) have
achieved superior success in the NER field. However, these
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Figure 1: (a) White House and Washington are incomplete
and inaccurate labels. (b) Previous method only considers
the consistent prediction parts from teachers, leading to in-
comprehensible student learning. (c) Coarse-grained student
ensemble absorbs a whole student without further consider-
ing fine-grained fragments in the model.

supervised NER methods demand a large amount of high-
quality annotation, which is extremely labor-intensive and
time-consuming as NER demands token-level annotation.

To solve this problem, Distantly-Supervised Named En-
tity Recognition (DS-NER) has attracted increasing atten-
tion. It automatically annotates training data based on ex-
ternal knowledge such as easily-obtained dictionaries and
knowledge bases, which effectively relieves the annotation
difficulty. Unfortunately, such a distant labeling procedure
naturally introduces incomplete and inaccurate labels. As
depicted in Figure 1 (a), “White House” is unlabeled be-
cause the distant supervision source has limited coverage
of the entity mentions. Meanwhile, “Washington” is inac-
curately labeled as this entity belongs to location types in
the distant supervision source. Due to the existence of such
noise in the distantly labeled data, straightforward applica-
tion of supervised learning will yield deteriorated perfor-
mance as deep neural models have a strong capacity of fit-
ting the given noisy data. Thus, the robustness and general-
ization of learned DS-NER models are restricted.
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To address the above challenges, several DS-NER mod-
els have been proposed. Shang et al. (2018) obtained high-
quality phrases and designed TieOrBreak architecture to
model those phrases that may be potential entities. Peng
et al. (2019) adopt PU learning to perform classification us-
ing only limited labeled positive data and unlabeled data.
However, these works mainly focus on designing network
architectures that can cope with the incomplete annotations
to partially alleviate the impact of the noisy annotations. Re-
cently, the self-training teacher-student framework is applied
to DS-NER tasks (Liang et al. 2020; Zhang et al. 2021) to
reduce the negative effect of both incomplete and inaccu-
rate labels. This self-looping framework first selects high-
confidence annotations from noisy labels to train the student
network, and then updates a new teacher by the trained stu-
dent. In this way, the training labels are gradually refined
and model generalization can be improved.

However, the above self-training methods have the fol-
lowing shortcomings: (1) inadequate student learning. As
shown in Figure 1 (b), previous methods only focus on the
consistent prediction from two teachers (Zhang et al. 2021)
or simply consider the high-confidence part from a single
teacher (Liang et al. 2020). In this way, these models tend
to learn uncomplicated mentions, and the entity recall rate
will decrease. (2) coarse-grained teacher updating. In Figure
1 (c), previous works absorb a whole student by exponential
moving average (EMA) (Zhang et al. 2021) or directly copy
the student as a new teacher (Liang et al. 2020) when up-
dating the teacher. Such coarse-grained ensemble methods
treat each model fragment equally while the noise sensitiv-
ity is diverse among different model fragments.

In this paper, we try to reconcile the above shortcom-
ings with our newly proposed Adaptive Teacher Learning
and Fine-grained Student ENsemble (ATSEN) for DS-NER.
Specifically, we first apply two teacher networks to provide
multi-view predictions on training samples. Then we pro-
pose an adaptive teacher learning which supervises agree-
ment predictions by cross-entropy loss and accommodates
disagreement parts with adaptive distillation. In this way,
the student can be trained with more comprehensive knowl-
edge. Subsequently, we update the new teacher with a fine-
grained student ensemble, which updates a fragment of the
teacher model with a temporal moving average of the cor-
responding fragment of the student. Therefore, the teacher
model achieves more robustness for noise. With both adap-
tive learning and fine-grained ensemble, ATSEN is more ef-
fective than previous methods. We evaluate ATSEN on four
DS-NER datasets. Experimental results demonstrate that our
method significantly outperforms previous approaches.

To sum up, the main contributions of this paper are:

• To our best knowledge, this paper presents the first at-
tempt to explore both agreement and conflicts among
multiple teachers for the DS-NER by adaptive teacher
learning, promoting comprehensive student learning.

• To further enhance the consistent prediction of model
fragments, we devise a novel fine-grained student en-
semble that stitches different fragments of previous stu-
dent models into a unity. In this way, the updated teacher

achieves a more robust generalization ability.
• On four benchmark DS-NER datasets (Conll03,

OntoNotes 5.0, WebPage, and Twitter), our ATSEN
outperforms existing approaches by significant margins.

Related Work
Traditionally, many works have been proposed for super-
vised named entity recognition. For instance, Huang, Xu,
and Yu (2015) utilized the BiLSTM as an encoder to learn
the contextual representation and then exploited Conditional
Random Field (CRF) as a decoder to label the tokens. More
recently, deep learning methods (Xiao et al. 2020; Qu et al.
2019) are introduced to different NLP fields, and strong
pre-trained language models such as ELMo (Peters et al.
2018) and BERT (Devlin et al. 2018) are incorporated to
further enhance the performance of NER. However, most of
these works rely on high-quality labels, which are expensive.
Meanwhile, the reliance on labeled data also limits their ap-
plications in open situations.
DS-NER To address the labeled data scarcity problem,
distantly-supervised named entity recognition methods are
proposed. AutoNER (Shang et al. 2018) proposed a se-
quence labeling framework TieOrBreak and modify the
standard CRF for adapting to the scenario of label noise.
Cao et al. (2019) promoted the quality of data by exploiting
labels in Wikipedia. AdaPU (Peng et al. 2019) employed
Positive-Unlabeled Learning to obtain unbiased estimation
of the loss value. Conf-MPU (Zhou, Li, and Li 2022) fur-
ther formulated the DS-NER problem via Multi-class Pos-
itive and Unlabeled (MPU) learning. BOND (Liang et al.
2020) adopted a teacher-student network to drop distant la-
bels and use pseudo labels to gradually improve the model
generalization ability. Similar to BOND, SCDL (Zhang et al.
2021) co-trained two teacher-student networks to form inner
and outer loops for coping with label noise. In this paper, we
propose a novel self-training framework to adaptively learn
from multiple teachers and achieve a fine-grained student
ensemble. In this way, our method achieves a more robust
ability for noise in the DS-NER task.
Teacher-Student Framework The teacher-student frame-
work is a popular architecture in many semi-supervised
(Huo et al. 2021) and self-supervised (Abbasi Kooh-
payegani, Tejankar, and Pirsiavash 2020) learning tasks, as
well as knowledge distillation (Hinton et al. 2015). Recently,
teacher-student framework attracts increasing attention in
both computer vision (He et al. 2020; Grill et al. 2020) and
natural language processing (Liang et al. 2020; Zhang et al.
2021). The teacher selects reliable annotations with devised
strategies for student training and then the new teacher is
updated based on the trained student. The optimization goal
is to ensure the prediction consistency between the student
and the teacher. In particular, there are several variants of
teacher-student networks proposed for DS-NER. BOND de-
vised a self-training teacher-student strategy that copies the
student as a new teacher. With this self-training loop, the
training pseudo labels are gradually refined. To improve the
quality of pseudo labels and remove noise, SCDL designs
two teachers and reaches an agreement between them to
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Figure 2: Overview of our proposed ATSEN. Only the updating process of student 1 and teacher 1 is shown and the renewing
process of student 2 and teacher 2 is similar. Specifically, the training corpus is first fed to two teachers and one student to obtain
corresponding logits. Then the reliable labels are selected to supervise the student with cross-entropy loss. Meanwhile, adaptive
distillation is adopted to further consider the disagreement tokens between teachers. Subsequently, a fine-grained ensemble is
applied to the trained students to obtain a new teacher model.

generate pseudo labels. Meanwhile, SCDL uses exponential
moving average (EMA) to update the teacher based on the
re-trained student. Following the self-training framework,
we further improve the training process of both the teacher
and student network to alleviate the noise problem.

Preliminaries
Here we briefly describe the task definition of DS-NER. For-
mally, given the training data D, where each sentence is de-
noted as (Xi, Y i). Xi is a token list that represents each
word, and Y i is the corresponding tag list in the form of
BIO schema. For DS-NER, we do not have access to human-
annotated true labels, but only distant labels by matching
unlabeled sentences with external dictionaries or knowledge
bases (KBs). Thus, Y i may not be the underlying correct
one. To generate distant labels, in this work, we follow the
previous work (Liang et al. 2020). The biggest challenge in
DS-NER is how to reduce the label noise in the training sam-
ples and train a robust NER model as there is much ambigu-
ity and limited coverage over entity types.

Method
In this work, considering the memory capacity and model
efficiency, we train two sets of teacher-student networks in-
stead of more pairs while our method can easily extend to
more pairs. The main procedure is shown in Figure 2.

Overall Framework

The training procedure can be divided into three stages:
(1) Pretraining with initial noisy labels. In this stage, we
train two NER models (θ1, θ2) using the distant labels. These
two models have different architectures in this work. Then,
we duplicate these two models for the initialization of two
sets of teacher networks, namely θt1 = θ1 and θt2 = θ2.

The training target of θ1 and θ2 is:

L(θ) = − 1

MN

M∑
i=1

N∑
j=1

∗
y
i

j log(p(y
i
j |Xi; θ)) (1)

where M is the number of sentences in the training corpus

and N is the token number in each sentence.
∗
y
i

j means the
distant label of j-th token of the i-th sentence.
(2) Training student with adaptive teacher learning. In
this phrase, we select reliable labels by predictions of teach-
ers from the first stage and supervise the students with cross-
entropy loss. Meanwhile, considering the potential conflicts
or competitions that exist among teachers, we investigate
the diversity of teachers in the gradient space and recast
the knowledge distillation from two teachers as a multi-
objective optimization problem so that we can determine
a better optimization direction for the training of student.
To this end, an adaptive knowledge distillation loss is also
adopted in this stage.
Reliable Labels Selection. Without any prior knowledge
about which tokens are mislabeled or unlabeled, it is chal-
lenging to automatically detect them. Here we adopt two
strategies to select reliable labels. (i) Consistent Prediction.
The first token selection strategy is based on the pseudo la-
bels prediction consistency between two teachers.

(Xi, Y i)CP = {(xj , yj)|yj = (yj,t1 == yj,t2)} (2)

where yj,t1, yj,t2 are predicted one-hot pseudo labels on
training corpus for two teachers. If two teacher models pre-
dict the same labels on specific tokens, then the labels of
these tokens are set to corresponding labels. Meanwhile, if
two teacher models have different predictions, the labels of
tokens will be set to the “O” label. (ii) Threshold Predic-
tion. We propose a simple threshold-based strategy to fur-
ther filter reliable labels as the tokens with high confidence
are more likely to be reliable. For teacher t1,

(Xi, Y i)TP = {(xj , yj)|max(pj,t1) > σ1} (3)
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where σ1 is the confidence threshold, pj,t1 is the label dis-
tribution of the j-th token predicted by the teacher t1. Thus,
the tokens with label confidence lower than σ1 will also be
set to “O” labels. After these two steps, we can obtain reli-
able labels Y . With these reliable labels, we can supervise
the student models with the cross-entropy loss as follows:

Lce(θ) = − 1

MN

M∑
i=1

N∑
j=1

yij log(p(y
i
j |Xi; θ)) (4)

Adaptive Distillation The above selection procedure only
considers consistent parts between two teachers while the
conflicts among teachers are not squared up. To handle
the inner conflicts, we formulate ensemble knowledge from
teachers as a multi-objective optimization (MOO) problem
(Sener and Koltun 2018) and use multiple gradient descent
algorithms (MGDA) to probe a Pareto optimal solution that
accommodates all teachers as much as possible.

Specifically, we first formally introduce the standard
knowledge distillation loss which encourages the logits of
the student network to mimic the teacher network:

Lt
kd(θ) = H(ps, pt) = H(σ(as;T ), σ(at;T )) =

−
K∑

k=1

ptlogps[k] = −
〈
pt, logps

〉 (5)

where σ is softmax operation, as and at are the logits of
student and teacher networks, T is the temperature to soften
the logits. K is the number of classification types. H(·, ·)
is the cross-entropy loss to measure the discrepancy of soft-
ened probabilistic output between the student and teacher. In
this work, we have two teachers, thus the naive solution for
distilling from two teachers is:

Lkd(θ) = Lt1
kd(θ) + Lt2

kd(θ) = H(ps, pt1) +H(ps, pt2)
(6)

However, conservatively accepting the directions from
all teachers, i.e., accumulating the separate distillation loss
from each teacher, is not a good option, since the diversity of
teachers could be significant and there might be some weak
or noisy teachers mingled in the ensemble. When distilling
knowledge from multiple teachers, we need to incorporate
the disagreement into the determination of the descent direc-
tion. Recently, a novel method is proposed to find one single
Pareto optimal solution with a good trade-off among con-
flicting optimization targets. Following (Sener and Koltun
2018; Lin et al. 2019), we can reformulate the Pareto solu-
tion of learning from two teachers as a linear scalarization
of tasks with adaptive weight assignment as follows:

L(θ) = α1L
t1
kd + α2L

t2
kd (7)

where we adaptively assign the weights αm by solving the
following problem in each iteration:

min
1

2
||

M∑
m=1

αm∇θL
m
kd(θ

τ )||2, s.t.

M∑
m=1

αm = 1, 0 ≤ αm ≤ C, ∀m ∈ [1 : M ]

(8)

where C > 0 is the regularization parameter, and M is the
number of teachers. Lm

kd(θ
τ ) is the knowledge distillation

loss at Eq. 5 corresponding to the student and m-th teacher.
θτ is the parameter of the student network at iteration τ .
Considering that calculating the gradient over parameters θτ
can be fairly time-consuming. Following (Sener and Koltun
2018), we turn to its upper bound:

min
1

2
||

M∑
m=1

αm∇ZLm(θτ )||2, s.t. (9)

where
∑M

m=1 αm = 1, 0 ≤ αm ≤ C, ∀m ∈ [1 : M ], Z is
the feature over the corresponding teacher. In this way, Eq.
9 is a typical One-class SVM problem and can be solved by
LIBSVM (Chang and Lin 2011). More intuitively, as shown
in Figure 2, we first compute the standard distillation loss ac-
cording to the student logit and each teacher logit. Through
the back-propagation algorithm, we can obtain the gradients
corresponding to each teacher for the student model. Sub-
sequently, we solve the loss weights through the gradients
with the LIBSVM tool.

Finally, the total training loss for the student model in the
second stage is:

L(θ) = Lce(θ) + αLt1
kd(θ) + (1− α)Lt2

kd(θ) (10)

(3) Updating teacher with fine-grained student ensemble.
After training the students, we devise a fine-grained student
ensemble to update the parameters of the teachers. Before
describing the concrete fine-grained ensemble, we first in-
troduce a preliminary version, named segment ensemble
(SE). During each iteration, the segment ensemble picks up
some units of the student model to replace the correspond-
ing units of the teacher model, leaving the remaining parts
of the teacher unchanged. Formally, at iteration τ ,

θt(τ) = {|Pi < σ2|θti(τ − 1) + (1− |Pi < σ2|)θsi (τ)}
(11)

where Pi is random probability distribution in [0,1] for the
i-th unit of the teacher which is independent of each other.
If Pi < σ2, then |Pi < σ2| = 1, the i-th unit parameter
of teacher is to be preserved. In our paper, each unit cor-
responds to one network layer of the student network. The
motivation of our segment ensemble is from Dropout (Sri-
vastava et al. 2014) while Dropout works when training a
network.

Subsequently, the segment ensemble can further integrate
with EMA to incorporate temporal property. Here we first
review the traditional EMA strategy:

θt(τ) = {mθt(τ − 1) + (1−m)θs(τ)} (12)
where m denotes the smoothing coefficient. As shown in this
equation, EMA treats the model as a whole. We can integrate
these two ensemble methods as fine-grained ensemble:

θτ (τ) = {|Pi < σ2|θt(τ − 1) + (1− |Pi < σ2|)mθti(τ − 1)

+ (1− |Pi < σ2|)(1−m)θsi (τ)}
(13)
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Algorithm 1: ATSEN training.

Input: Training corpus D = {(Xi, Yi)}Mi=1 with noisy labels
Parameter: Two network parameters θt1 , θs1 , θt2 , and θs2
Output: The best model
1: Pre-training two models θ1, θ2 with D. ▷Pre-Training.
2: θt1 ← θ1, θt2 ← θ2, step← 0.
3: Initialize noisy labels: YI ← Y, YII ← Y .
4: while not reach max training epochs do
5: Get a batch (X(b), Y

(b)
I , Y

(b)
II ) from D,

step← step+ 1. ▷Self-Training.
6: Get pseudo-labels via the teacher θt1 , θt2 :

Ỹ
(b)
I ← f(X(b); θt1),

Ỹ
(b)
II ← f(X(b); θt2).

7: Get reliable tokens by Eq. 2 and Eq. 3:
T (b)
I ← TokenSelection(Y (b)

I , Ỹ
(b)
I ),

T (b)
II ← TokenSelection(Y (b)

II , Ỹ
(b)
II ).

8: Update the student θs1 and θs2 by Eq. 10.
9: Update the teacher θt1 and θt2 by Eq. 13.

10: Update noisy labels mutually:
YI = {Yi ← f(Xi; θt2)}Mi=1,
YII = {Yi ← f(Xi; θt1)}Mi=1.

11: end while
12: Evaluate models θt1 , θs1 , θt2 , θs2 on Dev set.
13: return The best model θ ∈ {θt1 , θs1 , θt2 , θs2}

when m = 0, it becomes segment ensemble. Similarly, it
degenerates to EMA when σ2 = 0. In this manner, the fine-
grained ensemble not only possesses the temporal property
of traditional EMA, but also enhances the robustness of each
segment to noise. As a result, the teacher tends to generate
more reliable pseudo labels, which can be used as new su-
pervision signals in the next round self-training.

To sum up, the first stage is executed once for a moder-
ate initialization with distant labels. The second and third
phases will be conducted alternately in a loop for better
student and teacher models. Finally, only the best model
θ ∈ {θt1, θt2, θs1, θs2} will be used for prediction.

The details of our model are presented in Algorithm 1.

Experiments

Dataset Train Dev Test

CoNLL03 Sentence 14041 3250 3453
Token 203621 51362 46435

OntoNotes5.0 Sentence 115812 15680 12217
Token 2200865 304701 230118

Webpage Sentence 385 99 135
Token 5293 1121 1131

Twitter Sentence 2393 999 3844
Token 44076 15262 58064

Table 1: The statistics of four DS-NER datasets.

Datasets
To verify the effectiveness of our proposed ATSEN, we con-
duct experiments on four DS-NER datasets. Here we give a
short description of them as follows:
CoNLL03 (Sang and De Meulder 2003) consists of 1393
English news articles and is annotated with four entity types:
person, location, organization, and miscellaneous.
OntoNotes 5.0 (Weischedel et al. 2013) contains documents
from multiple domains, including broadcast conversation,
P2.5 data, and Web data. It consists of 18 entity types.
Webpage (Ratinov and Roth 2009) comprises of personal,
academic, and computer science conference webpages. It
consists of 20 webpages that cover 783 entities.
Twitter (Godin et al. 2015) is from the WNUT 2016 NER
shared task. It consists of 10 entity types.
The detailed statistics of each dataset are listed in Table 1.

Compared Methods
We compare our ATSEN with a wide range of state-of-the-
art DS-NER methods and supervised methods. Fully super-
vised methods use the ground truth annotation for model
training. DS-NER methods use the distantly-labeled train-
ing set provided in (Liang et al. 2020).
Fully-supervised Methods. We include two supervised
NER methods for comparison. (1) RoBERTa (Liu et al.
2019) adopts RoBERTa model as backbone and a top linear
layer for token-level classification. (2) BiLSTM-CRF (Ma
and Hovy 2016) uses bi-directional LSTM with character-
level CNN to produce token embeddings, which are then fed
into a CRF layer to predict token labels.
Distantly-supervised Methods. (1) KB-Matching reports
the distant supervision quality. (2) Distant BiLSTM-CRF,
Distant DistilRoBERTa, and Distant RoBERTa fine-tune the
corresponding models on distantly-labeled data as if they are
ground truth with the standard supervised learning. (3) Au-
toNER (Shang et al. 2018) trains the model by assigning am-
biguous tokens with all possible labels and then maximizing
the overall likelihood using a fuzzy CRF model. LRNT (Cao
et al. 2019) applies partial-CRFs on high-quality data with
non-entity sampling. Co-teaching+ (Yu et al. 2019) is a clas-
sic de-nosing method in computer vision. NegSampling (Li,
Shi et al. 2020) only handles incomplete annotations by neg-
ative sampling. BOND and SCDL both adopt self-training
strategies that are straightforward competitors to ATSEN.

Implementation Details
The architecture of the teachers is the backbone language
model and a top classification layer for token-level classifi-
cation. Specifically, we adopt RoBERTa and DistilRoBERTa
as backbone for teacher 1 and teacher 2. The correspond-
ing student has the same architecture as their teacher. The
max training epoch is 50 for all datasets. The training batch
size is 16 for CoNLL03, Webpage, and Twitter and 32 for
OntoNotes 5.0. The learning rate is set to 1e-5 for CoNLL03
and Webpage, and 2e-5 for OntoNotes 5.0 and Twitter. For
the pretraining stage with noisy labels, we separately train 1,
2, 12, and 6 epochs for CoNLL03, OntoNotes 5.0, Webpage,
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Method CoNLL03 OntoNotes 5.0 Webpage Twitter
P R F1 P R F1 P R F1 P R F1

BiLSTM-CRF♣ 91.35 91.06 91.21 85.99 86.36 86.17 50.07 54.76 52.34 60.01 46.16 52.18
RoBERTa♣* 90.61 91.72 91.22 84.59 87.88 86.20 66.29 79.73 72.39 57.32 51.85 54.45

KB-Matching 81.13 63.75 71.40 63.86 55.71 59.51 62.59 45.14 52.45 40.34 32.22 35.83
Diatant BiLSTM-CRF 75.50 49.10 59.50 68.44 64.50 66.41 58.05 34.59 43.34 46.91 14.18 21.77
Distant DistilRoBERTa 77.87 69.91 73.68 66.83 68.81 67.80 56.05 59.46 57.70 45.72 43.85 44.77

Distant RoBERTa 82.29 70.47 75.93 66.99 69.51 68.23 59.24 62.84 60.98 50.97 42.66 46.45
AutoNER 75.21 60.40 67.00 64.63 69.95 67.18 48.82 54.23 51.39 43.26 18.69 26.10

LRNT 79.91 61.87 69.74 67.36 68.02 67.69 46.70 48.83 47.74 46.94 15.98 23.84
Co-teaching+ 86.04 68.74 76.42 66.63 69.32 67.95 61.65 55.41 58.36 51.67 42.66 46.73
NegSampling 80.17 77.72 78.93 64.59 72.39 68.26 70.16 58.78 63.97 50.25 44.95 47.45

BOND 82.05 80.92 81.48 67.14 69.61 68.35 67.37 64.19 65.74 53.16 43.76 48.01
SCDL 87.96 79.82 83.69 67.49 69.77 68.61 68.71 68.24 68.47 59.87 44.57 51.09

ATSEN 86.14 85.05 85.59 66.97 71.05 68.95 71.08 70.03 70.55 62.32 45.30 52.46

Table 2: Main results on four benchmark datasets measured by precision (P), recall (R) and F1 scores. Baselines are reported
by (Zhang et al. 2021). ♣ marks the model trained on the fully clean dataset. * denotes models implemented by us.

and Twitter datasets. For adaptive teacher learning, the confi-
dence threshold σ1 is 0.9 for all datasets. In the fine-grained
student ensemble, m are 0.995, 0.995, 0.99, 0.995 and σ2

is set to 0.8, 0.995, 0.8, and 0.75 for dataset CoNLL03,
OntoNotes 5.0, Webpage, and Twitter, respectively.

Main Results
Table 2 presents the performance of all methods measured
by precision, recall, and F1 scores. The results are sum-
marized as follows: On all four datasets, ATSEN achieves
the best performance among all distantly-supervised meth-
ods. Specifically, the distant DistilRoBERTa and RoBERTa
only slightly improve the distant labeling performance com-
pared to the naive KB-Matching, showing that directly ap-
plying supervised learning to distantly-labeled data will lead
to poor model generalization. In addition, ATSEN performs
much better than previous studies which consider the noisy
labels in NER, including AutoNER, LRNT, Co-teaching+,
and NegSampling. When compared to strong self-training
methods BOND and SCDL, our ATSEN achieves new state-
of-the-art performance, demonstrating the superiority of our
proposed adaptive teacher learning and fine-grained stu-
dent ensemble when trained on distantly-labeled data. Con-
cretely, on CoNLL03, ATSEN achieves 1.90 absolute F1 im-
provements over the strong method SCDL. On the biggest
and most difficult dataset OntoNotes V5.0, we obtain a de-
cent improvement compared to the SOTA approach SCDL
by 0.34 F1 score. In addition, we get 2.08 and 1.37 F1 scores
improvement on Webpage and Twitter respectively.

Ablation Study
To further validate the effectiveness of each component in
our ATSEN, we compare ATSEN with the following abla-
tions by removing specific components: (1) remove the con-
sistent prediction (w/o CP) in Eq.2. (2) remove the thresh-
old prediction (w/o TP) in Eq.3. (3) do not perform cross-
entropy loss (w/o CE). (4) do not perform adaptive distilla-
tion (w/o AD), namely, only cross-entropy loss is adopted in

Ablations Precision Recall F1
ATSEN 86.14 85.05 85.59

w/o CP 83.48 81.67 82.56
w/o TP 84.66 85.83 83.54
w/o CE 86.05 84.37 85.20
w/o AD 87.96 82.14 84.95
w/o FE 83.57 84.66 84.11

Table 3: Ablation study on CoNLL03 dataset. We compare
ATSEN with ablations by removing specific components.

Eq.10. (5) do not perform fine-grained ensemble (w/o FE),
namely, directly copy the trained student as a new teacher.

As shown in Table 3, it can be observed that w/o CP
and w/o TP lead to a significant performance drop, indicat-
ing these strategies are important for cross-entropy learning.
Meanwhile, the result of w/o CE do not cause huge perfor-
mance as adaptive distillation also considers the agreement
part between teachers. The results from w/o CP, w/o TP, and
w/o CE also imply that the cross-entropy loss from ambigu-
ous labels may damage the performance.

In addition, the result of w/o AD decreases the recall
largely compared to ATSEN. It shows that considering
knowledge from the disagreement part of two teachers can
effectively help comprehensive student learning. Finally,
w/o FE significantly reduces performance, showing that our
fine-grained ensemble indeed benefits the model’s general-
ization ability.

Study of Adaptive Distillation
In this section, we study the effectiveness of adaptive distil-
lation for the student training process. Here we implement
several ablations as shown in Table 4. The baseline is the
adaptive teacher learning used in Eq.10, where the weight α
is computed by LIBSVM from the gradients of two teach-
ers corresponding to the student. We devise four variants.
The first variant is averaging the distillation loss to substi-
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Ablations F1 Score

Baseline (adaptive distillation) 85.59
average distillation 85.19
manually weighted distillation 85.22
dynamically weighted distillation 85.26
disagreement distillation 84.86

Table 4: F1 scores of different variants on CoNLL03 dataset.
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Figure 3: F1 score on Twitter dataset of different variants.

tute the adaptive distillation. It decreases by about 0.4 F1
scores. We also devise the second variant by manually set-
ting the weights. Here we set 0.7 and 0.3 for distillation loss
from teacher 1 (Roberta) and teacher 2 (DistilRoBERTa).
This variant still performs worse than adaptive distillation.
We have also tried other weight combinations such as 0.8
and 0.2 but achieved even worse results. Furthermore, we di-
rectly learn a dynamic weight α and achieve similar results
with the manual setting. Finally, we consider a variant that
only considers the disagreement part between two teach-
ers during distillation, thus the training tokens may not be
continuous and complete. The result presents a performance
drop, indicating that the gradient optimization for adaptive
distillation should be conducted for the whole sentence.

Study of Fine-grained Ensemble
We investigate the effectiveness of different student ensem-
ble methods. For comprehensive evaluation, we experiment
on a relatively smaller dataset Twitter instead of CoNLL03.
As shown in Table 5: (1) remove all ensemble strategies (w/o
all) and directly copy the student as a new teacher. (2) re-
move the segment ensemble (w/o SE), namely σ2 = 0 in
Eq.13. (3) remove the EMA (w/o EMA), namely m = 0 in
Eq.13. As shown in Table 5, w/o all lead to the most sig-
nificant performance drop. Meanwhile, removing either SE
or EMA cause decreased results, demonstrating these two
kinds of ensemble method can complement each other. It
is worth noting ATSEN achieves significantly better preci-
sion than variants, indicating fine-grained ensemble can ef-
fectively enhance consistent predictions by performing on
model fragments. Furthermore, we investigate the parame-
ter influence of fine-grained ensemble in Fig. 3. As shown
in this figure, we can observe m = 0.995 and σ2 = 0.75

Ablations Precision Recall F1
ATSEN 62.32 45.30 52.46

w/o all 55.85 42.30 48.14
w/o SE 58.90 45.35 51.25
w/o EMA 59.67 46.65 52.36

Table 5: Ablation study on Twitter dataset. We compare our
full method ATSEN with several ensemble strategy variants.

Distant: JohnsonPER is to be hospitalized
after California AngelsPER skipper [John]PER McNamara
was admitted to New [York]PER ’s [Columbia]PER Hospital.
Golden: [Johnson]PER is to be hospitalized
after [California Angels]ORG skipper [John McNamara]PER
was admitted to [New York]LOC ’s [Columbia Hospital]ORG.

BOND: [Johnson]PER is to be hospitalized
after [California]LOC [Angels]PER skipper [John McNamara]PER
was admitted to [New York]LOC ’s [Columbia]PER Hospital.
SCDL: [Johnson]PER is to be hospitalized
after [California]LOC [Angels]PER skipper [John McNamara]PER
was admitted to [New York]LOC ’s [Columbia Hospital]ORG.
ATSEN: [Johnson]PER is to be hospitalized
after [California Angels]ORG skipper [John McNamara]PER
was admitted to [New York]LOC ’s [Columbia Hospital]ORG.

Table 6: Case study. The sentence is from CoNLL03 dataset.

achieve the best performance. We also notice an interesting
fact is that with the increase of m, the model achieves its
best performance at a relatively smaller value of σ2.

Case Study
We perform case study to understand the advantage of our
proposed ATSEN in Table 6. We show the prediction re-
sult of BOND, SCDL, and ATSEN on a sentence with label
noise. BOND can slightly generalize to unseen mentions and
relieve partial incomplete annotation. For example, BOND
can locate the “John McNamara” and “New York” while
distant labels only can match partial person names. SCDL is
able to generalize better for more accurate entity detection
because it has a co-training step. For instance, SCDL can
further locate the entity “Columbia Presby Hospital”. How-
ever, it is still impacted by label noise. For comparision, for
hard labels “California Angels”, our ATSEN is able to detect
them with both adaptive teacher learning and fine-grained
student ensemble, instead of relying purely on distant labels.

Conclusion
In this paper, we present a novel self-training framework
ATSEN for DS-NER. Specifically, ATSEN adopts adaptive
teacher learning to train student networks, considering both
consistent and inconsistent predictions between them. Fur-
thermore, we devise a fine-grained student ensemble to up-
date the teacher model. With it, each fragment of the teacher
benefits from a temporal moving average of the correspond-
ing fragment of the student. The experiment results illustrate
that ATSEN significantly outperforms SOTA methods.
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