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Abstract

The ability to combine learned knowledge and skills to solve
novel tasks is a key aspect of generalization in humans that
allows us to understand and perform tasks described by novel
language utterances. While progress has been made in su-
pervised learning settings, no work has yet studied compo-
sitional generalization of a reinforcement learning agent fol-
lowing natural language instructions in an embodied environ-
ment. We develop a set of tasks in a photo-realistic simu-
lated kitchen environment that allow us to study the degree to
which a behavioral policy captures the systematicity in lan-
guage by studying its zero-shot generalization performance
on held out natural language instructions. We show that our
agent which leverages a novel additive action-value decom-
position in tandem with attention-based subgoal prediction is
able to exploit composition in text instructions to generalize
to unseen tasks.

Introduction
Human language is characterized by systematic composi-
tionality: one can combine known components – such as
words or phrases – to produce novel linguistic combina-
tions (Chomsky 2009). This is a key aspect of generalization
in humans and enables us to understand and perform tasks
specified by novel language utterances over familiar words
or phrases. If you know what a “laptop” and a “fridge” are,
you can easily understand how to perform the task “place the
laptop in the fridge” even if you have never placed a laptop
in a fridge.

Prior work studying the linguistic “systematicity” of neu-
ral networks have focused on sequence mapping tasks in
a supervised learning setting (Lake and Baroni 2018; Lake
2019; Andreas 2019). In this work, we are interested in com-
positional generalization of a reinforcement learning agent
following natural language instructions in an embodied en-
vironment. In particular, we explore the hypothesis that a
language-conditioned reinforcement learning agent with a
compositional inductive bias in its behavioral policy will
exhibit systematic generalization to unobserved natural lan-
guage instructions.

There has been a flurry of recent work on embodied learn-
ing tasks such as question answering (Gupta et al. 2017),
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Pick up the knife and use it to chop the bread on 
the counter. 

Pick up the butter knife near the sink and cut the 
yellow apple on the white table. 

Move the knife near the table and slice the apple. 

Training

Test

Move the knife near the 
table and slice the apple. 

Move the knife near the 
table and slice the apple. 

… …

look down pickup knife turn left slice apple

Figure 1: Zero-shot generalization to an unseen task of slic-
ing an apple. The test task is composed of known primitive
subtasks – picking up a knife and slicing the apple – each of
which were encountered in training tasks. Our agent learns
to decompose a natural language task description into sub-
tasks using attention and executes them using low-level ac-
tions.

vision-language navigation (Anderson et al. 2018) and ob-
ject interaction (Shridhar et al. 2020; Carvalho et al. 2020;
Singh et al. 2020; Corona et al. 2020; Blukis et al. 2022;
Min et al. 2021) in embodied settings. In particular, the AL-
FRED task (Shridhar et al. 2020) studies agents that exploit
detailed natural language instructions to generalize to novel
instructions in novel environments at test time. Such existing
benchmarks offer limited flexibility to study systematic gen-
eralization since (i) the benchmarks were not built for this
purpose and it is unclear to what extent systematic general-
ization skills are required to solve the tasks and (ii) the tasks
demand challenging reasoning skills such as visual recog-
nition, planning over large number of time-steps and explo-
ration in unseen layouts which makes it difficult to study
compositional generalization ability in isolation.

In this work we develop a set of tasks in the AI2Thor
virtual home environment (Kolve et al. 2017) which test
the compositionality of embodied agents. In order to make
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progress in systematic generalization, we make two simpli-
fying assumptions: we assume access to an oracle object rec-
ognizer and we study generalization in a single kitchen lay-
out. This allows us to study the degree to which a policy cap-
tures the systematicity in language by studying its zero-shot
generalization performance on held out natural language in-
structions.

Despite these simplifications, agents still need to under-
stand the instruction to figure out the sequence of object in-
teractions that need to be performed and act over many time-
steps with limited guidance. In order to succesfully general-
ize at test time, an agent needs to learn to ground natural
language instructions to temporally extended goal-oriented
behaviors or “skills” in a compositional manner to perform
novel tasks that are compositions of the tasks presented at
train time. In addition, the agent needs to ground the actions
and objects referenced in the text to actions and objects in
the environment. We leverage this setting to develop and
study a policy with an inductive bias for compositionality
and show that this enables systematic generalization in the
context of combining behavioral skills learned purely from
reward without expert demonstrations.

We present an attention-based agent that learns to pre-
dict subgoals from language instructions via a learned at-
tention mechanism. Our agent uses these subgoals with a
novel policy parametrization which decomposes the action-
value function in an additive fashion that enables estimating
the action-value for novel object-interactions composed of
objects and interactions experienced during training.

We show evidence that this parametrization facilitates
exploiting the compositional nature of text instructions by
showing systematic generalization to both unseen task de-
scriptions and unseen tasks. We present an example in Fig-
ure 1, where the agent is able to systematically generalize the
behavior “pickup up the knife” to “move the knife” and “cut
the yellow apple” to “slice the apple”. Thanks to the additive
inductive bias afforded by our action-value parametrization,
it is able to compose these behaviors to perform the novel
task “move the knife near the table and slice the apple” at
test time.

Related Work

Compositional Generalization Compositionality is an
important aspect of generalization: decomposing a learning
problem into components that the agent knows how to ad-
dress. An agent with a compositional understanding of its
environment and its own skills can more easily combine
these skills to solve tasks never observed during training.
Prior work has studied compositional generalization in se-
quence mapping tasks. Benchmarks such as SCAN (Lake
and Baroni 2018) and gSCAN (Ruis et al. 2020) study
translating synthetic text descriptions to an action sequence
(e.g. jump twice → JUMP JUMP). gSCAN couples SCAN
instances with entities in a grid environment and solving
a task requires grounding the text and entities similar to
our work. Prior approaches for these benchmarks impose
compositional inductive biases in models by augmenting
models with memory (Lake 2019) and data augmentation

(Andreas 2019; Shaw et al. 2020). Lake (2019) proposed
a memory-augmented sequence-to-sequence model and a
meta-learning algorithm to enable models to recognize the
compositional structure of instances. Andreas (2019) intro-
duce a data augmentation approach where they synthesize
new examples by combining phrases from known examples
to provide a compositional inductive bias to models. Shaw
et al. (2020) demonstrate a grammar induction method and
combine it with a pre-trained T5 model (Raffel et al. 2019)
for semantic parsing tasks. In this work we use attention
mechanisms and introduce a novel policy parameterization
to impose compositional inductive biases.

Text-based Embodied Control There is rich literature
on instruction following agents (Chen and Mooney 2011;
Tellex et al. 2011; Mei, Bansal, and Walter 2016; Fried,
Andreas, and Klein 2017; Suhr et al. 2019). Advances in
photo-realistic simulation environments such as DeepMind
Lab (Beattie et al. 2016) and AI2Thor (Kolve et al. 2017)
have driven recent progress in embodied agents that learn
from text instructions. Chaplot et al. (2018) consider a sim-
ple navigation task where an agent has to move to an ob-
ject specified by a set of attributes such as shape and color.
They propose the gated attention model to generalize com-
positionally in the attribute space. Hill et al. (2019) consider
systematic generalization in 2D and 3D environments with
synthetic text instructions. Compared to these work, we con-
sider object interaction tasks in a photo realistic simulated
environment with human-authored language instructions.

ALFRED (Shridhar et al. 2020) is a recently proposed
benchmark which couples tasks in the AI2Thor environment
with text instructions. The dataset comes with expert demon-
strations and human-written text descriptions of tasks. Prior
approaches to ALFRED train policies using imitation learn-
ing (Singh et al. 2020; Corona et al. 2020). More recently,
policies based on spatial semantic map building have re-
ceived more interest (Blukis et al. 2022; Min et al. 2021).

In contrast to the ALFRED learning setup, we consider
a simplified scenario of learning compositional skills from
high-level task descriptions. We further do not assume ac-
cess to expert task demonstrations. These assumptions al-
low us to focus on compositional generalization to zero-shot
tasks, which is not the main goal of the ALFRED bench-
mark. However, the approach presented here can potentially
be applicable to ALFRED when combined with learning
from demonstrations.

Hierarchical Reinforcement Learning Learning to di-
rectly map percepts to low-level action sequences can be
challenging. An alternative hierarchical approach is to first
come up with a sequence of subtasks, which can be consid-
ered as high-level actions (Andreas, Klein, and Levine 2017;
Zhu et al. 2017). Each of those subtasks can then be real-
ized using low-level actions. Our policy has an implicit hi-
erarchical structure where latent subgoals are represented as
text embeddings using attention. Language was used as an
abstraction for the high-level policy in Jiang et al. (2019a)
for object rearrangement tasks based on the CLEVR engine
(Johnson et al. 2017).

Finally, generalization to unseen instructions has been
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Figure 2: Approach Overview. We perform attention over the text instruction to construct an embedding tsg that represents the
current subgoal. The text embedding subgoal tsg attends to scene object embeddings to construct an object subgoal representa-
tion vsg . An MLP takes tsg, vsg and observation features eobs as input and predicts state-action values Q(s, a). The entire model
is trained end-to-end using Q-learning. See text for details.

considered in prior work such as Oh et al. (2017); Lynch and
Sermanet (2020), although compositional generalization is
not their main focus.

Problem
We consider an embodied agent acting in a kitchen environ-
ment to solve basic tasks from language instructions (See
Fig. 5 for an example task). At the beginning of an episode
the agent receives a text instruction τ . Our goal is to learn a
policy π(a|s, τ ); a ∈ A, s ∈ S that predicts actions in order
to complete tasks. The agent state s is partially observable
– it receives an egocentric observation obs of the scene. We
further assume that an oracle object recognition model pro-
vides the object ids for objects in the egocentric observation.

The action space consists of navigation and object interac-
tion actions A = Anav ∪Aint. There are 8 navigation actions
Anav = {move forward, move back, move left, move right,
turn left, turn right, look up, look down}. Interaction actions
Aint = B × I are specified using an interaction b ∈ B and
an object id o ∈ I where B = {pickup, place, slice, tog-
gle on, toggle off, turn on, turn off} and I is a pre-defined
set of identifiers of objects that are available to the agent for
interaction in the current observation.

The agent receives a positive reward for successfully com-
pleting a task. It also receives a small negative reward for
every time-step. In addition, we also assume that every cor-
rect object interaction receives a positive reward. In addition
to providing a denser learning signal, the rewards are also
used to identify subgoals as described in the next section. In
practice such dense rewards may be unavailable, but this is
outside the scope of our study and left as future work.

Approach
We approach the problem by considering a task τ to be com-
posed of subgoals g1, ..., gn, where each subgoal gi involves

navigating to a particular object and interacting with it. For
example, the task place an apple on the table involves find-
ing the apple and picking it up, followed by navigating to the
table and putting down the apple, which can be considered
to be the two subgoals for executing the task. Each object in-
teraction required to complete the task thus corresponds to a
subgoal. Since every subgoal completion receives a positive
reward, the number of subgoals completed at every time-step
Nsg is known to the agent. The subgoals themselves are not
known to the agent – we use attention on the text instruction
to compute a latent subgoal representation.

Text Subgoal Inference
Given instruction τ composed of the tokens (w1, ..., wn),
we obtain the corresponding token embeddings E =
(e1, ..., en) and use an RNN to encode the instruction to
obtain a sequence of contextualized token representations
H = (h1, ..., hn). We compute a text subgoal tsg for a given
time-step by computing attention on the instruction using
Ne

sg as query where Ne
sg is a vector representation of Nsg .

This is shown in Eq. (1) (Q,K, V are learnable parameter
matrices).

tsg = Attention(query = Ne
sg, keys = values = H) (1)

=
∑
h∈H

exp((Qs)⊤(Kh))∑
h′∈H

exp((Qs)⊤(Kh′))
V h (2)

We expect the attention to focus on words in the instruc-
tion relevant to executing the current subgoal. For instance,
if the agent is expected to interact with an apple, the atten-
tion module could learn to focus on the word ‘apple’.

Cross-modal Reasoning
Given the text subgoal tsg , we use an attention mechanism to
reason about objects in the scene within some distance from
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Task type Task descriptions

pick up pot Go to the stove and pick up the pot.
Pick up the pot on the bottom right burner on the stove.

place spoon in pan
get spoon on counter near salt shaker and put it away in pan near stove.
Pick up the spoon from the table near the salt shaker and move it to the pan on the counter by
the sink.

place knife in plate Pick up a knife from the left side of the kitchen, near the trashcan, and move it to the plate.
get knife near sink and put on opposite side of stove on dark plate

slice bread with knife
Pick the knife and slice the bread.
Take the knife with the yellow handle from the counter by the sink and use it to cut horizontal
slices out of the loaf of bread on the white table.

slice lettuce with butterknife Using the silver butter knife you have in your hand, cut up the lettuce into thin slices.
Pick up the butter knife on the counter and cut the lettuce on the table.

Table 1: Example task types and corresponding task descriptions. Note that the task descriptions are used for training and testing
agents. The task types are not known to the agents.

the agent. This helps the agent understand if objects of inter-
est relevant to the subgoal are present nearby. Let the set of
nearby scene objects be O = {o1, ..., on}, where the oi ∈ I
are object ids provided by an oracle. The oi’s can thus be
treated as indexes into an embedding table that produces ob-
ject embeddings Oe = {o1e, ..., one }. The cross-modal atten-
tion is given by Eq. (4) where the text subgoal attends to the
scene object embeddings (Q′,K ′, V ′ are learnable parame-
ter matrices). We augment the scene objects embeddings Oe

with an additional learned embedding ono−obj
e which is ex-

pected to absorb any probability mass not assigned to scene
objects O′

e = Oe∪ono−obj
e . The attention produces an object

subgoal embedding vsg .

vsg = Attention(query = tsg, keys = values = O′
e) (3)

=
∑

oe∈O′
e

exp((Q′tsg)
⊤(K ′oe))∑

o′e∈O′
e

exp((Q′tsg)⊤(K ′o′e))
V ′oe (4)

Policy Learning
We use a deep Q-learning algorithm to train a policy (Mnih
et al. 2013), where a neural network is trained to approxi-
mate the state-action value function Q(s, a). Given the cur-
rent observation, text subgoal and object subgoal, the state-
action value for a navigation action a ∈ Anav is given by
Eq. (5), where fnav is an MLP (multi-layer perceptron) and
eobs = fCNN(obs) is a feature vector of the observation im-
age computed using a CNN encoder.

Qnav(s, a) = fnav(a|eobs, tsg, vsg) (5)

The state-action values for interaction actions a =
(b, o) ∈ B × I can be analogously modeled as in Eq. (6).
We found it helpful to decompose the state-action value in an
additive fashion over an action score fa

int and an object score
fo

int as in Eq. (7). Intuitively, fa
int learns to model action pref-

erences, whereas fo
int learns to ground text goals to physical

objects. In addition to sharing parameters across actions and
objects, this decomposition allows us to model state-action

values of object interactions not experienced during train-
ing, as long as the specific interaction and the object were
encountered. Unless specified otherwise we use the decom-
posed value function Qadd

int in our experiments.

Qfull
int (s, a) = fint(a|eobs, tsg, vsg) (6)

Qadd
int (s, a) = fa

int(b|eobs, tsg, vsg) + fo
int(o|tsg) (7)

where a = (b, o) ∈ B × I .
In summary, the state-action value function is modeled as

in Eq. (8).

Q(s, a) =

{
Qnav(s, a); a ∈ Anav

Qadd
int (s, a); a ∈ Aint

(8)

The overall model (see Fig. 2 for an illustration) includ-
ing parameters of the subgoal inference (Eq. 1) and cross-
modal reasoning (Eq. 4) components, as well as the MLPs
in Eqs. (5) and (7) are trained end-to-end using a double-
DQN algorithm (Van Hasselt, Guez, and Silver 2016). Once
the model has been trained we construct a greedy policy by
choosing actions with the highest state-action values for in-
ference.

Experiments
Tasks and Dataset
We use the AI2Thor (Kolve et al. 2017) environment as a
testbed for our experiments. While there exist prior bench-
marks that couple language instructions with embodied en-
vironments such as ALFRED (Shridhar et al. 2020), they
were not designed to study compositional generalization.
We thus construct a new task setup that allows us to flexibly
vary tasks and object arguments. We consider the following
task types in our experiments,
• pickup x: Find and pick up object x
• place x in y: Find and pick up object x, followed by navi-

gating towards y and placing it.
• slice x with y: Secure cutting instrument y, find object x

and perform the slice action on it.
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We use Amazon Mechanical Turk to collect natural lan-
guage descriptions of tasks for training and evaluation. A
turker is shown key observation frames during the execution
of a particular task and is asked to describe in a sentence
how they would describe the task to a robot. Turkers were
instructed to do their best to correctly identify task relevant
objects. But often descriptions from the turkers incorrectly
identify objects such as identifying a potato as an avocado.
Such descriptions were manually fixed so that the correct
object identities are mentioned in the instructions. We col-
lected 5 natural language descriptions each for 35 task types
that include pickup, place and slice tasks. The descriptions
consist of 170 unique tokens and have an average length of
12 tokens. Table 1 shows example descriptions collected for
some task types.

Short Horizon Tasks The pickup tasks are used for eval-
uating multi-task and zero-shot generalization with seen and
unseen descriptions of task types. We use 10 pickup task
types - pickup X where X ∈ {apple, bread, tomato, potato,
lettuce, spoon, bread, butter knife, plate, pot}. These tasks
are used for evaluating generalization to seen and unseen de-
scriptions of known short-horizon task types. They are also
used in generalization to longer horizon tasks as described
later in this section.

Longer Horizon Tasks The place and slice tasks are used
for evaluating generalization to longer-horizon tasks. Ta-
ble 2 shows tasks used for training and evaluation. In addi-
tion to multitask generalization, we use these tasks to study
zero-shot compositional generalization to unseen task de-
scriptions. The unseen descriptions can correspond to task
types that were encountered during training (i.e., seen task
types), similar to the pickup tasks. A more challenging gen-
eralization scenario is to generalize to text descriptions of
task types not encountered during training (i.e., unseen task
types).

We consider two types of tasks in the latter scenario. The
obj-obj setting examines the ability of the agent to gener-
alize to tasks composed of unseen combinations of objects.
For instance, in the test task type place potato in plate, the
relevant objects potato, plate were encountered during train-
ing in task types such as place potato in pan and place apple
in plate.

The task-obj setting is a harder generalization problem
where the agent is expected to generalize to unseen combi-
nations of tasks and objects. For the test task type slice let-
tuce with knife, the object lettuce was never observed in the
context of a slice task during training. However, the agent
has access to pickup tasks and is expected to learn to inter-
act with lettuce by using the pickup lettuce task. This can be
challenging because the agent was only taught how to pick
up lettuce, and did not learn to associate lettuce with slice
tasks.

The seen task types in Table 2 were designed such that
each object argument appears in multiple task types. Fur-
thermore, when choosing object arguments for a given task
type, we prioritized objects that appear in as many tasks as
possible. For instance, in the pickup and place tasks setup,
the objects were plate, pan, pot, spoon, etc. where each ob-

Seen task types
place apple in plate slice apple with knife
place butterknife in plate slice tomato with knife
place spoon in plate slice bread with knife
place butterknife in pan slice apple with butterknife
place potato in pan slice potato with butterknife
place spoon in pan slice bread with butterknife
place apple in pot
place butterknife in pot
place potato in pot

Unseen task types (obj-obj setting)
place potato in plate slice potato with knife
place apple in pan slice tomato with butterknife
place spoon in pot

Unseen task types (task-obj setting)
place knife in plate slice lettuce with knife
place knife in pan slice lettuce with butterknife
place knife in pot

Table 2: Task types used for training and testing on place and
slice tasks. Seen and Unseen correspond to task types whose
descriptions were respectively seen and not seen during
training. The obj-obj setting considers test task types com-
posed of unseen combinations of objects. The task-obj
setting considers generalization to unseen combinations of
tasks and objects (e.g., learning to slice lettuce when taught
how to slice objects and how to pickup lettuce). Note that
all pickup task types are treated as seen and omitted in this
table for brevity.

ject appears in at least three of the training tasks. This en-
sures that there are enough occurrences of each object type
for the agent to understand and ground the object type. It
also helps the agent disentangle the notion of an object ver-
sus a task in a given instruction.

Baselines
We compare the proposed approach against the following
baselines.

RNN In this baseline we replace the attentional model
with an RNN that produces an embedding of the text in-
struction. While this model can potentially work for unseen
instructions, we examine if the encoding effectively captures
the compositional information present in the instructions.

Gated Attention We consider the gated attention architec-
ture from Chaplot et al. (2018). This architecture combines
the instruction representation with the visual observation us-
ing a gated attention operation. The fused representation is
fed to an MLP which models the state-action values.

All models and baselines are trained using the DDQN
(Double deep Q-learning) algorithm (Van Hasselt, Guez, and
Silver 2016).

Hyperparameters
Word embeddings and the RNN have representation size 32.
Objects are represented by embeddings of size 32 from an
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Model

Seen tasks Unseen tasks

Seen
descriptions

Unseen
descriptions

Unseen
descriptions

Unseen
descriptions

obj-obj task-obj

RNN 0.65 0.65 0.26 0.13
Gated Attention 0.92 0.85 0.66 0.34
Ours
(a) Qnav +Qadd

int (no cross modal) 0.89 0.76 0.84 0.77
(b) Qnav +Qfull

int (with cross modal) 0.93 0.85 0.44 0.34
(c) Qnav +Qadd

int (with cross modal) 0.95 0.87 0.94 0.91

Table 3: Task success rates of models under different generalization settings. Models are evaluated on seen/unseen descriptions
of seen tasks and on unseen descriptions of unseen tasks. For unseen tasks, we further evaluate under unseen combinations of
objects as well as unseen combinations of tasks and objects. Best numbers are boldfaced.

pick up the silver butter knife closest to the edge of the
counter .
the spoon is between the spatula and the fork on the left
countertop ; pick it up .
move to the table , pick up the tomato .
pick up the lettuce from the table .
pick up the potato between the lettuce and the tomato .

Figure 3: Visualizing task attention for pickup tasks. Words
in darker shades received higher attention probabilities.

embedding table. The CNN observation features have size
512 and the CNN encoder has 1.7M parameters, which con-
stitues 90% of the overall model parameters. The MLPs in
Equations (5) and (6) are single hidden layer MLPs with 256
hidden units and ReLU activation.

Results
Short Horizon Tasks We first consider pickup tasks that
involve a single object interaction. In these tasks the agent
has to identify the object reference mentioned in the text de-
scription and then find and pick up the relevant object. We
train and evaluate on 10 pickup task types. Four text descrip-
tions of each task type are part of the training set and the
remaining descriptions (i.e., 1 per task type) are part of the
test set.

On the training and test descriptions, our agent trained
from scratch achieves success rates of 0.9, 0.92 respectively.
Identifying the correct subgoal for these tasks involves pay-
ing attention to the verbs and nouns in the task description
as well as the overall context. Figure 3 visualizes the task
attention in the subgoal inference component for a subset of
test task descriptions, from which it is clear that the agent
learns to focus on the relevant parts of the instruction.

Longer Horizon Tasks We now consider tasks that in-
volve two subgoals, which includes the place and slice tasks
in Table 2. Jointly learning text grounding and subgoal in-
ference for long horizon tasks can be challenging. We thus
consider a curriculum learning strategy where an agent is
gradually trained on tasks of increasingly longer horizon.

Success
rate

0.0 0.2 0.4 0.6 0.8 1.0
Training episodes 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

Train from scratch
Pre-train on pickup tasks

Figure 4: Learning progress of agent trained from scratch
and agent pre-trained on pickup tasks.

The agent is first pre-trained on the pickup tasks as described
in the previous section, and then fine-tuned on descriptions
of seen tasks in Table 2. Figure 4 compares the learning
progress of agents trained from scratch and an agent that
has been pre-trained on the pickup tasks. The pre-trained
agent learns twice as fast compared to the agent trained from
scratch and achieves perfect success rate on training task de-
scriptions.

Generalization Table 3 shows the average task comple-
tion success rate of models under different generalization
scenarios. We report performance on seen/unseen descrip-
tions of seen task types as well as (unseen) descriptions of
unseen task types from Table 2. The RNN and Gated Atten-
tion baselines are limited by the fact that the text instruction
is represented using the same encoding across all time-steps,
which has limited ability to capture compositional infor-
mation. The inductive bias of Gated Attention enables bet-
ter performance, but it has difficulty generalizing to unseen
tasks. The attention based model outperforms these base-
lines, which indicates that the attention mechanism helps
exploit compositional information in the instruction better
than a fixed encoding.

In addition to better performance, the attention model has
the advantage of being more interpretable. Figure 5 shows
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Instruction attention Subgoal 1 bring the potato from the table to the plate on the right of the oven .
Subgoal 2 bring the potato from the table to the plate on the right of the oven .

Instruction attention Subgoal 1 pick up the butter knife on the counter , and horizontally slice the lettuce .
Subgoal 2 pick up the butter knife on the counter , and horizontally slice the lettuce .

Figure 5: Agent’s observation at different time-steps while performing a place task and a slice task. The attention distribution
in the text goal inference component while executing each subgoal is also given below the agent observations.

the agent’s actions and the attention pattern over time for
example tasks. The agent learns to identify object references
in the instruction and uses attention as a sub-goal represen-
tation. This mimics a hierarchical policy where a high-level
controller provides a sub-goal and a low-level controller ex-
ecutes it (Jiang et al. 2019b). The agent further learns to
ground object references in the text instruction to objects
in the scene. Notably, these attention patterns and grounding
are learned from the reward signal alone without any other
supervision.

Ablations
We perform ablations to study the impact of cross-modal
reasoning and decomposing the value function in an additive
fashion.

Cross-modal Reasoning We examine model performance
without the cross modal reasoning component. In this case
the MLPs in Equations (5) and (7) only receive the text
subgoal and observation encoding as inputs and the vi-
sual subgoal vsg is omitted. This is shown as Qnav +
Qadd

int (no cross modal) in Table 3. From rows (a) and (c) in
table Table 3 it is clear that the cross-modal reasoning com-
ponents helps ground text in scene objects and enables better
generalization across all settings.

Interaction Q-values We examine the benefit of decom-
posing the value function approximation of interaction ac-

tions in an additive fashion in Qadd
int (Equation (7)). We com-

pare it against Qfull
int (Equation (6)), which treats each (inter-

action, object) pair as a separate atomic action. Comparing
rows (b), (c) in Table 3 we see that the additive decomposi-
tion is crucial for generalization to unseen tasks.

Conclusion

In this work we proposed attention based agents that can
exploit the compositional nature of language instructions to
generalize to unseen tasks. The policy mimics a hierarchical
process where a text embedding obtained via attention repre-
sents the subgoal to be executed and the policy network ex-
ecutes the low level actions. The proposed method performs
strongly against baselines on a testbed we created based on
a photorealistic simulated environment and provides some
interpretability.

Compared to existing benchmarks such as ALFRED we
made simplifying assumptions such as oracle visual recogni-
tion, relatively short horizon tasks and generalization within
single kitchen layout which allows us to focus on compo-
sitional generalization in embodied settings. However, the
ideas presented here can potentially be combined with cur-
riculum learning and learning from human demonstrations
to perform complex tasks that require planning over hun-
dreds of time-steps such as in the ALFRED setting, and we
leave this to future work.
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