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Abstract

Machine Learning is often challenged by insufficient la-
beled data. Previous methods employing implicit common-
sense knowledge of pre-trained language models (PLMs) or
pattern-based symbolic knowledge have achieved great suc-
cess in mitigating manual annotation efforts. In this paper,
we focus on the collaboration among different knowledge
sources and present KICE, a Knowledge-evolving framework
by Iterative Consolidation and Expansion with the guidance
of PLMs and rule-based patterns. Specifically, starting with
limited labeled data as seeds, KICE first builds a Rule Gen-
erator by prompt-tuning to stimulate the rich knowledge dis-
tributed in PLMs, generate seed rules, and initialize the rules
set. Afterwards, based on the rule-labeled data, the task model
is trained in a self-training pipeline where the knowledge in
rules set is consolidated with self-learned high-confidence
rules. Finally, for the low-confidence rules, KICE solicits
human-enlightened understanding and expands the knowl-
edge coverage for better task model training. Our framework
is verified on relation extraction (RE) task, and the experi-
ments on TACRED show that the model performance (F1)
grows from 33.24% to 79.84% with the enrichment of knowl-
edge, outperforming all the baselines including other knowl-
edgeable methods.

Introduction
Relying on the large-scale human-annotated training data,
machine learning models presented in recent years have
been undergoing unprecedentedly rapid development (Pen-
nington, Socher, and Manning 2014; Yang et al. 2019). How-
ever, since the scale of labeled data is limited by the time-
consuming and expensive human labor, in most areas the
prior knowledge provided by crowdsourcing datasets is quite
insufficient. This issue is more serious in relation extraction
(RE) task because the large-scaled newly emerging relations
are difficult to be handled by the model trained on a lim-
ited number of pre-defined relations in an old dataset. To be
more specific, no more than 200 relation types could be cov-
ered by current RE datasets with rich labeled data (Zhang
et al. 2017; Han et al. 2018), while there are much more re-
lations in the real scenario. For example, one of the largest
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knowledge bases Wikidata (Vrandečić and Krötzsch 2014)
currently contains nearly 6,000 relations.

To reduce the manual efforts, recent works try to lever-
age diverse sources of knowledge to steer an efficient model
learning. Some methods provide weak labels for unla-
beled corpus by incorporating external knowledge graphs
(KGs) (Lin et al. 2016) or summarizing knowledge from the
model’s high-confidence predictions (Qu et al. 2018; Zhou
et al. 2020). Others employ active learning (Margatina et al.
2021; Chen and Qian 2022) to ask the knowledge from extra
human annotation for confusing (or uncertain) data. How-
ever, on the one hand, they suffer from the coverage of avail-
able knowledge because the scale of KGs is limited and only
focusing on the self-inferred knowledge could stick the task
model in a “comfort zone”, rendering the weakness in new
knowledge discovery (Gao et al. 2020). On the other hand,
the insufficient initial labeled data may hinder the active
learning process since the under fitted model fails to esti-
mate the uncertainty and representativeness appropriately in
the early stage (i.e.cold-start problem).

We argue that integrating the wide variety of knowledge
can help alleviate the dependency on manual annotation,
and present KICE, a knowledge consolidation and expan-
sion framework. In this paper, KICE is instantiated for the
relation extraction task and generally applicable to other
tasks. Specifically, we engage the rule-based patterns as
transferred and explainable forms among different knowl-
edge sources, which are also beneficial to match large-scaled
unlabeled instances and provide weak labels for those data.
Given seed instances as initial training data, our framework
continuously develops various knowledge to improve task
model learning by the following three steps:

1) Knowledge Stimulation: To better build a flexible
pattern extractor from a limited number of seed instances,
we first stimulate rich contextualized knowledge distributed
in pre-trained language models (PLMs) by prompt-tuning.
More specifically, a Rule Generator is formulated by design-
ing various templates to build prompts from each instance,
which are fed to PLM and take the output predicted words
as different contextual patterns. Rules are obtained by taking
patterns as conditions and the corresponding instance’s label
as a result. Then the rules set is initialized by these generated
patterns from seeds. 2) Knowledge Consolidation: Based
on the rule-labeled data, we incorporate the task model into

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

13336



a self-training pipeline and devise a confidence-based Self-
Reviewing Module to measure the mastery of knowledge and
explore self-learned new patterns. It applies the task model
to provide pseudo-labels on unlabeled data and summarizes
knowledge from high-confidence ones by our Rule Genera-
tor to build new rules for rules set enrichment. 3) Knowl-
edge Expansion: For those low-confidence data, we build
a Rule-induced Breakthrough Learning Module to enlighten
the confusion of the task model by sampling a few data with
the most model uncertainty for human annotation. Differ-
ent from traditional active learning, those annotations don’t
add to the training set, but are fed to Rule Generator for
new rules instead. We expect that these rules can generalize
to more instances than actual additional manual annotations
and maximize the effect of the human-enlightened knowl-
edge.

Knowledge in the rules set could grow more and more
complete by conducting step 2) and 3) alternately and in
each step after the rules set updating, a few rule-labeled data
are utilized to update the training set for better model learn-
ing. The knowledge-developing procedure in our framework
brings three major benefits: 1) The combination of vari-
ous knowledge sources significantly reduces human annota-
tion efforts: our framework only needs small-scaled human-
labeled data as seeds. Furthermore, instead of asking hu-
man for rules annotation, we only solicit annotation on in-
stances and utilize PLM to replace human for flexible rules
generation, which is simpler and less time-consuming; 2)
Compared with the work simply exploring knowledge by
task model itself, Self-Reviewing Module could let model
steps out of its “comfort zone” by discovering new knowl-
edge contained in most confusing instances; 3) Rule-induced
Breakthrough Learning Module not only alleviate the cold
start problem in active learning but also enhance the effect
of solicited human annotation by summarizing them to rules
to cluster more instances with similar patterns.

Our framework achieves great performance on TACRED
(Zhang et al. 2017) with 5% training data and the experi-
ments results illustrate the significant improvement of the
model’s performance with knowledge development, which
outperforms all the baselines. We further conduct abla-
tion studies to verify our framework collaborates different
knowledge effectively.

Related Work
Self-Training This kind of methods explore rules iteratively
by the RE model or some modules jointly trained with it
and enrich the training set with weakly labeled data. RE-
PEL (Qu et al. 2018) proposes a facts evaluated function
utilized to pick rules providing high-score facts and mean-
while improved by the rule-labeled facts. DualRE (Lin et al.
2019) jointly trains a retrieval module with the RE model to
retrieve sentences for a given relation. Since at the early it-
erations the RE model trained on few data may select noise
rules, Snowball (Gao et al. 2020) pre-trains the model on
relations with rich training data and transfer the knowledge
to explore rules for those relations with few seeds. But as
reported in Snowball, the model overfits existing rules and

fails to discover rules with new knowledge, while our frame-
work asks human annotation for the model’s most confused
instances and summarizes new knowledge from them.
Learning with Pre-trained Language Model Prompt-
tuning has achieved a great performance in relation extrac-
tion. PTR (Han et al. 2021) builds prompts consisting of
several sub-prompts and infers relation by considering pre-
dicted masked words on different sub-prompts. To allevi-
ate labor on constructing label words, Knowprompt (Chen
et al. 2022) proposes learnable virtual answer words. To re-
duce the requirement of human-labeled training data, CO-
SINE (Yu et al. 2020) designs a denoising mechanism to
fine-tune pre-trained model on weakly labeled data. How-
ever, the rules set in COSINE is fix, while our framework
builds a growing rules set with self-consolidated knowledge
and human-enlightened knowledge.
Interactive Learning Interactive learning involves human
knowledge injection in the learning process and has pro-
posed different strategies to sample the most valuable query
data for model learning (Margatina et al. 2021; Chen and
Qian 2022). Since the knowledge contained in the annotated
data is insufficient, several work ask annotation for rules
to match unlabeled data (Hsieh, Zhang, and Ratner 2022;
Boecking et al. 2020). However, the rules annotation is more
difficult than data annotation, while our framework simply
solicits annotation on data and utilizes PLM to generate rules
from them to enhance the effect of human knowledge.

Methodology
In this section, we introduce our KICE framework in detail,
which starts from small-scale labeled data (donated as seeds)
and achieves a continuous improvement by both knowledge
consolidation and expansion. As shown in Figure 1, our
framework consists of three steps: 1) Knowledge Stimu-
lation: Given small-scaled seeds, we first employ it as our
initial training set for the RE model. Then we build a Rule
Generator on these seeds by prompt-tuning to generate ini-
tial rules, which harnesses the pattern of instances and the
contextualized knowledge of PLM. 2) Knowledge Consol-
idation: A Self-Reviewing Module is built by applying the
RE model to the unlabeled dataset for generating pseudo la-
bels and summarizing new rules from high-confidence ones.
3) Knowledge Expansion: For those low-confidence in-
stances, we devise a Rule-induced Breakthrough Learning
Module by sampling the most confusing unlabeled data for
extra human annotations, then obtain new rules from them.
The 2) and 3) steps are conducted iteratively. In each step,
the training set is built with the weakly labeled data provided
by the enriched rules set to learn a new RE model.

Rule Generator
Considering that the instances with similar contextual pat-
terns are more likely to express the same relation, our Rule
Generator summarizes a rule by extracting contextualized
patterns of the corresponding single instance with the guid-
ance of PLM. This kind of rule-based patterns can be utilized
to provide weak labels for unlabeled data in a soft-matching
manner, as well as serving as a transferred and explainable
form among different knowledge sources.
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Figure 1: Illustration of our knowledge-evolving framework by iterative consolidation and expansion (KICE). Given a few
seed instances, a PLM-based patterns summarizer is prompt-tuned to construct Rule Generator, which initializes rules set from
seeds. Then two modules are conducted alternatively. In Self-Reviewing Module, new rules are summarized from the pseudo-
labeled data with high confidence. And in Rule-induced Breakthrough Learning Module, unlabeled instances with most model’s
uncertainty are sampled for human annotation, which is also applied for new rules summarization.

Rule Definition Each rule p is generated from an instance
and consists of two entities patterns {fp

ei}
2
i=1, a relation pat-

tern fp
c , a label l, a threshold TH , and a similarity function

g(·, ·). Given an unlabeled sample u, u is matched by p if the
overall similarity of entities and relation patterns between u
and p exceeds the corresponding threshold. Formally,

1(u matched p) = 1
(
s(p, u) ≥ TH

)
(1)

s(p, u) =
2∑

i=1

g(fp
ei , f

u
ei) + g(fp

c , f
u
c ) (2)

In following sections we introduce 1) Pattern Summariza-
tion, 2) Similarity Measurement and 3) Weak label genera-
tion.
Prompt-Based Pattern Summarization

Since PLM makes inferences by considering the whole
sentence’s information, we distill contextual patterns by
prompting the PLM with masked words put in specific po-
sitions. As shown in Figure 2 we design two kinds of tem-
plates to extract concepts patterns for entities and the rela-

tion pattern. Instead of mapping the predicted words to a re-
lation label, which needs human labor to build suitable label
words, we simply take them as patterns.
Concept Pattern Summarization For each entity, a prompt
is constructed by filling template T1 with [MASK] tokens,
corresponding entity mentions and learnable continuous to-
kens, which are fed to PLM M . The top nc most likely
words for [MASK] tokens are taken as concept patterns, take
e1 as an example, fe1 = {wc

i }, i ∈ [1, nc].
To learn continuous tokens for concept prediction, we

take it as a multiple classification task and utilize P-Tuning
structure (Liu et al. 2021). Given template T1 with discrete
tokens [P0:m], continuous trainable tokens

[
P̄
]

and input
sentence x = [x0:n], the embedding of prompt is:

{
e(x0:n),

[
P̄
]
, e(ei), e

(
[P0:i]

)
, e
(
[MASK]

)
, e
(
[Pi+1:m]

)}
The ground-truth concepts are extracted from entities

in the initial training set by adapting Microsoft Concept
Graph (Wu et al. 2012). Then we compute the frequency for

13338



Input: Steven Jobs, born in San Francisco in 1955, was the co-founder of Apple.

[Input] Steven Jobs is a [MASK1] .

[Input] San Francisco is a [MASK2] .

[Input] Steven Jobs [MASK3]e1_concept e2_concept San Francisco .

MASK1= person, founder, …

MASK2= area, city, …

Concept Patterns

MASK3= born in, live in…

Relation Pattern









  

Figure 2: The procedures of summarizing patterns by prompting. ei concept refers to the most likely word for [MASKi].

each concept and the top kc most common ones are picked as
concept classes Yc = {y1, y2, ..., ykc

} and the correspond-
ing concept mentions are taken as their label words, donated
as {ϕ(yi)}kc

i=1. The P-Tuning objective is:

Lpt =
1

|X|
1

|kc|
∑
x∈X

kc∑
i=1

yi log p
(
[M ] = ϕ(yi) | T1(x)

)
(3)

where [M] refers to the mask token [MASK].
Relation Pattern Summarization Similar with concept ex-
ploration, prompt is built by template T2 with the entities’
most likely concept words, which is fed to PLM M and the
top nr most likely words for [MASK] are taken as relation
pattern fr = {wr

i }, i ∈ [1, nr].
We take it as a relation classification task and prompt-

tune PLM M on the initial training set. To build label words
automatically, each relation label split its mention as label
words. For instance, the relation ”city of birth” has label
words {’city’, ’birth’} (the stop word ’of’ is discarded).
Similarity Measurement

Considering instances or rules expressing the same re-
lation may have synonym words as patterns and the hard-
matching manner leads to a low rule coverage. Thus, we em-
bed the pattern’s words by BERT (Devlin et al. 2019) and
take the average embedding to represent the pattern. Finally,
we obtain the matching score by computing their cosine sim-
ilarity:

g(fp, fu) = Cos(e(fp), e(fu)) (4)

e(f) =

∑
e(wi)

|f |
(5)

Weak Label Generation
Given an unlabeled instance u and rules set R, to create

a weak label for u, we go through the whole rules set to
find the rules that match u. When u is matched by multiple
rules with conflicting labels, the majority voting mechanism
is adapted and the label with the most matching rules is cho-
sen as u’s weak label.
Annotation Confidence Assume u’s weak label is l and the
matching rules with label l is Rl. We design a confidence
metric and encourage the labeled results that are voted by
rules with higher matching scores to get greater confidence:

Conf l =
∑
ri∈Rl

s(ri, u) (6)

Self-Reviewing Module
In this stage, we embed the RE model into a self-training
pipeline and devise Self-Reviewing Module to perform RE
model training and summarize new rules from the unlabeled
dataset iteratively. Based on it, new rules explored from un-
labeled dataset by RE model are added to the rules set. Then
the RE model could consolidate its learned knowledge by
training on new high-quality data labeled by the updated
rules set.

Specifically, in step t, given model mt−1 trained with the
labels created by the previous rules set Rt−1, by adapting
mt−1 to unlabeled dataset, instances with model-confirmed
patterns will be assigned pseudo-labels with high confi-
dence. New rules are built from the top nR pseudo-labeled
instances with the highest confidence and enrich Rt−1 for a
new rules set Rt to enlarge the rules set’s coverage.

Finally, Rt is adapted to the unlabeled dataset and the top
nd weakly labeled data with highest annotated confidence
are used to build new training set Tt, prepared for learning a
new model mt.

Rule-Induced Breakthrough Learning Module
Simply repeating the Self-Reviewing Module may narrow the
model’s comprehension for some relations and stick in spe-
cific patterns (as reported in Snowball (Gao et al. 2020)).
To discover data with new patterns helpful for learning, an
uncertainty-based sampling strategy is adapted to unlabeled
dataset to obtain query data for human annotation. To max-
imize the effect of the human annotation budget, new rules
are built from the human-labeled data to further cluster in-
stances with similar patterns.
Uncertainty Measurement With the assumption that given
a rule p, all instances matching p have similar patterns with
p. For each instance u in unlabeled dataset, we summarize
u’s concept and relation patterns and treat it as a rule without
relation label. Then we go through the rest unlabeled data
and the first one that matches u is taken as a perturbation u.
By feeding u and u to the RE model, we could get the pre-
diction y and y. Finally we measure the model’s uncertainty
for u’s pattern by computing the KL-divergence between y
and y:
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KLDu = DKL

(
p(y | u; θ), p(y | u; θ)

)
(7)

where the task model is parameterized by θ and denoted as
p(· | ·; θ)
Rules Expansion In step t + 1, given a model mt trained
in the previous step, by computing all the data’s KLD in
the unlabeled dataset (if one has no perturbation, its KLD
is set to zero), we sort all instances by KLD decreasingly
and choose top na ones for human annotation.

Finally, na new rules are built from the human-labeled re-
sults and the enriched rules set Rt+1 could provide weak la-
bels for instances with new patterns and help the model step
out of the old “knowledge zone”. The top nd rule-annotated
weakly labeled data with high annotated-confidence is uti-
lized to build a new training set Tt+1 for learning a new RE
model mt+1.

Model Training & Denoising
Inspired by COSINE (Yu et al. 2020), we try to alleviate the
noisy weak labels’ influence with the help of pseudo labels
generated from the model in the last step. In step t, to learn a
RE model mt on the training set Tt, we apply model mt−1 to
generate soft pseudo label yt−1 for each instance x. Then we
weigh yt−1 by its entropy (donated as wt−1) and compute
loss Lp by weighted KL-divergence between the predicted
distribution yt from model mt with yt−1:

wt−1 = 1− Ent(yt−1)

log(|Y |)
(8)

Lp =
1

|C|
∑
x∈C

wt−1(x)DKL(yt−1, yt) (9)

where |Y | is the number of labels. C = {x ∈
Tt|wt−1(x) ≤ ξ} is used to filer out unreliable pseudo la-
bels (Tt is the training set and ξ is a threshold). We also
introduce the cross-entropy loss:

Lc =
∑
x∈Tt

y log p(yt | x; θt) (10)

where y is the ground-truth label of x. For the Knowledge
Stimulation stage, y refers to the labels of seeds, otherwise,
y are the weak labels from the rules set. The final objec-
tive is L = Lc + Lp. Notice that the model m0 obtained in
the Knowledge Stimulation stage only learns with Lc, since
there is no previous model providing pseudo labels for it.

Experiments
Datasets
Our experiments are conducted on two benchmark datasets,
including TACRED (Zhang et al. 2017) and Re-TACRED
(Stoica, Platanios, and Póczos 2021). The statistic of those
datasets is shown in Table 1. To imitate the real scenario with
insufficient labeled data, for each dataset we randomly sam-
ple 5% training data as initial seeds Dseed and take the rest
as unlabeled data Du. Since the advantage of the large devel-
opment set is against our label-scarce setting, as suggested in

recent work (Gao, Fisch, and Chen 2021), we keep the devel-
opment set Ddev of the same size as the seeds’ size, donated
as |Ddev| = |Dseed|. Notice that to avoid bias, each relation
is assigned the same number of initial seeds (86 seed data
per relation for TACRED and 73 seed data per relation for
Re-TACRED) and our F1 metric setting follows the RE task
metric setting in WRENCH (Zhang et al. 2021), a weak su-
pervision benchmark platform for standardized evaluation.

Datasets Class Num. Train Dev Test
TACRED 41 68124 22631 15485

Re-TACRED 40 58465 19584 13418

Table 1: Statistics of the datasets in our experiments.

Parameters Settings
1) In Rule Generator, the threshold TH is set to 0.97. After
feeding the prompt to PLM, nc = 3 words are picked to
represent concept patterns and nr = 5 words for relation
patterns. 2) If one step is in Self-Reviewing Module, then
nR = 120 self-inferred rules are generated. 3) If one step is
in Rule-induced Breakthrough Learning Module, it will ask
annotation for na = 60 most confusing data. To make KICE
more reproducible, the human annotation for each data is
the same as its original label in the dataset. In each step,
the training set is built by nd = 200 weakly labeled data
with the highest annotated confidence. In the model training
procedure, the threshold ξ is set to 0.5.

For dataset TACRED and Re-TACRED, after the Knowl-
edge Stimulation step, we report the KICE’s performance
after 4 iterations with Knowledge Consolidation and Knowl-
edge Expansion steps conducted alternatively.

Baselines
KICE’s RE Model with Rich Data: We evaluate our RE
model’s performance with full clean labeled training data
for each dataset.
Baselines with PLM Knowledge: 1) P-Tuning (Liu et al.
2021) proposes to build task-related prompts with learnable
continuous tokens. Instead of utilizing P-Tuning for pat-
tern extraction (as in KICE’s Rule Generator), we take it
as a baseline to predict relations directly. 2) KnowPrompt
(Chen et al. 2022) injects the knowledge of relation labels
to prompt with learnable type words and answer words to
alleviate human labor in label words construction. 3) PTR
(Han et al. 2021) is a prompt-tuning method utilizing man-
ual rules to build flexible prompts with several sub-prompts
for multi-class classification tasks. 4) COSINE (Yu et al.
2020) proposes a denoising training manner for fine-tuning
PLM with weakly labeled data.
Baselines with Self-Explored Knowledge: 1) NERO
(Zhou et al. 2020) trains a soft matching module with the
classifier to enlarge the manual rules’ coverage. 2) DualRE
(Lin et al. 2019) trains a retrieval module together with a
relation classifier to continuously retrieve high-quality in-
stances from unlabeled data and improve the classifier. 3)
Snowball (Gao et al. 2020) first pre-trains the Relational
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Labeled Data Num. Methods Extra Human Anno. TACRED (F1) Re-TACRED (F1)
100% Training Data KICE w. Rich Data w/o 87.23 88.33

P-Tuning w/o 25.42 32.54
KnowPrompt w/o 35.61 63.98

PTR w/o 37.65 55.37
COSINE w/o 41.00 57.82

5% Training Data NERO 270 (Rules) 56.55 42.99
DualRE w/o 50.50 63.70

Snowball w/o 23.03 23.56
PRBOOST 1000 (Rules) 48.10 -

VAE w/o 26.56 33.42
KICE 120 (Insts.) 79.84 68.11

Table 2: Overall performance on two datasets. We evaluate the model’s performance with different proportions of training
data to simulate the scenarios with sufficient/insufficient labeled data. Since the 5% labeled data is randomly sampled from
the training set, for each method we take the average of 3 runs as its final result. Extra Human Anno. refers to the number of
human-annotated rules/instances besides the training data and ’w/o’ means no additional data is used in this method.

Siamese Network with a classifier in data-rich relations.
Then reliable instances are explored by the two modules to
improve themself on few-data relation learning.
Baseline with Interactive Human’s Knowledge: PR-
BOOST (Zhang et al. 2022) generates candidate rules au-
tomatically from the model’s large-error instances in a fixed
labeled dataset and ask human annotators to pick high-
quality rules from candidates to provide weakly labeled data
for model training.
Baseline with KB’s knowledge: We include the distant su-
pervised (DS) baseline since it also aims to alleviating the
labeling labor. VAE (Christopoulou, Miwa, and Ananiadou
2021) is a DS framework trained on knowledge base labeled
data and improve sentence expressivity by sentence recon-
struction. Following the assumption of DS, for each seed,
data in Du is annotated with the seed’s label if they share
the same entity pair and added to DS training set.

Overall Performance
Table 2 shows the performance of KICE and baselines on
two datasets. KICE outperforms all baselines on both TA-
CRED and Re-TACRED datasets.

The evaluation of P-Tuning, KnowPrompt and PTR shows
that the pretty limited training data could hinder those
prompt-tuning methods to learn the most suitable prompts
and achieve their best performance. Thus, the approach to
learning from PLM’s knowledge designed in KICE is more
reasonable, which summarizes patterns from PLM’s output
for weakly labeling in a soft-matching manner.

The performance of NERO, DualRE, Snowball and
KICE’s RE Model w. Rich Data shows the gap between
self-explored knowledge simulated from few initial labeled
data/rules and the knowledge contained in rich training
data. Compared with the best baselines among them, KICE

achieves a great improvement (+23.29% F1 in TACRED)
and narrows the gap with only 120 extra human-labeled data.

Compared with PRBOOST, which queries 100 human-
annotated rules for each iteration and totally conducts 10 it-
erations, KICE gets F1 score 31.74% higher than it by ask-
ing 60 human-annotated instances in each Knowledge Ex-
pansion step and totally conducting 2 steps. Furthermore,
the annotation on instances is simpler than that on rules
and needs less professional knowledge. Thus, KICE is more
labor-reducing and time-saving for annotators.

By extracting triples from 5% training data as prior
knowledge to obtain distantly supervised data, we simulate
a scenario where the knowledge provided by KB is uncom-
pleted, which is common in many emerging industries. The
evaluation of VAE under this scenario shows that the lim-
ited prior knowledge is still challenging for it to achieve
great performance, while KICE could continuously explore
new knowledge by the Self-Reviewing Module and Rule-
induced Breakthrough Learning Module and gradually im-
prove model’s performance.

Qualitative Results To analyze when to stop the iteration
in KICE, we totally conduct 7 steps and evaluate the model’s
F1 in each step on TACRED. Therefore, we can take a closer
look at the change of model performance during the train-
ing stages in Figure 3. From the figure, we can observe that
the model performance increases gradually as KICE training
progresses (from 33.24% to 79.84%), outperforming the im-
provement of DualRE (from 44.9% to 50.5%), which is one
of the best baselines with gradually learning procedure. This
demonstrates that KICE evolves knowledge more helpful for
model learning. Since the improvement after step 4 is much
smaller (+0.39%) compared with previous steps, to save the
human labor for extra annotation, we report the performance
in step 4 as the final result of KICE.
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Figure 3: Model F1 of each step in KICE and DualRE.

Analysis on Knowledge Collaboration
To illustrate alternatively conducting Knowledge Consoli-
dation (KC) step and Knowledge Expansion (KE) step could
collect knowledge helpful for model learning effectively and
significantly, we show the F1 score of RE model on TA-
CRED obtained in each iteration within three knowledge
collection manner: 1) Standard KICE; 2) KICE without KE
step (only conducting KC step after Knowledge Simulation);
3) KICE without KC step (only conducting KE steps after
Knowledge Simulation).

Figure 4: Model F1 under Standard KICE and KICEwithout
KE step. KC Rules Num. refers to the total number of rules
collected by Self-Reviewing Module in KC step.

The results are shown in Figure 4 and Figure 5. Notice
that step 0 in each figure refers to Knowledge Stimulation
(KS) stage. On one hand, by removing the KE step and
only conducting KC steps after Knowledge Simulation, we
found that the model performance grows much slower after
step 1 (total +1.08%), which demonstrates the model over-
fits on the self-reviewing rules and fails to discover new pat-

Figure 5: Model F1 under Standard KICE and KICEwithout
KC step. Extra Human Anno. refers to the total number of
extra human annotated instances.

terns as rules number increasing. On the other hand, without
the Knowledge Consolidation step, the human annotation’s
effect on model learning gets smaller in each step, which
means to get the equivalent model’s performance, KICE
without KC needs much more labeling labor and is more
time-consuming than KICE.

To demonstrate the effect of PLM’s knowledge for pat-
terns summarization, an entity pair matching manner is de-
signed to replace the PLM-summarized patterns matching
manner in KICE (donated as KICE w. ep). To be more spe-
cific, given an unlabeled instance u, it matches the rule p if
they share the same entity pair. If u is matched with rules
with conflict labels, the label voted by most rules is taken
as its weak label. After conducting KICE w. ep on the TA-
CRED with 5% training data for 5 iterations, we obtain a RE
model with the performance of 36.11% F1 on the test set,
while standard KICE achieves 79.84% F1. This gap shows
the patterns summarized from PLM knowledge in KICE
could provide weak labels more helpful for model learning.

Conclusion

In this paper, we propose a knowledge consolidation and
expansion framework, KICE, for evolving knowledge itera-
tively with the guidance of PLMs to help RE model learning
under insufficient labeled data. Our framework can continu-
ously discover new knowledge in the form of rule-based pat-
terns from the unlabeled dataset, enhance the effect of extra
human-labeled data and significantly reduce the human an-
notation efforts. Experiments conducted on TACRED and
Re-TACRED shows KICE achieves great improvement in
the performance of relation extraction with little human la-
beling labor and outperforms all the baselines. Our work
shows that the combination and collaboration of different
sources of knowledge help alleviate manual annotation ef-
forts and is also generally applicable to other tasks.
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