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Abstract

The recent prevalence of pretrained language models (PLMs)
has dramatically shifted the paradigm of semantic parsing,
where the mapping from natural language utterances to struc-
tured logical forms is now formulated as a Seq2Seq task. De-
spite the promising performance, previous PLM-based ap-
proaches often suffer from hallucination problems due to
their negligence of the structural information contained in
the sentence, which essentially constitutes the key seman-
tics of the logical forms. Furthermore, most works treat PLM
as a black box in which the generation process of the target
logical form is hidden beneath the decoder modules, which
greatly hinders the model’s intrinsic interpretability. To ad-
dress these two issues, we propose to incorporate the cur-
rent PLMs with a hierarchical decoder network. By taking the
first-principle structures as the semantic anchors, we propose
two novel intermediate supervision tasks, namely Semantic
Anchor Extraction and Semantic Anchor Alignment, for train-
ing the hierarchical decoders and probing the model inter-
mediate representations in a self-adaptive manner alongside
the fine-tuning process. We conduct intensive experiments on
several semantic parsing benchmarks and demonstrate that
our approach can consistently outperform the baselines. More
importantly, by analyzing the intermediate representations of
the hierarchical decoders, our approach also makes a huge
step toward the intrinsic interpretability of PLMs in the do-
main of semantic parsing.

1 Introduction
Semantic parsing refers to the task of converting natural

language utterances into machine-executable logical forms
(Kamath and Das 2019). With the rise of pretrained lan-
guage models (PLMs) in natural language processing, most
recent works in the field formulate semantic parsing as a
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Seq2Seq task and develop neural semantic parsers on top of
the latest PLMs like T5 (Raffel et al. 2020), BART (Lewis
et al. 2020), and GPT-3 (Brown et al. 2020), which sig-
nificantly reduces the manual effort needed in designing
compositional grammars (Liang, Jordan, and Klein 2011;
Zettlemoyer and Collins 2005). By leveraging the extensive
knowledge learned from the pretrain corpus, these PLM-
based models exhibit strong performance in comprehending
the semantics underlying the source natural language utter-
ance and generating the target logical form that adheres to
specific syntactic structures (Shin and Van Durme 2022; Yin
et al. 2022).

Despite the promising performance, current PLM-based
approaches most regard both input and output as plain text
sequences and neglect the structural information contained
in the sentences (Yin et al. 2020; Shi et al. 2021), such as
the database (DB) or knowledge base (KB) schema that es-
sentially constitutes the key semantics of the target SQL or
SPARQL logical forms. As a result, these PLM-based mod-
els often suffer from the hallucination issue (Ji et al. 2022)
and may generate incorrect logical form structures that are
unfaithful to the input utterance (Nicosia, Qu, and Altun
2021; Gupta et al. 2022). For example, as shown in Figure 1,
the PLM mistakenly generates a relationship “product” in
the SPARQL query, which is contradictory to the “company
produced” mentioned in the natural language.

To prevent the PLMs from generating hallucinated struc-
tures, many works propose execution-guided decoding
strategies (Wang et al. 2018; Wang, Lapata, and Titov 2021;
Ren et al. 2021) and grammar-constrained decoding algo-
rithms (Shin et al. 2021; Scholak, Schucher, and Bahdanau
2021). However, manipulating the decoding process with
conditional branches can significantly slow down the model
inference (Post and Vilar 2018; Hui et al. 2021). More im-
portantly, in these methods, the DB/KB schema is employed
extrinsically as a posteriori correction afterward the model
fine-tuning, whereas the inherent ignorance of logical form
structures still remains unsolved in the PLMs.

Therefore, another concurrent line of work further
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Which company produced the TV series Game of Thrones?

Table #930: Director

HBO

Game of Thrones
# seasons: 8
# episodes: 73

name birthplace

AAA New York 

BBB Hong Kong

CCC London

name production_company

Black Mirror Zeppotron

Breaking Bad Sony Pictures

Game of Thrones HBO

George R. R. Martin

television series

Table #929: Television Series

Gold SQL:  SELECT t.production_company FROM "Television 
Series" as t WHERE t.name = "Game of Thrones"

Gold SPARQL:  SELECT DISTINCT ?e_1 WHERE { ?e <instance
_of> ?c . ?c <name> "television series" . ?e <name> 
"Game of Thrones" . ?e <production_company> ?e_1 . }

Pred. SPARQL:  SELECT DISTINCT ?e_1 WHERE { ?e <instance
_of> ?c . ?c <name> "television series" . ?e <name> 
"Game of Thrones" . ?e  <product> ?e_1 . }

Relational Database:

Knowledge Base:

Column

Table

Column Value

Entity

Relationship

Property

Figure 1: Example of a natural language utterance and the
corresponding SQL & SPARQL logical forms. Specifically,
the logical form sequences are composed of schema items
that can be aligned to the structure of a database or a knowl-
edge graph. Due to the negligence of these structures, PLM
may suffer from hallucination issues and generate unfaithful
information, as highlighted in the “Pred. SPARQL”.

pretrains the PLMs with structure-augmented objectives
(Herzig et al. 2020; Deng et al. 2021). Specifically, these
works usually design unsupervised or weakly-supervised
objectives for implicitly modeling the database structures
with external or synthetic data corpus (Yu et al. 2021b; Shi
et al. 2022). Although effective, further pretraining a large
PLM can incur substantial costs and extra overheads (Yu
et al. 2021a). Besides, these methods also lack transferabil-
ity since the structural knowledge is latently coupled inside
the models and cannot be easily adapted to a novel task do-
main with a completely distinct database or knowledge base
schema (Wu et al. 2021). Thus, how to explicitly address the
structural information during the PLM fine-tuning process is
still an open question yet to be addressed.

Aside from the above issue, existing neural semantic
parsers typically treat PLMs as a black box lacking inter-
pretability. Although some works attempt to probe and ex-
plain the latent knowledge within the PLMs using the exter-
nal modules in a post hoc manner (Liu et al. 2021; Chen et al.
2021b; Stevens and Su 2021a), none of the existing works
explicitly addresses the intrinsic interpretability of neural
semantic parsers. The intermediate process of logical form
generation is completely hidden inside the PLM decoders,
where the latent knowledge is hard to probe.

To address these challenges, we propose a novel model

architecture with intermediate supervision over a hierarchi-
cal decoder network. Inspired by the first principle think-
ing and its successful application in AMR parsing (Cai and
Lam 2019), we define “semantic anchors” as the building
blocks of a logical form that cannot be further decomposed
into more basic structures. For example, in a SQL query, se-
mantic anchors include the tables (relations) and columns
(attributes) that constitute the fundamental structure of a re-
lational database (Aho, Beeri, and Ullman 1979; Li and Ja-
gadish 2014); in a SPARQL query, semantic anchors include
the entities, relationships, and their respective properties that
similarly constitute the backbone of a knowledge base (An-
gles and Gutierrez 2008; Baeza 2013).

Thereby, the semantic parsing process can now be bro-
ken down into the subtasks of extracting the semantic an-
chors from input utterances and subsequently recombining
the identified semantic anchors into the target logical form
based on certain formal syntax. We accordingly design two
intermediate supervision tasks, namely Semantic Anchor Ex-
traction and Semantic Anchor Alignment, for explicitly guid-
ing the PLMs to address the structural information alongside
the model fine-tuning process. Unlike the previous multi-
task learning works that regard PLM as a whole (Radford
et al. 2019; Aghajanyan et al. 2021; Xie et al. 2022), we pro-
pose a hierarchical decoder architecture that self-adaptively
attends to the PLM decoder layers for learning the interme-
diate supervision objectives. Eventually, this framework can
equip the PLMs with intrinsic interpretability where the hid-
den representations of inner decoders originally concealed
inside the PLMs are now unveiled for human analysis and
investigation.

Experimental results show that our proposed framework
can consistently improve PLMs’ performance on semantic
parsing datasets OVERNIGHT, KQA PRO and WIKISQL.
By investigating the inner representations of a PLM, our
method also provides a novel testbed for interpreting the in-
termediate process of neural semantic parsing. In summary,
our work contributes to the following aspects:

• In this work, we summarize two major issues that hinder
the neural semantic parsers: a) negligence of logical form
structures, and b) lack of intrinsic interpretability.

• To alleviate the problems, we propose a novel framework
with hierarchical decoder and intermediate supervision
tasks Semantic Anchor Extraction and Semantic Anchor
Alignment that explicitly highlight the structural infor-
mation alongside the PLM fine-tuning.

• By investigating the inner layer representations, this is
also the first work in the field addressing the intrinsic in-
terpretability of PLM-based semantic parsers.

2 Methodology
Preliminaries

In recent years, pretrained language models (PLMs) like
BART (Lewis et al. 2020) and T5 (Raffel et al. 2020) demon-
strate strong generalization ability across various Seq2Seq
tasks. Within these PLMs, the encoder module first projects
the input sequence x of length m into a sequence of hidden
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Hierarchical Decoder

Encoder

Decoder

EncoderEncoderEncoderPLM Encoder

DecoderDecoderDecoderPLM Decoder

Character <SEP> Portrayed by <SEP> Joe Jonas

SELECT Character FROM table WHERE Portrayed by = Joe Jonas

<MASK> Character <MASK> <MASK> <MASK> Portrayed by <MASK> Joe Jonas Softmax
Semantic Anchor Alignment

Semantic Anchor Extraction

Logical Form Generation

Softmax

What character is portrayed by Joe Jonas? columns: Character | Portrayed by | Main cast seasons | …

Intermediate Supervision

Natural Language Utterance Database Schema (if applicable)

Figure 2: Overall framework of the hierarchical decoder that incorporates two intermediate supervision tasks Semantic Anchor
Extraction and Semantic Anchor Alignment for explicitly guiding and probing the PLM alongside the main task fine-tuning.

states HE = {h0, h1, ..., hm} where each hidden state vector
hi can be regarded as the contextual embedding of token xi

in the high-dimensional space.
Subsequently, the last encoder hidden states H

′

E is passed
to the PLM decoder module consisting of N layer of de-
coders. Each decoder layer simultaneously takes the previ-
ous decoder hidden states for self-attention computation and
the last encoder hidden states for cross-attention computa-
tion (Vaswani et al. 2017) to produce the new hidden states:

Hi
D = Decoderi(Hi−1

D ,H
′

E | θiD), (1)
where θiD refers to the i-th decoder layer parameters and

Hi
D is the corresponding output hidden states. Eventually, the

last decoder hidden states HN
D are projected into vocabulary-

size V -dimensional logits by a linear layer and consequently
generates the output tokens once at a time with greedy or
beam search decoding.

Therefore, neural semantic parsing can be formally de-
fined as the mapping from a natural language sentence
x = {x1, x2, ..., xm} into a logical form sequence y =
{y1, y2, ..., yk} by maximizing the conditional probability
over PLM parameters θ:

p(y) =
k∏

i=1

p(yi|x, y1, y2, ..., yi−1; θ). (2)

.

Semantic Anchor
According to the above formulation, all tokens of a logical

form sequence are treated equally by the PLMs, whereas the
structural information inside the logical forms is neglected.
To analyze the core structures contained in a logical form se-
quence, we start by giving the formal definitions of knowl-
edge base and relational database.

Knowledge Base A knowledge base (KB), often struc-
tured as an RDF graph or property graph, can be defined as a
directed graph G = (N,E) where N is a set of nodes (or en-
tities), E is a set of edges (or relationships), λ(N ∪E) → L
is a total function that defines the labels of all the nodes and
edges, and σ(N ∪ E) → (P, V ) is a partial function that
defines the (property, value) pairs of certain nodes or edges
(Angles et al. 2017).

Thereby, for any logical form y querying a knowledge
base, we formally define its semantic anchors as the set of
tokens corresponding to the knowledge base schema:

Sy|KB = {yi ∈ y|yi ⊂ (N ∪ E ∪ L ∪ P ∪ V )}, (3)
including the KB entities, relationships, their respective la-
bels, and applicable (property, value) pairs.

Relational Database A relational database (DB) is de-
fined over a database schema D including a set of relational
schemas (or tables) D = {Ri|1 ≤ i ≤ n}, where each rela-
tional schema further consists a set of attributes schemas (or
columns) Ri = {Ai

j |1 ≤ j ≤ k} (Li and Jagadish 2014)
Thereby, for any logical form y querying a relational

database, we formally define its semantic anchors as the set
of tokens aligned to the database schema:

Sy|DB = {yi ∈ y|yi ⊂ (R ∪A)}, (4)
including the DB table names and column names.

Intermediate Supervision Tasks
Based on the definition of semantic anchor, we subse-

quently design two intermediate supervision tasks by de-
composing the semantic parsing process into the subtasks
of 1) extracting the semantic anchors from the input natural
language utterance, then 2) putting the extracted semantic
anchors into the right positions of a target sequence accord-
ing to the syntax rule of target formal language.
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Semantic Anchor Extraction For the first intermediate
supervision task, we enforce the PLMs to extract the seman-
tic anchors to explicitly address the logical form structures
during the fine-tuning. For each logical form sequence y, we
concatenate its semantic anchors into a new sequence:

ySAE = {S1
y ,<SEP>,S2

y ,<SEP>, ...,Ss
y }, (5)

where <SEP> is a special token for separating two distinct
semantic anchors. A cross-entropy loss is calculated on this
extraction supervision and the corresponding tokens at the
inner decoder layers.

Semantic Anchor Alignment Thereafter as the second in-
termediate supervision task, we guide the model to generate
the semantic anchors with correct relative positions that can
be precisely aligned to the final sequence of the target log-
ical form. For each logical form sequence y, we only keep
the semantic anchors and mask the rest tokens:

ySAA = {<MASK>,<MASK>,S1
y ,<MASK>, ...,S2

y , ...},
(6)

where each semantic anchor token Si
y ∈ Sy occurs in the

exact relative position as aligned to the target logical form,
and the remaining tokens masked by <MASK> are ignored
during the loss computation.

Hierarchical Decoders
To equip the PLMs with the ability to explicitly address

the structural information and improve the intrinsic inter-
pretability of the neural semantic parsers, we want to find a
natural way to incorporate the semantic anchors during the
PLM fine-tuning. For a N -layers decoder module, the inner
hidden states are given as {Hi

D|1 ≤ i ≤ N − 1}.
For each intermediate supervision task t, we train an in-

dependent linear layer ft and a set of weighting parameters
{wi

t|1 ≤ i ≤ N − 1}. Thereby, we can calculate the ag-
gregation of the inner decoder hidden states with a softmax
distribution w.r.t. the weighting parameters and a residual
connection:

Ht
D =

N−1∑
i=1

ew
i
t∑N−1

j=1 ew
j
t

Hi
D︸ ︷︷ ︸

learnable weights

+
N−1∑
i=1

1

N − 1
Hi

D︸ ︷︷ ︸
residual connection

. (7)

This setup enables the model to attend to the inner de-
coder layers self-adaptively. The overall representation Hs

D
is then mapped into logits in the vocabulary space V by its
task-respective linear layer:

vt = ft(Ht
D), (8)

then the probability token distribution can be given by a soft-
max function, and the cross-entropy loss Ls of the task can
be computed consequently:

Lt = −
∑ |v|∑

i=1

p(yt,i) log p(ŷt,i)

= −
∑ |v|∑

i=1

p(yt,i) log
exp(vt,i)∑|v|
j=1 exp(vt,j)

,

(9)

where yt,i is the i-th token of the target sequence yt for in-
termediate supervision task t, ŷt,i represents the i-th token
of the generated sequence ŷt for task t, and vt,i stands for
the logit score of predicting v as the i-th in the generated
sequence.

Self-Adaptive Weighting
Eventually, the overall fine-tuning of a PLM can now be

defined as the aggregation of the main task (i.e., logical form
generation) and two intermediate supervision tasks:

L = Lmain + w1LSAE + w2LSAA, (10)

where w1 and w2 denote the weighting factors for the two
intermediate supervision tasks. To minimize the undesired
interference between multiple learning objectives, we adopt
a loss-balanced task weighting strategy to dynamically ad-
just the weighting factors throughout the fine-tuning process
(Liu, Liang, and Gitter 2019).

Specifically, for each intermediate supervision task t, we
compute and store the first batch loss with respect to this task
at each epoch, denoted as L(b0,t). The loss weighting factor
wt is then dynamically adjusted at each iteration as:

wt =

√
L(bj ,t)

L(b0,t)
, (11)

where L(bj ,t) refers to the real-time loss of task t at batch j.

3 Experiments
Dataset
Overnight OVERNIGHT (Wang, Berant, and Liang 2015)
is a popular semantic parsing dataset containing 13,682 ex-
amples of natural language question paired with lambda-
DCS logical forms across eight data domains so as to explore
diverse types of language phenomena. We follow the previ-
ous practice (Cao et al. 2019) and randomly sample 20% of
the provided training data as a validation set for performance
evaluation during the PLM fine-tuning.

KQA Pro KQA PRO (Cao et al. 2022) is a KBQA dataset
consisting of 117,790 natural language utterances and cor-
responded SPARQL queries over the Wikidata knowledge
base (Vrandecic and Krötzsch 2014). It widely covers di-
verse natural language questions with explicitly enhanced
linguistic variety and complex query patterns that involve
multi-hop reasoning, value comparison, set operations, etc.

WikiSQL WIKISQL (Zhong, Xiong, and Socher 2017) is
a classic Text-to-SQL semantic parsing dataset with 80,654
(question, SQL) data pairs grounded on 24,241 Wikipedia
tables. Since WikiSQL queries cover only single tables and
limited aggregators, previous PLM-based methods have al-
most achieved upper-bound performance on WikiSQL with
the help of further pretraining and execution-guided decod-
ing. Thus in this paper, we only compare to the models with-
out using any additional resources or decoding-aiding tech-
niques for fairness.
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Exec. Acc.

Non-PLM Methods
SPO (Wang, Berant, and Liang 2015) 58.8
CrossDomain (Su and Yan 2017) 80.6
Seq2Action (Chen, Sun, and Han 2018) 79.0
2-stage DUAL (Cao et al. 2020) 80.1

PLM-based Methods
T5-base 74.7
Ours (T5-base) 75.5

BART-base 80.7
GraphQ IR (BART-base) (Nie et al. 2022) 82.1
Ours (BART-base) 82.4
w/o Semantic Anchor Extraction 81.0
w/o Semantic Anchor Alignment 81.5
w/o Hierarchical Decoder 81.2

Table 1: Test accuracies on OVERNIGHT dataset.

Exec. Acc.

Non-PLM Methods
EmbedKGQA (Cao et al. 2022) 28.36
RGCN (Cao et al. 2022) 35.07
RNN (Cao et al. 2022) 41.98

PLM-based Methods
T5-base 83.64
Ours (T5-base) 84.66

BART-base (Cao et al. 2022) 89.68
GraphQ IR (BART-base) (Nie et al. 2022) 91.70
Ours (BART-base) 91.72
w/o Semantic Anchor Extraction 91.09
w/o Semantic Anchor Alignment 91.12
w/o Hierarchical Decoder 90.94

Table 2: Test accuracies on KQA PRO dataset.

Metric
We use execution accuracy as our evaluation metric. It ex-

amines whether the generated logical form can be executed
by the respective KB or DB engines and return the exact set
of results as identical to the ground truth logical forms.

Experimental Settings
We conduct our experiments with 8× NVIDIA Tesla

V100 32GB GPUs and the CUDA environment of 10.2.
All PLM models used in this work are acquired from the
publicly released checkpoints on Huggingface 1. For BART-
base, we fine-tuned the model with a learning rate of 3e− 5
and a warm-up proportion of 0.1. For T5-Base, the learn-
ing rate is set to 3e − 4 without warm-up. The batch size is
consistently set to 128, and AdamW is used as the optimizer.

Results
Experiment results show that our proposed framework

can consistently outperform the baselines on OVERNIGHT,

1https://huggingface.co/models

Exec. Acc.

Non-PLM Methods
Seq2SQL (Zhong, Xiong, and Socher 2017) 59.4
Coarse-to-Fine (Dong and Lapata 2018) 78.5
Auxiliary Mapping (Chang et al. 2020) 81.7

PLM-based Methods
T5-base 84.5
Ours (T5-base) 85.0

BART-base 83.6
Ours (BART-base) 84.8
w/o Semantic Anchor Extraction 84.3
w/o Semantic Anchor Alignment 84.7
w/o Hierarchical Decoder 84.2

PLM Methods with Additional Resources
SQLova + EG (Hwang et al. 2019) 86.2
GRAPPA (Yu et al. 2021a) 90.8
SeaD + EG (Xu et al. 2022) 93.0

Table 3: Test execution accuracies on WIKISQL dataset. For
fairness, we compare our methods with the plain-PLMs that
do not use any additional resources (e.g., further pretraining,
data augmentation, execution-guided decoding, etc.). The
SOTAs are also listed here for readers’ information.

KQA PRO, and WIKISQL datasets, as presented respec-
tively in Table 1, 2, and 3.

Specifically, on both OVERNIGHT and KQA PRO
datasets, our framework achieves the new state-of-the-
art performance and demonstrates significant accuracy im-
provement over the PLM baselines. Remarkably, with the
aid of intermediate supervision tasks and hierarchical de-
coder designs, our work even outperforms GraphQ IR (Nie
et al. 2022), which requires the laborious implementation of
an intermediate representation transpiler.

On WIKISQL, our proposed approach also demonstrates
superior execution accuracy over the T5-base and BART-
base PLM baselines. In spite of the performance gap com-
pared to the state-of-the-art works on WIKISQL, their works
all rely heavily on further pertaining and execution-guided
decoding, whereas our approach does not use any external
resources other than the datasets themselves.

Ablation Studies
For model ablation, we implement three different settings

by removing the respective module:

• Without Semantic Anchor Extraction The proposed
hierarchical decoder architecture with only the Semantic
Anchor Alignment task as the intermediate supervision.

• Without Semantic Anchor Alignment The proposed
hierarchical decoder architecture with only the Semantic
Anchor Extraction task as the intermediate supervision.

• Without Hierarchical Decoder Both Semantic Anchor
Extraction and Semantic Anchor Alignment tasks are per-
formed at the top layer of the PLMs in a multi-task learn-
ing setting.
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Figure 3: Softmax distribution of the hierarchical decoders over the intermediate supervision tasks of Semantic Anchor Extrac-
tion and Semantic Anchor Alignment. Di refers to the weighting over the i-th intermediate decoder layer for the specified task.

The ablated experiments demonstrate consistent trends
across all of the benchmarks. Models without Semantic An-
chor Extraction demonstrate a larger drop in performance
compared to those without Semantic Anchor Alignment.
This can be explained as similar to the human cognition pro-
cess where the extraction of semantic anchors is a more fun-
damental task as the premise of the latter constitution of a
whole sequence. On the other hand, models without the hi-
erarchical decoder also degrade significantly, which affirms
our hypothesis that guiding the PLMs with supervision over
the inner decoder layers can equip the models with improved
robustness and intrinsic interpretability.

We notice that the Alignment task poses larger impacts on
KQA Pro (-0.9%) and Overnight (-0.6%) than on WikiSQL
(-0.1%). This can be explained by the relatively shorter log-
ical form length in WikiSQL, which significantly ease the
model’s learning of the tokens’ position alignment.

Hallucination Analysis
To call back the motivation and evaluate whether our pro-

posed framework can help alleviate the hallucination issues
in PLM-based semantic parsers, we further compare and an-
alyze the generated logical forms from our method and from
the BART-base baseline. We determine hallucination based
on whether the generated logical form contains unfaithful or
irrelevant schema tokens (Shi et al. 2021; Ji et al. 2022), and
the results are shown in Table 4. By explicitly addressing the
semantic anchors with intermediate supervision, our method
can enforce the PLM to generate faithful structures and sig-
nificantly reduce hallucination. Apart from the quantitative
results, we also conduct case analysis and present two ex-
amples from the KQA PRO dataset in Figure 4, where the
PLM baseline mistakenly generates unfaithful content and
our method can precisely output the correct SPARQL query.

Interpretability Analysis
By performing intermediate supervision over the inner de-

coder layers together with the main task fine-tuning, this
work also provides a novel testbed for probing the latent
knowledge hidden inside a large PLM. Specifically, our

Dataset Baseline Ours Difference

OVERNIGHT 294 278 -5.76%
KQA PRO 949 855 -10.99%
WIKISQL 372 334 -11.38%

Table 4: Number of hallucination errors made by the BART-
base baseline and our model.

Case #1: 
NL Question: Tell me the TV series that has the hash tag of history.

Baseline generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "television 
station" . ?e  <hashtag> ?pv . ?pv <pred:value> "history" }

Ours generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "television 
series" . ?e < hashtag> ?pv . ?pv <pred:value> "history" }

Case #2:
NL Question: Which film has musician Jimi Hendrix as its subject?

Baseline generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "film" . ?e 
<narrative_location> ?e_1 . ?e_1 <pred:name> "Jimi 
Hendrix" . ?e_1 <occupation> ?e_2 . ?e_2 <pred:name> 
"musician".   }

Ours generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "film" . ?e 
<depicts> ?e_1 . ?e_1 <pred:name> "Jimi Hendrix" . ?e_1 
<occupation> ?e_2 . ?e_2 <pred:name> "musician" .   }

Case #1: 

NL Question: Tell me the TV series that has the hash tag of history.

Baseline generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "television 
station" . ?e <hashtag> ?pv . ?pv <pred:value> "history" }

Ours generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "television 
series" . ?e <hashtag> ?pv . ?pv <pred:value> "history" }

Case #2: 

NL Question: Which film has musician Jimi Hendrix as its subject?

Baseline generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "film" . ?e 
<narrative_location> ?e_1 . ?e_1 <pred:name> "Jimi Hendrix"
. ?e_1 <occupation> ?e_2 . ?e_2 <pred:name> "musician" }

Ours generated SPARQL:  SELECT DISTINCT ?e WHERE { ?e 
<pred:instance_of> ?c . ?c <pred:name> "film" . ?e 
<depicts> ?e_1 . ?e_1 <pred:name> "Jimi Hendrix" . 
?e_1 <occupation> ?e_2 . ?e_2 <pred:name> "musician" }

Figure 4: Case analysis of the PLM hallucination issues.

framework can equip the PLMs with intrinsic interpretabil-
ity in the following aspects.

Hierarchical Decoder Distribution As aforementioned
in Section 2, during the intermediate supervision, the model
can self-adaptively attend to the optimal inner decoder layers
with weightings adjusted by loss backpropagation. There-
fore, by analyzing the weighting distribution over the hi-
erarchical decoders, we can thereby examine the sublayer
functionalities of the PLM decoders. As can be observed in
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NL Question: what player had the same amount of blocks this season as kobe bryant ?

Target lambda-DCS Logical Form:
( call SW.listValue ( call SW.getProperty ( ( lambda s ( call SW.filter ( var s ) ( string num_blocks ) ( string = ) 
( call SW.getProperty ( call SW.getProperty en.player.kobe_bryant ( call SW.reverse ( string player ) ) ) ( string 
num_blocks ) ) ) ) ( call SW.domain ( string player ) ) ) ( string player ) ) )

Semantic Anchors: player, num blocks, kobe bryant

Intermediate Decoder Layer Outputs for Semantic Anchor Extraction :
Decoder #1:  player had  same amount  blocks this season as kobe Bryant
Decoder #2:  player   same amount time blocks  season  kobe Bryant
Decoder #3:  player player num points points blocks    kobe bryant 1
Decoder #4:  player num num points points blocks blocks season   k bryant
Decoder #5:  player blocks blocks points blocks blocks blocks season  k k bryant

Intermediate Decoder Layer Outputs for Semantic Anchor Alignment :
Decoder #1:  inl same season in which he had 3 rebounds namethe number of blocks performed by kobe bryant
Decoder #2:  _ player__ same____ season 2__bantant__________________
Decoder #3:  time_ player_ team 3____ - 2obe_ryant____________________
Decoder #4:  .___ team 3_ game__ -_obe_ryant________
Decoder #5:  call player__ team team of block__ - 3obe_ryant_ry ( ( ( ( ( ( ( (_____ ( ( ( ( (_ ( ( (___________

Figure 5: BART-base inner decoder layer outputs respectively for the two intermediate supervision tasks.

Figure 3, PLMs tend to perform Extraction at the lower de-
coder layers and Alignment at the upper layers, which can
be exactly aligned to the order of how humans may process
the semantic parsing tasks.

Intermediate Layer Output Analysis More importantly,
with our proposed hierarchical decoder, the PLM users
are now able to probe the hidden representations of inner
decoder layers. Specifically, by converting the layer-wise
hidden logits into human-readable outputs, our work can
be extended to understand the internal mechanisms behind
PLM processing. We present an example from OVERNIGHT
dataset with the BART-base inner 5 decoder layer outputs
in Figure 5. We conclude that the lower layers of the PLM
are more likely to contain information from the input se-
quence (e.g., the Decoder #1 outputs for both tasks are
quite similar to the input natural language question). As the
model hidden representations are further processed, the up-
per decoder layer outputs have moved closer to the target
sequence (e.g., the Decoder #5 output for Semantic Anchor
Alignment already contain some syntax-related tokens like
“call” and “(” in lambda-DCS logical forms). Some ir-
relevant tokens (e.g., points) also exist in the inner layer
output, which provides an indication for potential hallucina-
tion errors. Overall, these human-understandable inner layer
outputs can greatly improve intrinsic interpretability by un-
veiling the latent representations from PLMs’ black box.

4 Related Work
Semantic Parsing

Semantic parsing is the task of converting natural lan-
guage utterances into either downstream logical forms (Sun
et al. 2020; Zhong, Xiong, and Socher 2017; Yu et al. 2018;
Shin and Van Durme 2022) or meaning representations (Ba-
narescu et al. 2013). Non-PLM-based methods in this field
tend to incorporate representation learning or graph neural

networks. Saxena, Tripathi, and Talukdar infuses knowledge
representation to facilitate reasoning over the knowledge
base (2020). Schlichtkrull et al. models the knowledge base
as a graph by using GCN (2018). Recent studies obtain state-
of-the-art results on semantic parsing datasets with the capa-
bility of existing PLMs (Shin and Van Durme 2022; Chen
et al. 2021a) or further pretrained domain-specific PLMs
(Yin et al. 2020; Herzig et al. 2020; Yu et al. 2021a).

PLM Interpretability
Most current studies attempt to analyze the hidden rep-

resentations inside the PLMs with post-hoc methods such
as attention analysis (Clark et al. 2019) and counterfactual
manipulation (Stevens and Su 2021b). Among them, Yang
et al. study the functionalities of each decoder sublayer in
Transformer by analyzing the attention map while perform-
ing machine translation (2020). Shi et al. take a more proac-
tive approach to supervise the attention with prior knowl-
edge during the training process (2020). Liu et al. explore
the grounding capacity of PLMs by erasing the input tokens
in sequential order to observe the change of confidence of
each concept to be predicted (2021).

5 Conclusion
In this paper, we address the two major issues in PLM-

based semantic parsers. We design two intermediate super-
vision tasks, Semantic Anchor Extraction and Semantic An-
chor Alignment, to guide the PLM fine-tuning through a
novel self-adaptive hierarchical decoder architecture. Exten-
sive experiments show our framework can significantly re-
duce hallucination errors and improve model intrinsic inter-
pretability by probing the inner decoder layers’ hidden rep-
resentations into human-readable outputs. Extensive experi-
ments show our model can consistently outperform the PLM
baselines, reduce hallucination errors, and demonstrate im-
proved intrinsic interpretability.
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