
Graph Component Contrastive Learning for Concept Relatedness Estimation

Yueen Ma1, Zixing Song1, Xuming Hu2, Jingjing Li1, Yifei Zhang1, Irwin King1

1The Chinese University of Hong Kong,
2Tsinghua University

{yema21, zxsong, lijj, yfzhang, king}@cse.cuhk.edu.hk, hxm19@mails.tsinghua.edu.cn

Abstract

Concept relatedness estimation (CRE) aims to determine
whether two given concepts are related. Existing methods
only consider the pairwise relationship between concepts,
while overlooking the higher-order relationship that could be
encoded in a concept-level graph structure. We discover that
this underlying graph satisfies a set of intrinsic properties of
CRE, including reflexivity, commutativity, and transitivity. In
this paper, we formalize the CRE properties and introduce a
graph structure named ConcreteGraph. To address the data
scarcity issue in CRE, we introduce a novel data augmenta-
tion approach to sample new concept pairs from the graph.
As it is intractable for data augmentation to fully capture the
structural information of the ConcreteGraph due to a large
amount of potential concept pairs, we further introduce a
novel Graph Component Contrastive Learning framework to
implicitly learn the complete structure of the ConcreteGraph.
Empirical results on three datasets show significant improve-
ment over the state-of-the-art model. Detailed ablation stud-
ies demonstrate that our proposed approach can effectively
capture the high-order relationship among concepts.

Introduction
Concept relatedness estimation (CRE) is the task of deter-
mining whether two concepts are related. In CRE, a concept
can be a Wikipedia entry, a news article, a social media post,
etc. Table 1 includes a pair of related concepts and an un-
related concept. In this example, when given the first two
concepts, “Open-source software” and “GNU General Pub-
lic License”, the goal of CRE is to label them as a related
pair; but for “Open-source software” and “Landscape archi-
tecture”, one should label them as unrelated.

Existing CRE methods (Liu et al. 2019a) only consider
the provided concept pairs, which are low-order pairwise
relationships. However, we discover that there exist higher-
order relationships in CRE that can be encoded by a concept-
level graph structure, where the original pairs correspond
to immediate neighbors (Ein-Dor et al. 2018; Liu et al.
2019a). The higher-order relationships are manifested as
the multi-hop neighbors in the graph, which are validated
by three types of intrinsic properties of CRE: reflexivity,
commutativity, and transitivity. To construct the graph, we

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

R
el

at
ed

Open-source software (OSS) is computer software
that is released under a license in which the copy-
right holder grants users the rights to use, study,
change, and distribute the software and its source
code to anyone and for any purpose · · ·
The GNU General Public License (GNU GPL or
simply GPL) is a series of widely used free software
licenses that guarantee end users the freedom to run,
study, share, and modify the software · · ·

U
nr

el
at

ed Landscape architecture is the design of outdoor ar-
eas, landmarks, and structures to achieve environ-
mental, social-behavioural, or aesthetic outcomes
· · ·

Table 1: Examples of concept relatedness estimation from
the WORD dataset.

treat each concept as a node and add edges between any
related concept pairs. In this paper, we name it Concrete-
Graph (Concept relatedness Graph). It enables us to obtain
new concept pairs that are not limited to low-order relation-
ships. For example, one of the transitivity properties states
that if concepts (xA, xB) are related and concepts (xB , xC)
are related, then we can extract a new related concept pair
(xA, xC), where xC is a 2-hop neighbor of xA. Therefore,
when we sample new concept pairs from the ConcreteGraph,
the CRE properties are implicitly utilized.

The main challenge is how to take full advantage of
the structural information of the ConcreteGraph. The most
straightforward approach is to explicitly add new concept
pairs to the dataset, which can be seen as a data augmen-
tation method for alleviating the data scarcity issue. How-
ever, this approach exhibits a problem: there is an excessive
amount of potential concept pairs. Assuming that we extract
all possible related concept pairs by adding edges between
any two connected concepts in the ConcreteGraph, we es-
sentially turn every component of the ConcreteGraph into a
complete subgraph. Because the edges in the original Con-
creteGraph are sparse, the number of new related concept
pairs grows quadratically with the number of concepts. It
would become impractical for a model to learn all of them
and, thus, we must only sample a subset of all possible con-
cept pairs. If we sample completely at random, the quality of

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

13362

the new concept pairs cannot be guaranteed. That is, when
the path length between two concepts is long, the quality of
their relationship tends to be low because the probability of
the existence of a noisy edge on the path becomes high. This
phenomenon is later confirmed by our experiments. A sim-
ple solution is to extract concept pairs from the local k-hop
neighborhood. But this limits the ConcreteGraph-based data
augmentation to contain only the local graph structure.

To this end, we introduce a novel Graph Component
Contrastive Learning (GCCL) framework that can implic-
itly capture the complete structural information of the Con-
creteGraph. Rather than explicitly learning new concept
pairs, the objective of GCCL is that a concept treats its
own component as positive, whereas it forms negative pairs
with all other components. The representation of a concept
or a component is achieved using a shared backbone en-
coder. Thus, GCCL gives the encoder access to both lo-
cal and global structural information, which would be in-
tractable if we used the ConcreteGraph-based data augmen-
tation method. GCCL is inspired by Prototypical Contrastive
Learning (PCL) (Li et al. 2021), but the difference is that it
does not use k-means to find clusters. Each component of
the ConcreteGraph corresponds to a cluster, and therefore,
components in GCCL translate to prototypes in PCL.

Specifically, GCCL involves three main steps: (1) we use
a Transformer model as the backbone encoder to embed all
concepts and components before each epoch; (2) for each
concept, we train the encoder to distinguish the concept’s
own component from all other components, which is defined
to be the GC-NCE objective; (3) along with the main GC-
NCE target, we also use a momentum encoder as in the Mo-
mentum Contrast (MoCo) framework (He et al. 2020; Chen
et al. 2020b) to optimize an InfoNCE loss (van den Oord,
Li, and Vinyals 2018). This InfoNCE loss contrasts a con-
cept with other concepts. It is added to the main GC-NCE
target to preserve the local smoothness of the overall GCCL
loss function (Li et al. 2021). We conduct comprehensive ex-
periments with three different Transformer models on three
datasets. The empirical results show that the GCCL frame-
work is capable of significantly improving their performance
and, when combined with the ConcreteGraph-based data
augmentation method, it can sometimes bring even more
improvement. We also conduct detailed ablation studies to
show the effectiveness of each module in our method. Our
code is available on Github1.

The main contributions of our paper are as follows:

• For CRE, we formally summarize its intrinsic properties
that can be categorized into three types: reflexivity, com-
mutativity, and transitivity. On their basis, we construct a
concept-level graph structure, ConcreteGraph, which en-
codes not only the provided concept pairs but also the
higher-order relationships between concepts. To the best
of our knowledge, we are the first to find such a graph
structure for the CRE task.

• We propose a novel Graph Component Contrastive
Learning (GCCL) framework for taking full advantage

1Github: https://github.com/Panmani/GCCL

of the local and global structural information of the Con-
creteGraph. GCCL can be complemented by a novel
ConcreteGraph-based data augmentation method that ex-
plicitly provides local neighborhood information.

• Our method significantly improves over the state-of-the-
art Concept Interaction Graph (CIG) model (Liu et al.
2019a) on two datasets, CNSE and CNSS. We are also
the first to apply deep neural networks to the WORD
dataset (Ein-Dor et al. 2018).

Related Work
Concept Relatedness Estimation
The concept relatedness estimation (CRE) task stemmed
from the concept similarity matching (CSM) task in the area
of formal concept analysis (FCA). In FCA, a concept is for-
mally defined as a pair of sets: a set of objects and a set of
attributes in a given domain (Formica 2006). Methods for
assessing concept similarity include ontology-based meth-
ods (Formica 2006, 2008), Tversky’s-Ratio-based meth-
ods (Lombardi and Sartori 2006), rough-set-based methods
(Wang and Liu 2008), and semantic-distance-based methods
(Ge and Qiu 2008; Li and Xia 2011). The definition for con-
cepts in FCA is not suitable for the CRE task because CRE
concepts are long text documents and, thus, the CSM meth-
ods cannot be applied to the CRE task. Inspired by the gi-
ant success of introducing deep neural networks into natural
language processing applications (Li et al. 2019; Gao et al.
2020; Sun et al. 2022; Li et al. 2020), we adopt Transformer
models (Vaswani et al. 2017) to address the CRE task.

CRE is also related to tasks such as semantic textual simi-
larity (Cer et al. 2017; Zhang and Zhu 2019, 2020), text sim-
ilarity (Thijs 2019), text relatedness (Tsatsaronis, Varlamis,
and Vazirgiannis 2014), text matching (Jiang et al. 2019),
and text classification (Hu et al. 2020, 2021a,b; Liu et al.
2022; Li et al. 2022). The current state-of-the-art model for
semantic textual similarity is XLNet (Yang et al. 2019), but
there is still no work that applies deep neural networks to
the WORD dataset. With the advancement of Graph Neu-
ral Networks (GNNs) (Song and King 2022; Song, Zhang,
and King 2022; Song et al. 2021, 2022; Zhang et al. 2022a),
Liu et al. (2019a) introduced the Concept Interaction Graph
(CIG) method to match news article pairs along with two
new datasets, CNSE and CNSS. CIG is the current state-of-
the-art model on these two datasets.

CRE can play an important role in a wide range of ap-
plications, such as information retrieval (Busch et al. 2012;
Teevan, Ramage, and Morris 2011), document clustering
(Aswani Kumar and Srinivas 2010), plagiarism detection
(Muangprathub, Kajornkasirat, and Wanichsombat 2021),
etc. Therefore, CRE has been attracting much interest lately.

Contrastive Learning
Since the introduction of contrastive learning (Chopra, Had-
sell, and LeCun 2005), many variants have been developed.
InfoNCE (van den Oord, Li, and Vinyals 2018) aims to find a
positive in a group of noise samples. MoCo (He et al. 2020;
Chen et al. 2020b) provides a queue-based framework for
utilizing data from previous batches with the addition of a

13363

En
co

d
er

𝜃!"#

En
co

d
er

𝜃!

ConcreteGraph

GA

GB

DC

GC

FE E F

D

B

A

C

G

c2

c1

M
o
m

en
tu

m
En

co
d

er

𝜃$!

A

A

D

B C

E

F G

Q
u
eu
e

GC-NCE

M
o
C
o M

o
C
o

Dataset
Positive Negative

(a) ConcreteGraph Construction (b) Graph Component Contrastive Learning

Embedding

GC
-N
CE

Figure 1: Overview of our proposed framework for concept relatedness estimation. (a) After collecting the concept pairs into
the ConcreteGraph, the concepts are divided into multiple components, e.g., c1 and c2. For simplicity, concepts are represented
with their indices, e.g., the node with index A represents concept xA; edges connect related concepts: solid black edges are
true annotations, and dashed gray edges correspond to new related concept pairs from ConcreteGraph-based data augmenta-
tion; disconnected pairs are unrelated ones, such as (xA, xF). (b) Under the Graph Component Contrastive Learning (GCCL)
framework, the GC-NCE objective aims to distinguish each concept’s own component from other components (in this example,
the concept is xA, highlighted in yellow); the MoCo objective is to contrast the momentum embedding of each concept with
the momentum embeddings of a queue of other concepts. The positive embeddings are colored in green and the negative ones
are in red. θT−1 and θT are both the parameters of the main encoder but from two different epochs; θTK is the parameters of the
momentum encoder from the MoCo framework.

momentum encoder. Due to the use of large Transformer
models (Devlin et al. 2019; Liu et al. 2019b; Yang et al.
2019) in our method, the batch size is limited. MoCo pro-
vides a solution to decouple the batch size from the number
of negatives. Prototypical Contrastive Learning (PCL) (Li
et al. 2021) treats prototypes as latent variables and brings
clustering into the contrastive learning paradigm. The proto-
types are found using the k-means clustering algorithm and
its ProtoNCE loss contrasts different prototypes based on the
clustering results. However, the CRE task naturally exhibits
a cluster structure, and, therefore, we do not need to rely
on a clustering algorithm. Our method is not to be confused
with Graph Contrastive Learning (GCL) (You et al. 2020;
Zhang et al. 2022b) whose main inputs are graphs, whereas
the inputs are text documents in this work.

Our Method
Concept Relatedness Estimation
The concept relatedness estimation (CRE) task is to predict
whether two given concepts are related or unrelated. Thus, it
is a binary classification task with two labels “related” and
“unrelated”. Formally, given a set of concepts X = {xi | i ∈
Nn} with an index set Nn = {1, . . . , n} and a set of known
pairwise binary labels Y = {yi,j | (i, j) ⊂ Nn × Nn}, the
CRE task is to learn a parameterized encoder fθ that can
estimate the true relatedness yi,j of two concepts xi and xj .
In this paper, we focus on concepts that are long documents.

CRE Properties. The CRE task exhibits some unique in-
trinsic properties that are rarely present in typical NLP tasks.

To state these properties formally, we assume three concepts
xA, xB , and xC . The similarity symbol “∼” is used to de-
note that two concepts are “related”, while the dissimilarity
symbol “≁” is used to connect two unrelated concepts.
Property 1 (Reflexivity). A concept xA is related to itself:
xA ∼ xA.
Property 2 (Commutativity of Relatedness). If xA and xB

are related, then xB and xA are related: xA ∼ xB ⇐⇒
xB ∼ xA.
Property 3 (Commutativity of Unrelatedness). If xA and
xB are unrelated, then xB and xA are unrelated: xA ≁
xB ⇐⇒ xB ≁ xA.
Property 4 (Transitivity of Relatedness). If xA is related to
xB and xB is related to xC , then xA and xC are related:
(xA ∼ xB) ∧ (xB ∼ xC) =⇒ xA ∼ xC .
Property 5 (Transitivity of Unrelatedness). If xA is related
to xB but xB is unrelated to xC , then xA and xC are unre-
lated: (xA ∼ xB) ∧ (xB ≁ xC) =⇒ xA ≁ xC .

ConcreteGraph. To make use of the CRE properties in
practice, we can build a graph to encode both the pairwise
relationships from the dataset and the higher-order relation-
ships based on those properties. We name it ConcreteGraph
(Concept relatedness Graph). An illustration of how to
construct the ConcreteGraph is shown in Figure 1(a). Each
node in ConcreteGraph represents a concept, and edges are
only added between related concept pairs. The construction
of the ConcreteGraph takes O(|Y |) time as we need to iter-
ate over all labeled concept pairs. Since it is a binary classi-
fication task, we do not need to set the edge weights. By the

13364

nature of CRE, the ConcreteGraph usually has multiple con-
nected components, where each component contains a set
of related concepts. To identify the components of the Con-
creteGraph, we can use breadth-first search (BFS), which
takes O(V + E) time where V is the number of nodes and
E is the number of edges.

Data Augmentation
The ConcreteGraph enables a straightforward data augmen-
tation method for addressing the data scarcity problem. The
CRE properties automatically come into play when we sam-
ple new concept pairs from the ConcreteGraph. Commuta-
tivity is used if we sample two nodes that are already pro-
vided by the dataset but in a different order. For example,
if (xA, xB) is provided and we sample (xB , xA), then this
new pair is validated by the commutativity of relatedness
property (Property 2) or the commutativity of unrelatedness
property (Property 3). Transitivity is utilized when the path
between the two sampled concepts has at least two edges or
when there is no path between them. For example, if there
is a path xA—xB—xC , then the new concept pair (xA, xC)
is justified by the transitivity of relatedness property (Prop-
erty 4). When two concepts are sampled from two differ-
ent components, the transitivity of unrelatedness property
(Property 5) is employed to prove that they are unrelated.

In theory, any two concepts within the same graph compo-
nent are related; any two concepts from two different com-
ponents are unrelated. But it is intractable to use all pos-
sible concept pairs. For example, the largest component of
the ConcreteGraph of the WORD dataset (Ein-Dor et al.
2018) has 4,301 nodes. We could sample up to 9,247,150 re-
lated concept pairs from it, which is impractical for a Trans-
former model to learn. Therefore, we must only use a sub-
set of those concept pairs. An intuitive heuristic is to pick
a concept pair with a short path length. If the path length is
too long, the connection between the concept pair becomes
“risky”. Namely, when there are more edges on the path, the
probability of the existence of a noisy edge becomes higher,
which could degrade the quality of the path. We later prove
this theory with an empirical ablation study in Sub-section
“Ablation Study of Data Augmentation”. In practice, we ob-
tain the k-hop neighborhood for every node, where k is a
small integer, such as 2 or 3. We use a subset of the nodes in
this local neighborhood as related concepts by setting a tar-
get augmentation ratio. Unrelated concept pairs can be pro-
duced by simply sampling concepts from other components.

Graph Component Contrastive Learning
We introduce Graph Component Contrastive Learning
(GCCL) to take full advantage of local and global struc-
tural information of the ConcreteGraph, which is neglected
by previous CRE methods. Our ConcreteGraph-based data
augmentation only provides concept pairs from a local k-
hop neighborhood, and it is intractable to include all concept
pairs that satisfy the CRE properties. In fact, it is harmful
to explicitly extract all possible concept pairs as augmented
data due to the quality problem caused by long paths. GCCL
captures global structural information by learning the rep-
resentations of the components in the ConcreteGraph and

contrasting a concept’s own component against other com-
ponents. In this way, all of the related and unrelated concept
pairs are preserved implicitly because each component em-
bedding aggregates a group of related concept embeddings.
Our method also has a connection to clustering methods: if
we add edges for all possible related pairs, the Concrete-
Graph itself would become a cluster graph because all the
components become complete subgraphs. For that reason, a
ConcreteGraph component in GCCL is equivalent to a clus-
ter (prototype) in Prototypical Contrastive Learning (PCL)
(Li et al. 2021). The difference is that GCCL does not rely
on clustering algorithms to find clusters.

The overview of our GCCL framework is illustrated in
Figure 1(b). The main objective of GCCL is to treat the
embedding of a concept’s own component embedding as
the positive and the embeddings of all other components
as negatives. This allows the model to learn representations
for both individual concepts and their components, which
implicitly encode the global graph structure. Formally, we
assume that the ConcreteGraph has a set of r components
C = {c1, c2, . . . , cr}, where each component itself is a set
of concepts cs = {xs1 , xs2 , . . . , xsp} and p is the number
of concepts in cs. Same as PCL, we assume that fθ(xi) fol-
lows an isotropic Gaussian distribution around the compo-
nent embedding:

p(xi; cs, θ) =
exp

(
−
(
fθ(xi)−fθ(cs)

)2
/2σ2

s

)
∑r

j=1 exp
(
−
(
fθ(xi)−fθ(cj)

)2
/2σ2

j

) , (1)

where xi ∈ cs and σ2 is the variance. We also overload fθ
with the input of a component, such that we get the rep-
resentation of a component using a shared backbone en-
coder. In this paper, the component embedding is simply
the element-wise average of the embeddings of its concepts:
fθ(cs) = 1

p

∑p
k=1 fθ(xsk). Theoretically, we could add an

extra Graph Neural Network (GNN) layer (Wu et al. 2021)
on top of the concept embeddings to get the component em-
bedding. However, because the components are complete
subgraphs, GNN layers would quickly over-smooth the con-
cept embeddings, which is close to their average. Thus, we
do not use GNN layers to obtain the component embeddings.

After applying ℓ2-normalization to both the concept
embeddings and the component embeddings, we have(
fθ(xi) − fθ(cs)

)2
= 2 − 2fθ(xi) · fθ(cs). Then the

maximum log-likelihood estimation for θ optimizes a novel
Graph-Component-NCE (GC-NCE) loss LGC-NCE:

θ∗ = argmax
θ

n∑
i=1

log p(xi;C, θ)

= argmin
θ

n∑
i=1

− log
exp

(
fθ(xi) · fθ(cs)/ϕs

)∑r
j=1 exp

(
fθ(xi) · fθ(cj)/ϕj

)
≜ argmin

θ
LGC-NCE, (2)

where

ϕs =

∑p
k=1 ∥fθ(xsk)− fθ(cs)∥2

p log(p+ α)
(3)

13365

WORD CNSE CNSS
Model Acc F1 AUC Acc F1 AUC Acc F1 AUC
GCNII (Chen et al. 2020a) 54.62 44.55 57.03 62.81 56.22 66.40 58.40 61.06 63.00
ShaDow-GNN (Zeng et al. 2021) 62.27 65.96 67.39 60.78 57.34 64.75 60.40 67.63 64.85
JacobiConv (Wang and Zhang 2022) 62.13 60.30 66.89 68.32 59.69 76.42 62.94 66.43 67.87
GCN / CIG (Liu et al. 2019a) 62.81 67.75 67.00 83.95 82.05 91.92 89.69 90.05 95.97

(Corrected CIG) - - - (77.57) (75.13) - (82.87) (83.43) -
BERT (Devlin et al. 2019) 76.85 76.12 84.86 83.97 81.67 92.10 90.63 91.09 97.07

w. Aug (Ours) 77.42 76.81 85.75 85.17 83.39 93.08 91.32 91.71 97.50
w. GCCL (Ours) 77.83 77.59 85.86 85.79 84.18 92.96 93.67 93.78 98.37
w. Aug + GCCL (Ours) 78.18 78.25 *86.60 85.76 84.84 93.46 93.32 93.54 98.16

RoBERTa (Liu et al. 2019b) 77.25 78.11 85.55 84.52 82.79 92.88 92.84 92.74 98.20
w. Aug (Ours) 77.88 76.34 86.30 85.35 84.20 93.97 93.08 93.19 98.11
w. GCCL (Ours) 78.61 77.93 86.26 86.21 84.40 93.94 93.82 93.93 98.50
w. Aug + GCCL (Ours) 78.14 76.69 86.45 87.00 86.05 94.39 93.46 93.62 98.05

XLNet (Yang et al. 2019) 77.18 *78.42 86.10 87.00 84.65 95.21 93.70 93.84 98.53
w. Aug (Ours) 77.75 76.51 86.00 88.41 86.87 95.29 93.79 93.84 98.40
w. GCCL (Ours) 77.98 77.56 85.72 88.06 86.47 95.21 *94.60 *94.74 *98.80
w. Aug + GCCL (Ours) *79.15 78.32 86.25 *88.82 *87.70 *95.53 94.15 94.34 98.68

Table 2: Performance comparison with various baselines for our ConcreteGraph-based data augmentation method and Graph
Component Contrastive Learning (GCCL) framework. The best results are highlighted with bold text for each model-dataset
combination; the best results for each of the three datasets are marked with *.

is a concentration estimation that replaces the variance in
Eq. 1, which is also introduced in PCL; α is a smooth-
ing hyper-parameter for preventing ϕ from becoming exces-
sively large when the component size p is small. When ϕ is
small, the concept embeddings within the same component
are pulled closer together and, thus, have a high concentra-
tion level.

In addition to the main GC-NCE objective of GCCL, we
also use the InfoNCE (van den Oord, Li, and Vinyals 2018)
objective under the MoCo framework (He et al. 2020; Chen
et al. 2020b). The idea of InfoNCE is to distinguish the em-
bedding of a concept from the embeddings of a set of noise
concepts. MoCo introduces a dynamic dictionary based on a
queue data structure for storing the embeddings from a mo-
mentum encoder fθk in a first-in-first-out (FIFO) fashion,
which enables the decoupling between the batch size and
the amount of negatives. This is especially useful since we
use large Transformer models as encoders. The MoCo objec-
tive is constructed by contrasting the query embedding fθ(x)
from the main encoder and the key embeddings fθk(x) from
the momentum encoder. The momentum encoder fθk is the
moving average of the main encoder fθ with a momentum
coefficient m ∈ [0, 1): θk ← mθk + (1−m)θq .

Similar to InfoNCE, the MoCo loss treats the query and
key embeddings of a concept as the positive pair, and the key
embeddings of other concepts in the MoCo queue are neg-
atives to the query embedding of the current concept. That
leads to the MoCo objective:

LMoCo =
n∑

i=1

− log
exp

(
fθ(xi) · fθk(xi)/τ

)∑Q
j=0 exp

(
fθ(xi) · fθk(xj)/τ

) , (4)

where the denominator includes one positive and Q neg-
atives in the MoCo queue; τ is a temperature hyper-
parameter. The purpose of adding this additional MoCo ob-
jective is to preserve local smoothness of the loss function

(Li et al. 2021): the GC-NCE objective (Eq. 2) and the CRE
objective (Eq. 5) both pull the embeddings of related con-
cepts closer, those concept embeddings might become very
similar after finetuning, which can cause poor generaliza-
tion; the MoCo objective preserves the distinction of indi-
vidual concept embeddings by contrasting a concept against
all other concepts.

In this paper, we use Transformer (Vaswani et al. 2017)
as the encoder fθ. After passing the concepts into fθ and
obtaining their concept embeddings, the concept relatedness
is estimated as follows:

h(xi, xj ; θ) = fθ(xi)⊕ fθ(xj)⊕
∣∣fθ(xi)− fθ(xj)

∣∣
p(xi, xj) = σ

(
Wh(xi, xj ; θ)

)
LCRE = LCE

(
p(xi, xj), yi,j

)
,

(5)

where⊕ is the concatenation operation;
∣∣fθ(xi)−fθ(xj)

∣∣ is
the element-wise absolute value of the difference of the two
vectors; σ is a sigmoid activation function; W is a trainable
parameter matrix; LCE is the binary cross-entropy loss.

The overall objective L combines the GC-NCE loss
(Eq. 2), the MoCo loss (Eq. 4) and the CRE loss (Eq. 5):

L = LCRE + βLGCCL = LCRE + β(LGC-NCE + LMoCo),

where β is the hyper-parameter that adjusts the effect of the
GCCL loss LGCCL.

Experiments
We conduct experiments on three CRE datasets: WORD
(Ein-Dor et al. 2018), CNSE and CNSS (Liu et al. 2019a).
We compare the performance of three Transformer models,
including BERT (Devlin et al. 2019), RoBERTa (Liu et al.
2019b) and XLNet (Yang et al. 2019). We also include four
latest Graph Neural Network (GNN) models (Chen et al.
2020a; Zeng et al. 2021; Wang and Zhang 2022; Liu et al.

13366

WORD CNSE CNSS
Objective Acc F1 AUC Acc F1 AUC Acc F1 AUC
BERT (Devlin et al. 2019) (CRE only) 76.85 76.12 84.86 83.97 81.67 92.10 90.63 91.09 97.07

w. MoCo 77.10 76.79 84.82 84.07 81.78 92.25 92.57 92.88 97.96
w. GC-NCE 77.58 78.06 85.81 84.93 83.17 92.68 92.93 93.06 98.15
w. GCCL (GC-NCE & MoCo) 77.83 77.59 85.86 85.79 84.18 92.96 93.67 93.78 98.37

Table 3: The ablation study of the GCCL objective.

2019a) as baselines. Detailed ablation studies show the ef-
fect of different modules of our method.

Datasets
The Wikipedia Oriented Relatedness Dataset (WORD)
dataset (Ein-Dor et al. 2018) collects English concepts from
Wikipedia, including 19,176 concept pairs. The Chinese
News Same Event (CNSE) dataset and the Chinese News
Same Story (CNSS) dataset were both created by Liu et al.
(2019a), containing 29,063 and 33,503 news article pairs
from the major internet news providers in China, respec-
tively. We use the official dataset split for WORD whose
train-test ratio is approximately 2:1. Since CNSE and CNSS
do not provide an official dataset split, they are split ran-
domly with a train-dev-test ratio of 7:2:1. These dataset
splits are fixed throughout different experiments across all
models.

Experimental Setup
We use the AdamW optimizer (Loshchilov and Hutter 2019)
with learning rate = 1 × 10−5 and ϵ = 1 × 10−8, follow-
ing a linear schedule. The Transformer models are trained
for 5 epochs. For GC-NCE, we use α = 10. For MoCo (He
et al. 2020; Chen et al. 2020b), we use queue size Q = 32,
momentum coefficient m = 1− 1× 10−4, and temperature
τ = 0.1. We use β = 0.1 for the overall loss. CIG (Liu et al.
2019a) is trained with its default hyper-parameters. Experi-
ments are conducted on four Nvidia TITAN V GPUs.

Performance Comparison
The performance comparison of different models is summa-
rized in Table 2. Three performance metrics are used: accu-
racy, F1, and AUC. We compare our method with different
GNNs and Transformers.

We use four recent GNNs as baselines. For GCNII (Chen
et al. 2020a), ShaDow-GNN (Zeng et al. 2021) and Jacobi-
Conv (Wang and Zhang 2022), we build a complete graph
for each concept, where each node is a token and the node
features are BERT token embeddings. For CNSE and CNSS,
Concept Interaction Graph (CIG) (Liu et al. 2019a) is the
current state-of-the-art model. CIG extracts a concept graph
for each article, where its concepts are different from CRE
concepts in that they are more similar to named entities. One
major problem with this model is that the size of the concept
graphs is limited. If a concept graph exceeds the limit, the
model simply discards the article pair. Therefore, CIG prac-
tically uses an easier subset of the original dataset, causing
inaccurate measurement of its performance. Thus, we add a
“Corrected CIG” row in the table to include the corrected

accuracy and F1. Because CIG is based on a graph convo-
lutional network (GCN) (Fey and Lenssen 2019) but it only
works on CNSE and CNSS, we developed a similar GCN
based on ELMo (Peters et al. 2018) for the WORD dataset.
Because most GNNs are designed to process sparse graph
inputs and they can suffer from the over-smoothing issue,
they usually do not excel at processing text inputs.

We finetune three Transformer models, BERT (Devlin
et al. 2019), RoBERTa (Liu et al. 2019b), and XLNet (Yang
et al. 2019) on the three datasets. GCCL is independent of
the ConcreteGraph-based data augmentation method. Thus,
they can be used either separately or simultaneously. To
illustrate their benefits, we report the performance of the
base Transformer model, Transformer with data augmenta-
tion (“w. Aug”), Transformer with GCCL (“w. GCCL”), and
Transformer with both modules (“w. Aug + GCCL”).

When compared with GNNs, Transformer models exhibit
a large advantage because the self-attention mechanism au-
tomatically optimizes the attention weights between tokens,
whereas the adjacency matrices in GNNs are fixed. In addi-
tion, the base Transformer models can even outperform the
uncorrected CIG and, with the help of our GCCL frame-
work, the margin is enlarged. When comparing our meth-
ods with the base Transformer models, we can see that the
GCCL framework is able to bring more improvement than
our data augmentation method in most cases. This shows
that the global structural information from GCCL is indeed
more effective for the CRE task.

When “Aug” and “GCCL” are combined, the performance
is further enhanced in most metrics on WORD and CNSE;
however, applying only GCCL produces better results on the
CNSS dataset. ConcreteGraph-based data augmentation is
confined to a local k-hop neighborhood, while GCCL cap-
tures the information of the entire component. They can
complement each other in most cases but their difference
may also cause disagreement as to whether two concepts are
related if they are connected by a long path. That is, data
augmentation does not sample any concept pairs with path
lengths longer than k, but GCCL retains those connections.
Such contradiction sometimes worsens the performance.

Ablation Study of GCCL
The GCCL loss has two parts: the main GC-NCE loss and
the auxiliary MoCo loss. We conduct an ablation study on
their individual effect on BERT (Devlin et al. 2019). As
shown in Table 3, both the MoCo loss and the GC-NCE
loss can improve the model performance. In addition, the
main GC-NCE objective produces more performance im-
provement than MoCo does. When they are combined, the

13367

(a) Original Representations

(b) GCCL Representations

Figure 2: The t-SNE visualization of the original and GCCL
concept embeddings. Each point corresponds to a concept
embedding, and the concepts in the same component share
the same color. Both sub-figures show 200 Components.

performance improvement from the two objectives stacks.
In Figure 2, we also visualize the concept embeddings

with t-SNE (Van der Maaten and Hinton 2008) to quali-
tatively illustrate the effect of GCCL. GCCL better repre-
sents the concepts by taking the global structure of the Con-
creteGraph into account: the embeddings of the concepts in
the same component are closer to each other using GCCL
and the embedding space of GCCL is better organized. This
gives us an insight into how GCCL helps the main CRE ob-
jective: GCCL pulls related concepts together and pushes
away unrelated components.

Ablation Study of Data Augmentation
To understand whether the quality or the quantity of aug-
mented data better helps the model performance, we experi-
ment with different k values and target augmentation ratios,
as summarized in Table 4. When the target augmentation ra-
tio is specified, the sampling process of new related concept
pairs stops when the target augmentation ratio is reached,
regardless of whether all possible related concept pairs are
sampled. If there is no target augmentation ratio (∞), we
find all possible related concept pairs for the given k. In

k
Target Related Pairs Acc F1 AUCRatio Samp. Poss.

1 - 6.8K 6.8K 76.85 76.12 84.86
2 2 12.9K 107K 77.42 76.81 85.75

3 19.3K 107K 75.66 74.51 83.96
2 4 25.8K 107K 72.23 72.07 79.99

5 32.2K 107K 70.99 70.78 78.95
2 ∞ 107K 107K 63.51 58.65 70.97
3 401K 401K 56.76 51.38 63.69
3 12.9K 401K 75.91 75.81 83.78
4 2 12.9K 1.4M 74.90 75.44 83.08
5 12.9K 3.9M 74.06 75.17 81.56

Table 4: The effect of the number of hops k and the aug-
mentation ratio in the ConcreteGraph-based data augmenta-
tion method. “Samp.” means sampled related pairs for train-
ing and “Poss.” means all possible related pairs in the k-
hop neighborhood. The number of sampled unrelated pairs
is equal to the number of sampled related pairs and omitted.

both cases, we keep sampling unrelated concept pairs un-
til the number of unrelated pairs is equal to that of related
pairs. This ensures the balance of the augmented dataset.

When k is fixed at 2 and the augmentation ratio increases,
the performance worsens. If we take it to the extreme by
not setting a target ratio, the performance drops significantly.
These results show that a large augmentation ratio does not
always help because it shrinks the proportion of annotated
concept pairs and the quality of sampled concept pairs never
matches that of annotated concept pairs. When the augmen-
tation ratio is fixed at 2 and k is incremented, the perfor-
mance also declines. This confirms our theory about how
path length can affect the quality of sampled concept pairs.
Namely, when the path length between two concepts is long,
the existence of a noisy edge becomes more likely, which
degrades the overall quality of the connection.

Conclusion
Concept relatedness estimation is an emerging task that has
a wide range of applications. To the best of our knowledge,
we are the first to discover the concept-level graph struc-
ture that unveils the high-order relationship among concepts.
We name it ConcreteGraph and develop a novel data aug-
mentation method based on it. However, because data aug-
mentation cannot capture the global structural information
of the ConcreteGraph, we integrate a novel Graph Compo-
nent Contrastive Learning (GCCL) framework to encode the
complete graph structure. Experimental results show that the
data augmentation method can improve the performance by
∼ 1%, whereas the improvement from GCCL can be up to
∼ 3%. Detailed analysis shows that GCCL better organizes
the embedding space where related concepts are close while
unrelated concepts are separated. We also conduct an experi-
ment to show that it is difficult for the ConcreteGraph-based
data augmentation method to provide as much performance
benefit as GCCL by simply sampling more concept pairs,
due to the degradation of the data quality caused by the long
path length.

13368

Acknowledgements
The work described here was partially supported by grants
from the National Key Research and Development Program
of China (No. 2018AAA0100204) and from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (CUHK 2410021, Research Impact Fund,
No. R5034-18).

References
Aswani Kumar, C.; and Srinivas, S. 2010. Concept lattice
reduction using fuzzy K-Means clustering. Expert Systems
with Applications, 37(3): 2696–2704.
Busch, M.; Gade, K.; Larson, B.; Lok, P.; Luckenbill, S.;
and Lin, J. 2012. Earlybird: Real-Time Search at Twitter.
In 2012 IEEE 28th International Conference on Data Engi-
neering, 1360–1369.
Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; and Specia,
L. 2017. Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055.
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020a.
Simple and Deep Graph Convolutional Networks. In ICML,
volume 119 of Proceedings of Machine Learning Research,
1725–1735. PMLR.
Chen, X.; Fan, H.; Girshick, R. B.; and He, K. 2020b.
Improved Baselines with Momentum Contrastive Learning.
CoRR, abs/2003.04297.
Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learning a
Similarity Metric Discriminatively, with Application to Face
Verification. In CVPR (1), 539–546. IEEE Computer Soci-
ety.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT (1), 4171–4186.
Association for Computational Linguistics.
Ein-Dor, L.; Halfon, A.; Kantor, Y.; Levy, R.; Mass, Y.;
Rinott, R.; Shnarch, E.; and Slonim, N. 2018. Semantic Re-
latedness of Wikipedia Concepts - Benchmark Data and a
Working Solution. In LREC. European Language Resources
Association (ELRA).
Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.
Formica, A. 2006. Ontology-based concept similarity in for-
mal concept analysis. Information sciences, 176(18): 2624–
2641.
Formica, A. 2008. Concept similarity in formal concept
analysis: An information content approach. Knowledge-
based systems, 21(1): 80–87.
Gao, Y.; Wu, C.-S.; Li, J.; Joty, S.; Hoi, S. C.; Xiong, C.;
King, I.; and Lyu, M. 2020. Discern: Discourse-Aware En-
tailment Reasoning Network for Conversational Machine
Reading. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP),
2439–2449.

Ge, J.; and Qiu, Y. 2008. Concept Similarity Matching
Based on Semantic Distance. In SKG, 380–383. IEEE Com-
puter Society.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. B. 2020.
Momentum Contrast for Unsupervised Visual Representa-
tion Learning. In CVPR, 9726–9735. Computer Vision
Foundation / IEEE.
Hu, X.; Ma, F.; Liu, C.; Zhang, C.; Wen, L.; and Yu, P. S.
2021a. Semi-supervised Relation Extraction via Incremental
Meta Self-Training. In Proc. of EMNLP: Findings.
Hu, X.; Wen, L.; Xu, Y.; Zhang, C.; and Yu, P. S. 2020. Self-
ORE: Self-supervised Relational Feature Learning for Open
Relation Extraction. In Proc. of EMNLP, 3673–3682.
Hu, X.; Zhang, C.; Yang, Y.; Li, X.; Lin, L.; Wen, L.; and
Yu, P. S. 2021b. Gradient Imitation Reinforcement Learning
for Low Resource Relation Extraction. In Proc. of EMNLP,
2737–2746.
Jiang, J.-Y.; Zhang, M.; Li, C.; Bendersky, M.; Golbandi, N.;
and Najork, M. 2019. Semantic Text Matching for Long-
Form Documents. In The World Wide Web Conference,
WWW ’19, 795–806. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450366748.
Li, J.; Gao, Y.; Bing, L.; King, I.; and Lyu, M. R. 2019.
Improving Question Generation With to the Point Context.
In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 3216–3226.
Li, J.; Li, Z.; Ge, T.; King, I.; and Lyu, M. R. 2022.
Text Revision by On-the-Fly Representation Optimization.
In Thirty-Sixth AAAI Conference on Artificial Intelligence,
10956–10964.
Li, J.; Li, Z.; Mou, L.; Jiang, X.; Lyu, M.; and King, I.
2020. Unsupervised text generation by learning from search.
Advances in Neural Information Processing Systems, 33:
10820–10831.
Li, J.; Zhou, P.; Xiong, C.; and Hoi, S. C. H. 2021. Prototyp-
ical Contrastive Learning of Unsupervised Representations.
In ICLR. OpenReview.net.
Li, W.; and Xia, Q. 2011. A method of concept similarity
computation based on semantic distance. Procedia Engi-
neering, 15: 3854–3859.
Liu, B.; Niu, D.; Wei, H.; Lin, J.; He, Y.; Lai, K.; and Xu, Y.
2019a. Matching Article Pairs with Graphical Decomposi-
tion and Convolutions. In ACL (1), 6284–6294. Association
for Computational Linguistics.
Liu, S.; Hu, X.; Zhang, C.; Li, S.; Wen, L.; and Yu, P. S.
2022. HiURE: Hierarchical Exemplar Contrastive Learning
for Unsupervised Relation Extraction. In Proc. of NAACL.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019b.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. CoRR, abs/1907.11692.
Lombardi, L.; and Sartori, G. 2006. Concept similarity: An
abstract relevance classes approach. In The 7th International
Conference on Cognitive Modeling, Trieste, 190–195.

13369

Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In ICLR (Poster). OpenReview.net.
Muangprathub, J.; Kajornkasirat, S.; and Wanichsombat, A.
2021. Document Plagiarism Detection Using a New Con-
cept Similarity in Formal Concept Analysis. Journal of Ap-
plied Mathematics, 2021: 1–10.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized
Word Representations. In NAACL-HLT, 2227–2237. Asso-
ciation for Computational Linguistics.
Song, Z.; and King, I. 2022. Hierarchical Heterogeneous
Graph Attention Network for Syntax-Aware Summarization.
In AAAI, 11340–11348. AAAI Press.
Song, Z.; Meng, Z.; Zhang, Y.; and King, I. 2021. Semi-
supervised Multi-label Learning for Graph-structured Data.
In CIKM, 1723–1733. ACM.
Song, Z.; Yang, X.; Xu, Z.; and King, I. 2022. Graph-
Based Semi-Supervised Learning: A Comprehensive Re-
view. IEEE Transactions on Neural Networks and Learning
Systems, 1–21.
Song, Z.; Zhang, Y.; and King, I. 2022. Towards an Optimal
Asymmetric Graph Structure for Robust Semi-supervised
Node Classification. In KDD, 1656–1665. ACM.
Sun, X.; Ge, T.; Ma, S.; Li, J.; Wei, F.; and Wang, H. 2022.
A Unified Strategy for Multilingual Grammatical Error Cor-
rection with Pre-trained Cross-Lingual Language Model.
arXiv preprint arXiv:2201.10707.
Teevan, J.; Ramage, D.; and Morris, M. 2011. #Twit-
terSearch: a comparison of microblog search and web
search. In WSDM ’11.
Thijs, B. 2019. Paragraph-based intra- and inter- document
similarity using neural vector paragraph embeddings. In
ISSI.
Tsatsaronis, G.; Varlamis, I.; and Vazirgiannis, M. 2014.
Text Relatedness Based on a Word Thesaurus. CoRR,
abs/1401.5699.
van den Oord, A.; Li, Y.; and Vinyals, O. 2018. Represen-
tation Learning with Contrastive Predictive Coding. CoRR,
abs/1807.03748.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In NIPS, 5998–6008.
Wang, L.; and Liu, X. 2008. A new model of evaluating
concept similarity. Knowledge-Based Systems, 21(8): 842–
846.
Wang, X.; and Zhang, M. 2022. How Powerful are Spectral
Graph Neural Networks. In ICML, volume 162 of Proceed-
ings of Machine Learning Research, 23341–23362. PMLR.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2021. A Comprehensive Survey on Graph Neural Networks.
IEEE Trans. Neural Networks Learn. Syst., 32(1): 4–24.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J. G.; Salakhutdinov,
R.; and Le, Q. V. 2019. XLNet: Generalized Autoregressive

Pretraining for Language Understanding. In NeurIPS, 5754–
5764.
You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020. Graph Contrastive Learning with Augmentations. In
NeurIPS.
Zeng, H.; Zhang, M.; Xia, Y.; Srivastava, A.; Malevich, A.;
Kannan, R.; Prasanna, V. K.; Jin, L.; and Chen, R. 2021.
Decoupling the Depth and Scope of Graph Neural Networks.
In NeurIPS, 19665–19679.
Zhang, Y.; and Zhu, H. 2019. Doc2hash: Learning dis-
crete latent variables for documents retrieval. In Proceed-
ings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers),
2235–2240.
Zhang, Y.; and Zhu, H. 2020. Discrete Wasserstein Autoen-
coders for Document Retrieval. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 8159–8163. IEEE.
Zhang, Y.; Zhu, H.; Meng, Z.; Koniusz, P.; and King, I.
2022a. Graph-adaptive rectified linear unit for graph neu-
ral networks. In Proceedings of the ACM Web Conference
2022, 1331–1339.
Zhang, Y.; Zhu, H.; Song, Z.; Koniusz, P.; and King, I.
2022b. COSTA: Covariance-Preserving Feature Augmen-
tation for Graph Contrastive Learning. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, 2524–2534.

13370

