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Abstract
With the success of the sequence-to-sequence model, end-to-
end task-oriented dialogue systems (EToDs) have obtained
remarkable progress. However, most existing EToDs are lim-
ited to single KB settings where dialogues can be supported
by a single KB, which is still far from satisfying the require-
ments of some complex applications (multi-KBs setting). In
this work, we first empirically show that the existing single-
KB EToDs fail to work on multi-KB settings that require
models to reason across various KBs. To solve this issue,
we take the first step to consider the multi-KBs scenario in
EToDs and introduce a KB-over-KB Heterogeneous Graph
Attention Network (KoK-HAN) to facilitate model to reason
over multiple KBs. The core module is a triple-connection
graph interaction layer that can model different granularity
levels of interaction information across different KBs (i.e.,
intra-KB connection, inter-KB connection and dialogue-KB
connection). Experimental results confirm the superiority of
our model for multiple KBs reasoning.

Introduction
Task-oriented dialogue systems (Young et al. 2013) aim to
help user to complete hotel booking and restaurant reser-
vations, which have attracted increasing attention. Recently,
end-to-end task-oriented dialogue systems (EToDs) (Eric
and Manning 2017; Wen et al. 2018; Lei et al. 2018; Wu,
Socher, and Xiong 2019; Qin et al. 2020) have emerged to
free manually designed pipeline modules.

Existing EToDs can be classified into two main cate-
gories. The first strand of work (Ham et al. 2020; Hosseini-
Asl et al. 2020; Olabiyi et al. 2020; Peng et al. 2021;
Kulhánek et al. 2021; Lee 2021; Yang, Li, and Quan 2021;
Gao et al. 2021; Gu et al. 2021) treats all task-oriented dia-
logue pipeline tasks as a sequence prediction problem, using
pre-trained models to predict dialog state, system action and
system response in one sequence. These works can train all
pipeline tasks in an end-to-end fashion but need annotations
for intermediate results. The second strand of work (Eric and
Manning 2017; Zhu et al. 2020) directly uses dialogue his-
tory and knowledge bases (KB) as input and optimizes neu-
ral encoder-decoder models to output system responses. In
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User Hello, please recommend me a hotel with a price of 700-800 yuan. 

Sys Recommend you Grand Concordia Hotel.

User
Okay, please find me a surrounding attraction with a  2-3 hours 

playtime near hotel.

Sys Recommend you to The Lama Temple.

Name Address Surrounding Attractions Price

Sunworld Dynasty Hotel 50 Wangfujing Street [The Palace Museum,…] 815

Grand Concordia Hotel 26 Xiaoyun Road [Lama Temple,,…] 762

Beijing Hotel 33 Chang An Avenue [Beihai Park, …] 1243

Name Address Rating Price PlayTime

Lama Temple 12 Lama Temple Street 4.4 25 2-3 hours

The Palace Museum 4 Jingshan Hill Street 4.7 60 12 hours - 3 days

The Temple of Heaven 1 Tiantan Road 4.8 10 2-3 hours

Hotel Knowledge Base

Attraction Knowledge Base

Dialogue

Turn 1

Turn 4

Reason Step 1

Reason Step 2

3-19号修改

Figure 1: Multi-KBs settings dialogue from the CrossWOZ
dataset (Zhu et al. 2020) means that the dialogue needs to be
grounded by multiple KBs (We translate the dialogue from
Chinese to English for better illustration). Words with color
refer to the queried knowledge entity from KB.

this paper, we focus on this line of work that does not need
any intermediate results supervision.

Successfully retrieving KB is the key to a task-oriented
dialogue system (Qin et al. 2019b). To this end, some
EToDs (Eric and Manning 2017; Wen et al. 2018; Madotto,
Wu, and Fung 2018; Gangi Reddy et al. 2019; Wu, Socher,
and Xiong 2019) perform attention mechanism to query
KB. Qin et al. (2020) introduce a dynamic fusion network
to consider domain features for better querying KB. Yang
et al. (2022) propose an explicit and interpretable Neuro-
Symbolic KB reasoning framework for EToDs. While cur-
rent systems achieve near-human F1 scores on SMD (Eric
and Manning 2017), it is questionable whether this can faith-
fully meet the real-world applications. Unfortunately, the an-
swer is NOT and we argue that the current EToDs commu-
nity is over-optimistic about the current progress, because
we empirically observe that current researches on EToDs
are mainly limited to the single-KB settings where dialogues
can be supported by a single KB, which is still far from sat-
isfying the requirements of some complex applications
(multiple KBs settings) in a real-world scenario. For ex-
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ample, as shown in Figure 1, when responding to the user
query “please find me a surrounding attraction with a play-
time of 2-3 hours around the hotel” in Turn 4, the model not
only needs to query Hotel Knowledge Base to find the hotel’s
Surrounding Attractions (Reason Step 1), but also
retrieves Attraction Knowledge Base to search for qualified
results (2-3 hours) (Reason Step 2). Such complex mul-
tiple KBs that require the ability to effectively reason across
multiple KBs are practical and useful in real-world scenar-
ios, which cannot be achieved by the previous single-KB di-
alogue models.

Motivated by these observations, we make the first at-
tempt to explore the multi-KBs settings for EToDs, hop-
ing to draw more attention to this complex real-world sce-
nario. When extending the single-KB to multi-KBs settings,
a natural approach is concatenating multiple KBs into a big
single-KB for directly adopting the existing single-KB mod-
els. However, two new challenges arise when solely adopt-
ing concatenation approach. (1) Firstly, simply flattening all
KBs makes it hard to capture high-order structure relation-
ship information in KB, leading to imperfect KB represen-
tation learning; (2) Secondly, it fails to effectively reason
across multiple KBs with simple KBs’ concatenation.

To solve the aforementioned challenges, we propose
a KB-over-KB Heterogeneous Graph Attention Network
(KoK-HAN) for multiple KBs EToDs. The core insight is
a triple-connection heterogeneous graph interaction layer,
which achieves to fully incorporates the high-order struc-
ture relationship and the multiple KBs interaction simulta-
neously. Specifically, to address the first challenge, we in-
troduce an intra-KB connection, which connects each KB
entity node with other nodes in the same KB row. With
such consideration, the high-order structure relationship in-
formation within a KB can be effectively captured. To solve
the second challenge, we propose an inter-KB connection,
which connects all different KBs, to build the information
flow across multiple KBs. Further, we introduce a dialogue-
KB connection, where a co-occurrence edge is created to
connect related nodes if they co-occur in the dialogue his-
tory and the corresponding KB, to establish the connection
between dialogue and KB.

We conduct experiments on two datasets, including
CrossWOZ (Zhu et al. 2020) and RiSAWOZ (Quan et al.
2020). Results show that KoK-HAN achieves superior per-
formance. In addition, extensive analysis experiments show
that KoK-HAN successfully captures intra-KB and inter-KB
relationships.

The core contributions of this work are summarized as
below:

• We empirically point out that the existing models are
limited to single-KB settings that can not handle com-
plex applications (multi-KBs settings), which motivates
researchers to rethink the current progress of EToDs and
shed a light on this direction.

• To the best of our knowledge, we are the first to con-
sider the multi-KBs settings for EToDs, which is towards
building a more practical and useful dialogue in real-
world scenarios.

• We introduce a novel KB-over-KB heterogeneous graph
network (KoK-HAN) for multi-KBs EToDs, which is
able to facilitate model to effectively reason across mul-
tiple KBs. Besides, extensive analysis experiments show
that our framework has successfully reasoned across
multiple KBs.

To facilitate this research, all codes and datasets are pub-
licly available at https://github.com/RaleLee/KoK-HAN.

Problem Formulation
We describe formulation definition for multi-KBs EToDs.
The critical difference between single-KB EToDs and multi-
KBs EToDs is that a single KB can support single-KB
EToDs while multi-KBs EToDs are supported by multiple
KBs that require reasoning ability across different KBs.

Specifically, following Wu, Socher, and Xiong (2019)
and Qin et al. (2020), we define the EToD as predicting
response Y = (y1, y2, . . . , yn) given the input dia-
logue history X = (x1, x2, . . . , xm) and multiple KBs
B = {B1, . . . ,BK}, where K denotes the number of KB;
m and n are the length of dialog history and response,
respectively. Formally, the probability of a response is
defined as:

P (Y |X,B)=
n∏

t=1

p(yt |y1, . . . , yt−1,X,B), (1)

where yt denotes an output word at t timestep.

Model
This section describes the architecture of KB-over-KB het-
erogeneous graph attention network (KoK-HAN), which is
illustrated in Figure 2. It mainly consists of three compo-
nents: an encoder to encode dialogue history and multiple
KBs, a KB-over-KB heterogeneous graph layer to model the
interaction information across multiple KBs, and a multi-
KBs aware decoder to generate dialogue response.

Encoder
Knowledge Base Representation For each Bi in B,
which consists of |Ri| rows and |Ci| columns, bi,j stands
for the value of the entity in the ith row and the jth column.

Following Eric et al. (2017), each entity in B will be rep-
resented in triplet format as (subject, relation, object). Be-
sides, we apply a word embedding function φemb to obtain
the word embedding of the subject, relation, and object and
sum them up to obtain the representation of each KB triplet.
Finally, the knowledge base representations can be denoted
as B = {b1{1,1}, . . . , b1{|R1|,|C1|}, . . . , b

K
{1,1}, . . . , b

K

{|RK |,|CK |}}.

Dialogue History Representation For each token in dia-
logue history X = (x1, x2, . . . , xm), we follow Wu, Socher,
and Xiong (2019) to store the speaker information and posi-
tion encoding to capture the sequential dependencies. For
example, the first utterance from the system in Figure 1
will be denoted as {($sys, turn1, Recommend),($sys, turn1,
you),...}(Wu, Socher, and Xiong 2019). We first use a bag-
of-word method to acquire each initial token embedding and
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Self-Attentive Encoder

𝑥1 𝑥2 𝑥3 𝑥4

𝑆𝑂𝑆
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Name Address Rating

…….

Attraction Knowledge Base (KB)
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Sketch Tag Generated

…
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…
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2023-3-19

G
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G

…

Dialogue History

Hotel KB Attraction KB

Attraction KB Entity Node

KB-over-KB Heterogeneous Graph (§ 3.2)Encoder (§ 3.1)

Multi-KBs Aware Decoder (§ 3.3)

Figure 2: The illustration of KoK-HAN. To simplify, the Intra-KB Connection, Inter-KB Connection, and Dialogue-KB Con-
nection are shown in high-level connection. G denotes the global Node. More details in Section 3.2.

obtain X̂ . Then, following Qin et al. (2019a), we further
adopt a self-attentive encoder to obtain the final dialogue
history representation. Specifically, a Bi-GRU (Cho et al.
2014) is introduced to encode the sequential information
while a self-attention mechanism (Vaswani et al. 2017) is
applied to incorporate the contextual information.

Bi-GRU. The Bi-GRU reads the input X̂ to generate the
corresponding hidden states H = (h1,h2, . . . ,hm).

Self-Attention. Self-attention is further introduced to
capture context-aware features. Specifically, following Qin
et al. (2019a), we first map the input matrix X̂ to queries
(Q), keys (K) and values (V ) matrices and then the self-
attention output is calculated by S = softmax(QK>

√
dk

)V

where dk represents dimension of keys.
We concatenate the output of Bi-GRU and self-attention

as final dialogue history representation:
C = [H ||S ], (2)

where C = {c1, . . . , cm} ∈ Rm×2dh and || is concatenation
operation.

KB-over-KB Heterogeneous Graph Attention
Network (KoK-HAN)
This section first introduces the graph building process, and
then describes the heterogeneous message aggregation.

Graph building. Let a KoK-HAN graph be denoted as
G = {V, E}, where V denotes node and E stands for edges.

Graph Node Building. In KoK-HAN, we treat knowledge
entities from KB and words from dialogue history as nodes.
Different node linear functions are adopted in order to dis-
tinguish different node features, which can be calculated as:

C̃ = fC(C + φemb(X)), (3)

B̃ = fB(B), (4)
where Z = [C̃ ; B̃] = [z1, . . . , zm+l] can be directly
employed to initialize the node representations (l =∑K

i=1{|Ri| ∗ |Ci|} denotes the number of entities in all mul-
tiple KBs); fC , fB = [fB1 , . . . , fBK ] denote the different
linear function for different KBs.

Graph Edge Building. For edge connections E , as shown
in Figure 2, we define the following types of edges to incor-
porate different granularity levels of information (i.e., high-
order structure information, multiple KBs interaction infor-
mation and dialogue-KB interaction information).
• Intra-KB connection: Intra-KB connection is used for

capturing the related KB information within a KB. It
has two parts, including in-rows connection and cross-
rows connection. More specifically, (1) in-rows connec-
tion means that each node connects other nodes in the
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same row of a KB; (2) cross-rows connection denotes
that we add an additional global node for each KB where
it connects to all nodes in the KB. The global node can
contain the whole KB information.
• Inter-KB connection: Inter-KB connection denotes all

global KB nodes link to each other to incorporate cross-
KBs information, which enables model to reason across
multiple KBs. For example, we should construct n(n −
1)/2 inter-KB edges if there exists n KB.
• Dialogue-KB Connection: To build interaction between

dialogue history and the corresponding KBs, we intro-
duce a dialogue-KB connection where a co-occurrence
edge is created to connect related nodes if they co-occur
in both dialogue history and the corresponding KBs. The
interaction between dialogue and KB can be established
through the dialogue-KB connection edge message flow.

Heterogeneous Message Aggregation In this section, we
illustrate how information propagates over the graph to do
reasoning over the KoK-HAN. Here, we give the aggrega-
tion and combination formulation of the message passing
over the proposed KoK-HAN. More specifically, the mes-
sage aggregation can be formulated as:

h̃′i,k =
∑
r∈R

1

|N r
i |
fr(

∑
j∈N r

i

αr
ijW

r
hh̃j,k), (5)

where R is the set of all edge types, N r
i is the neighbors of

node i with edge type r and h̃j,k is the node representation
of node j in layer k (h̃j,1 initialized with zj); |N r

i | indicates
the size of the neighboring set. fr defines a transformation
on the neighboring node representations; h̃′i,k represents the
aggregated information in layer k for node i.

After L layer aggregation, we acquire the final updated
output representation H̃′L = {h̃′{1,L}, . . . , h̃

′
{m+l,L} }.

Multi-KBs Aware Decoder
This section shows how the multi-KBs aware decoder gen-
erates dialogue response word by word.

Decoder Initialization Given the context-aware encoding
representations C = {c1, . . . , cm} ∈ Rm×2dh , we fol-
low Zhong, Xiong, and Socher (2018) to utilize an attention
mechanism to summarize the sentence representation:

αi = softmax(Wcci + b), i ∈ [1,m], (6)
s =

∑
i αici, (7)

where Wc and b are trainable parameters.
The obtained sentence representation s is used for initial-

izing the decoder.

Response Generation There are two types of generation
words in the task-oriented dialogues system, including the
common word and knowledge entity. More specifically, the
common word is produced by generation module while
knowledge entity is retrieved from the corresponding KB
via knowledge-retriever module. In our framework, follow-
ing Wu, Socher, and Xiong (2019), we use a sketch decoder

with sketch tag to control whether model generates the com-
mon word or knowledge entity.

At each decoding time step, the hidden state of decoder
is not only used to predict the next token in vocabulary but
also serves as the query vector to query the graph node out-
put. During the inference time, if a sketch tag is generated,
the pointer network will lexicalize the tag by picking up the
expected output from graph node output H̃′L. Otherwise, the
generated word from sketch decoder will be the output word.

Generation Module. We use a unidirectional GRU as the
sketch decoder. At each decoding step t, the process can be
denoted as:

ht = GRU(φemb(yt−1), ht−1), (8)
yt = softmax(Wht), (9)

where yt denotes the predicted token at t timestep; ht is the
current decoder state; yt−1 is the previous output.

Knowledge-retriever Module. After a sketch tag is gen-
erated by Equation 9 at t timestep, we query KB for retriev-
ing relevant entity to lexicalize the sketch tag. More specif-
ically, the hidden vector ht is regarded as the query vector
for retrieving the corresponding KB, which is computed as:

ptrt = softmax(h>t H̃
′
L). (10)

The ptrt is the predicted pointer distribution at time step t,
which is treated as the probabilities of queried knowledge.

We select the word with the highest probability as the gen-
erated word to replace sketch tag. Take the last response
in Figure 1 for example, the generation module first gen-
erates the sketched response “Recommend you to @ad-
dress.” while knowledge-retriever module aims to replace
@address with the specific knowledge entity The Lama
Temple to produce the final response “Recommend you to
The Lama Temple”.

Experiments
Datasets

We conduct experiments on two datasets, including Cross-
WOZ (Zhu et al. 2020) and RiSAWOZ (Quan et al. 2020).
To simulate multi-KBs settings, we keep the dialogues with
multiple KBs in CrossWOZ and RiSAWOZ. On CrossWOZ,
the dataset contains 2,331 dialogues for training, 231 dia-
logues for validation, and 224 dialogues for testing. On Ri-
SAWOZ, it includes 3,486 dialogues for training, 210 dia-
logues for validation, and 230 dialogues for testing. Since
there is no corresponding KB for each conversation in the
original dataset, we manually equip each conversation with
the supported KBs. In addition, we fix some unalignment
problems between dialogue and KB. The updated datasets
will be available for future research. For pre-processing, we
use jieba 1 for CrossWOZ.

1https://github.com/fxsjy/jieba
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CrossWOZ RiSAWOZ
Model BLEU F1 BLEU F1
Seq2Seq+Attn 6.27 7.53 6.41 10.30
Mem2Seq 8.22 11.33 10.43 21.83
GLMP 14.49 19.12 11.67 30.56
DDMN 14.45 29.23 14.01 29.71
DF-Net 15.76 29.57 14.96 34.51
Neuro-Symbolic RF 16.23 30.25 16.12 40.76
KoK-HAN 21.26* 38.07* 20.61* 50.87*

Table 1: Main results. The bolded number indicates the
best performance. The numbers with * indicate that the im-
provement of our framework is statistically significant with
p < 0.05 under t-test.

Experimental Settings
The dimensionality of all hidden units and embedding size
of two datasets are 128. The batch size we use is se-
lected from {16, 32} and the dropout ratio is 0.2. We use
AdamW (Loshchilov and Hutter 2019) to optimize the pa-
rameters in our model. All hyper-parameters are selected ac-
cording to the validation set. The epoch for training is 50. All
experiments are conducted at Tesla V100.

Baselines
We adopt the following state-of-the-art end-to-end task-
oriented dialogue models to multi-KBs settings: (1)
Seq2Seq+Attn (Eric et al. 2017): the model adopts an
attention mechanism to query KB; (2) Mem2Seq (Madotto,
Wu, and Fung 2018): the model adopts a memory network
to encode knowledge entities; (3) GLMP (Wu, Socher, and
Xiong 2019): the framework introduces a global-to-local
pointer mechanism to query the KB; (4) DDMN (Wang et al.
2020): the models use a dual memory network for bet-
ter selecting knowledge; (5) DF-Net (Qin et al. 2020):
the model considers domain features to promote the multi-
domain EToDs; (6) Neuro-Symbolic RF (Yang et al.
2022): the framework proposes a neuro-symbolic to perform
explicit reasoning for EToDs, which achieves the promising
performance.

For Seq2Seq+Attn, we re-implement their model to
obtain the results. For other baselines, we retrain their open-
source code to acquire performance. To facilitate the model
with multi-KBs ability, we concatenate multiple KBs to an
extended single-KB.

Automatic Evaluation
Following Wu, Socher, and Xiong (2019), we adopt the En-
tity F1 and BLEU (Papineni et al. 2002) to evaluate the
knowledge querying and fluent response generation ability.

Results are shown in Table 1. We have the following ob-
servations:
• The performance of prior best single-KB EToDs drop a

lot from 64.5% to 40.76% (64.5% is the performance
on single-KB setting (Yang et al. 2022) while 40.76%
is the result attained by Neuro-Symbolic). This indi-
cates the difficulty of multi-KBs settings requiring abil-
ity to reason across multiple KBs to generate the final

CrossWOZ RiSAWOZ
Model BLEU F1 BLEU F1
w/o Intra-KB 19.34 27.49 18.34 47.35
w/o Inter-KB 17.18 29.60 17.76 45.82
w/o Dialogue-KB 17.91 23.87 17.12 34.75
Homogeneous GAT 17.27 21.55 15.85 26.81
KoK-HAN 21.26 38.07 20.61 50.87

Table 2: Ablation study.

response, which cannot be achieved by prior single-KB
dialogue models;
• KoK-HAN achieves the state-of-the-art performance

compared with all baselines, especially on F1
scores. Specifically, our framework outperforms
Neuro-Symbolic RF 7.8% and 10.1% on F1
scores on CrossWOZ and RiSAWOZ, respectively.
This demonstrates that KoK-HAN has successfully
captured the relationship between multiple KBs, which
is beneficial to multiple KBs reasoning.

Analysis
To analyze KoK-HAN in more depth, we perform compre-
hensive studies to answer the following research questions
(RQs): (1) Does the Intra-KB Connection benefit to capture
the high-order structure information? (2) Can the Inter-KB
Connection achieve to reason across different KBs? (3) Can
the Dialogue-KB Connection capture relationship between
dialogue and KB? (4) Does heterogeneous graph attention
network work better than homogeneous graph attention net-
work? (5) Is KoK-HAN able to successfully work well in
multi-KBs settings? (6) How the number of graph layers af-
fects the final performance?

Answer1: Intra-KB Connection Helps to Capture the
High-order Structure Information To verify the effec-
tiveness of the intra-KB connection, we conduct compari-
son experiment by removing the intra-KB connection while
the remained components are unchanged. Result is shown in
Table 2 (w/o intra-KB). We can see 1.9-point and 2.3-point
drops in terms of BLEU while 10.6% and 3.5% drop on F1
scores on CrossWOZ and RiSAWOZ, respectively. This is
because that Intra-KB connection can incorporate the high-
order structure information of KB, which enables model to
reason within a KB.

Answer2: Inter-KB Connection Performs the Cross-KB
Reasoning To investigate the impacts of inter-KB connec-
tion, we remove the inter-KB connection and keep other
components unchanged. We refer it to w/o inter-KB. Ta-
ble 2 shows the results. We observe that performances drop
8.5% and 5.1% on F1 scores on two datasets. This is because
without the inter-KB connection, the model fails to perform
the cross-KB knowledge reasoning, which harms the per-
formances, especially for the dialogues requiring multi-KBs
reasoning.

Answer3: Dialogue-KB Connection Builds the Relation-
ship between Dialogue and KB We further investigate
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User
你好，我想吃美食街，帮我推荐一个人均消费在50-100元的餐馆，谢谢。

Hi, I want to eat Food Street, and recommend a restaurant with an average consumption of 50-100 yuan per capita, thank you.

Sys
为您推荐鲜鱼口老字号美食街，人均消费75元，有您想吃的美食街哦。

I recommend the Xianyu Food Street for you, with an average consumption of 75 yuan per capita.

……

User
哦，我想在它附近的景点里找一个4.5分以上的，有吗？

Oh, I want to find one with a score of 4.5 or higher among the nearby attractions, is there?

Sys
故宫和天安门广场都是不错的选择。

The Forbidden City and Tiananmen Square are both good choices.

(a) Dialogue for visualization

(c)  Inter-KB connection
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Figure 3: Visualization. Subplot (a) denotes dialogue history while (b), (c) and (d) show Heatmap for the three kinds of connec-
tion’s weights, respectively. The axis on the right in each figure represents the color corresponding to the heat value. In subplot
(b), it shows the attention weight between the dialogue history node itself and the entity nodes in KBs. We selected the top
10 with the highest weights for display. The 2nd node is Xianyu Food Street. As for subplot (c), it shows the weights
between the global KB nodes in Inter-KB connection. R, A and H represent Restaurant,Attraction and Hotel. Subplot
(d) shows the cross-rows weight in Intra-KB connection. There are a total of 40 nodes, among which 0, 1 and 2 are three global
KB nodes. Remaining 37 nodes are from three KBs. In Attraction row, the 15th node is The Forbidden City and the 17th
node is Tiananmen Square.

the effectiveness of dialogue-KB connection. We remove the
dialogue-KB connection and refer it to w/o Dialogue-KB.
Table 2 shows the results. We find that performances drop
significantly on both BLEU and F1 scores on two datasets.
We attribute it to the fact that the connection between dia-
logue history and KBs is breaking, resulting in optimizing
KB and dialogue history separately, which seriously breaks
the connection between dialogue and KB.

Answer4: Heterogeneous Graph Attention Network vs.
Homogeneous Graph Attention Network Instead of
adopting the heterogeneous GAT to model the inter-KB and
intra-KB connection, we utilize the homogeneous GAT to
model the interaction. This means that all edges are the
same. We name it Homogeneous GAT, which is shown in
Table 2. It can be seen that performance drop 16.5% and
24.1% on F1 scores on two datasets. We think that adopt-
ing homogeneous GAT cannot model different information,
which may confuse the model to integrate information inter-
action and thus make it hard to retrieve relevant knowledge
across KBs.

Answer5: KoK-HAN Achieves Better Performance over
Multiple KBs Settings We further explore whether
KoK-HAN can perform better reasoning across multiple
KBs. We divided the RiSAWOZ dataset according to the
number of KBs, then utilized different numbers of KBs’ data
to train KoK-HAN and Neuro-Symbolic RF. Results

are presented in Table 3. As the number of KBs increases,
reasoning in them is more difficult. It can be observed
that at this time the performance gap between KoK-HAN
and Neuro-Symbolic RF becomes larger. This demon-
strates that our model can handle multiple KBs interactions
better than single-KB model.

In addition, to provide an intuitive analysis for under-
standing why our framework works well in multi-KB set-
tings, we conduct a visualization study, which is shown in
Figure 3. From the dialogue in (a), the user asks for specific
attractions near the restaurant Xianyu Food Street
and our model tries to generate a response. Subplot (b)
shows the attention weights between entity nodes in KBs
and the dialogue history in Dialogue-KB connection. Since
there are many words in the dialogue history, we inte-
grate all the words in the dialogue history into one node
for observation. We observe the model’s attention on the
Xianyu Food Street surpasses other nodes, repre-
senting our model localizes Xianyu Food Street in
the dialogue history successfully. Next, to meet the user’s
request, the model needs to perform reasoning between At-
traction KB and Restaurant KB to find surrounding attrac-
tions of Xianyu Food Street.

Subplot (c) shows weights between global KB nodes
in Inter-KB connection. Higher weights can be seen be-
tween Attraction node and Restaurant node, representing
our model successfully captures the interaction. Finally, in
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Figure 4: Performance across layer numbers.

subplot (d), we show cross-rows weights of Intra-KB con-
nection. We observe node The Forbidden City and
Tiananmen Square has the highest weights, which in-
dicates our model queries Attraction KB correctly.

Answer6: The Impact of the Number of Graph Layers
We further investigate the effectiveness of the number of
layers in KoK-HAN. Experiment results on RiSAWOZ are
shown in Figure 4. We observe that more layers bring better
performance when the number of graph layers is less than
four. This is because the stacked interaction layer can help
model to better query cross-KB knowledge querying.

Human Evaluation
In this section, we provide human evaluation of KoK-HAN
and Neuro-Symbolic RF. We randomly generated 100
responses from the CrossWOZ test data. We hired 3 human
experts and asked them to judge the quality of the responses.
Following Qin et al. (2020), we evaluate the correctness, flu-
ency, and humanlikeness metrics on a scale from 1 to 5.

As shown in Table 4, we observe that our framework out-
performs Neuro-Symbolic RF on all metrics. This is
consistent with the automatic evaluation, which further ver-
ifies the effectiveness of our proposed framework.

Related Work
End-to-End Task-Oriented Dialogue System
End-to-end Task-oriented Dialog systems (EToDs) have at-
tracted more and more attention since they can be eas-
ily adapted to a new domain. With the success of the
sequence-to-sequence (Seq2Seq) models in text generation,
some EToDs use Seq2Seq-based model with attention mech-
anism (Eric et al. 2017; Lei et al. 2018; Wen et al. 2018)
to implicitly query the knowledge from the corresponding
KB. Another series of work (Madotto, Wu, and Fung 2018;

RiSAWOZ 2 KBs 3 KBs
Model BLEU F1 BLEU F1

KoK-HAN 20.54 52.66 11.48 40.75
Neuro-Symbolic RF 16.22 36.68 6.82 17.91

∆ -4.32 -15.98 -4.66 -22.84

Table 3: Performance across different numbers of KB.
Red and BLEU numbers denote gap performance between
KoK-HAN and Neuro-Symbolic RF, respectively.

Model Correct Fluent Humanlike
Neuro-Symbolic RF 2.1 3.9 3.8

Our framework 3.3 4.3 4.4

Table 4: Human evaluation.

Gangi Reddy et al. 2019; Wu, Socher, and Xiong 2019; He
et al. 2020a; Yang, Zhang, and Erfani 2020; Wang et al.
2020; He et al. 2020b; Madotto et al. 2020) introduce the
memory network (Sukhbaatar et al. 2015) to encode KB for
better querying, which obtains promising performance. Qin
et al. (2019b) propose a KB-retriever module to improve the
entity consistency in system response. Recently, Qin et al.
(2020) consider the different characteristics of different do-
mains for querying KB in multi-domain EToDs. Yang et al.
(2022) introduce neuro-symbolic to perform explicit rea-
soning for EToDs, which achieves the state-of-the-art per-
formance. In contrast to their work, we consider the multi-
KBs dialogues settings that are able to handle the need of a
complex application in real-world scenarios while the above
work mainly focuses on the single-KB grounded settings.
To our knowledge, this is the first work to explore the multi-
KBs settings for EToDs.

Graph Neural Network for NLP

Recent years have witnessed remarkable success in graph
neural network (GNN) for natural language understand-
ing tasks. Specifically, GNN shows superior performance
on text summarization task (Feng et al. 2021; Jing et al.
2021), sentiment analysis task (Huang et al. 2019; Liang
et al. 2022), dialogue understanding task (Qin et al. 2021a,b)
and language modeling (Meng et al. 2022). Inspired by the
above work, we explore GNN for better capturing relation-
ship across multiple KBs in EToDs.

Conclusion
We first pointed out the limitations of the existing single-
KB end-to-end task-oriented dialogue systems (EToDs) and
further explored the multi-KBs EToDs. In addition, we pro-
posed a novel KB-over-KB heterogeneous graph network,
which enables the model to reason across multiple KBs
and capture high-order structure relationship information of
KBs. To our knowledge, this is the first work to consider
multiple KBs settings in EToDs. We hope this work can
draw more attention to this complex real-world scenario.
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