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Abstract

Open intent classification, which aims to correctly classify
the known intents into their corresponding classes while iden-
tifying the new unknown (open) intents, is an essential but
challenging task in dialogue systems. In this paper, we in-
troduce novel K-center contrastive learning and adjustable
decision boundary learning (CLAB) to improve the effective-
ness of open intent classification. First, we pre-train a feature
encoder on the labeled training instances, which transfers
knowledge from known intents to unknown intents. Specifi-
cally, we devise a K-center contrastive learning algorithm to
learn discriminative and balanced intent features, improving
the generalization of the model for recognizing open intents.
Second, we devise an adjustable decision boundary learning
method with expanding and shrinking (ADBES) to determine
the suitable decision conditions. Concretely, we learn a deci-
sion boundary for each known intent class, which consists of
a decision center and the radius of the decision boundary. We
then expand the radius of the decision boundary to accommo-
date more in-class instances if the out-of-class instances are
far from the decision boundary; otherwise, we shrink the ra-
dius of the decision boundary. Extensive experiments on three
benchmark datasets clearly demonstrate the effectiveness of
our method for open intent classification. For reproducibility,
we submit the code at: https://github.com/lxk00/CLAP

Introduction
Intent classification is an essential task in dialogue systems by
categorizing input sequences into pre-defined intent classes.
It is usually formulated as a supervised classification prob-
lem. Recently, superior classification performance has been
achieved by deep neural networks (Bendale and Boult 2016;
Hendrycks and Gimpel 2016), where sufficient labeled train-
ing data is provided during model training. However, these
methods make a closed world assumption which is imprac-
tical for real-world applications, and cannot deal with the
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previously unseen intent classes (Ryu et al. 2017; Zheng,
Chen, and Huang 2020).

Open intent classification, which aims to correctly clas-
sify the known intents into their corresponding classes while
identifying the unknown intents as the “open intent”, im-
proves customer satisfaction by reducing false-positive er-
rors, making the intent classification more challenging. Early
studies employ SVM to reject unseen class examples (Tax
and Duin 2004; Rifkin and Klautau 2004; Jain, Scheirer, and
Boult 2014) based on feature engineering which is labor-
intensive. Recently, there are several works being proposed
to detect open intents by learning a decision boundary of
each known intent in the similarity space (Bendale and Boult
2016; Hendrycks and Gimpel 2016; Shu, Xu, and Liu 2017).
Among them, ADB (Zhang, Xu, and Lin 2021) is a repre-
sentative open intent classification method, which learns the
adaptive spherical decision boundary for each known class
with the aid of a pre-trained text encoder.

Despite the noticeable progress of previous works, there
are still several challenges for open intent classification,
which are not addressed well in prior studies. First, the su-
perior performance of standard supervised learning is highly
dependent on the quality and balance of the training labels.
The noisy and unbalanced training data may significantly
degrade the generalization performance of deep models on
out-of-distribution intents. Although KCL (Kang et al. 2020)
combined the strengths of supervised learning and contrastive
learning to learn representations that were both discrimina-
tive and balanced, it merely shortens the distance between
the anchor sample and the other positive samples, but ignores
the distances among the chosen positive samples. To address
this limitation, we learn more robust representations by in-
corporating instance-level semantic discriminativeness into
representation learning via contrastive learning. Concretely,
we propose a K-center contrastive learning (KCCL) method
to learn more robust and balanced text representations. Differ-
ent from the general supervised contrastive loss, our KCCL
method encourages each positive instance to move in the di-
rection of the other K positive instances so that each positive
instance moves towards the center of the positive samples, re-
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sulting in better clustering performance and speeding up the
convergence. In this way, we can better gather the semantic
features with the same intent, resulting in better representa-
tion space for learning the intent decision boundary.

Second, ADB (Zhang, Xu, and Lin 2021) is a representa-
tive method to learn the adaptive decision boundary for open
intent classification, which learns the radius of a specific
class boundary by solely considering the instances belong-
ing to the given class. In particular, the ADB method only
takes known intents to adjust the boundary and disregards
negative samples, which can lead to performance deteriora-
tion on out-of-distribution intents. For example, when plenty
of unknown intents fall inside the decision boundary, the
ADB method cannot make correct adjustments (i.e., shrink
boundary) accordingly. Since the goal of open intent classifi-
cation is to distinguish the known intents from the unknown
ones, the decision boundary learning should consider both
known and unknown intents. To solve the above problem
and learn a more accurate decision boundary of each intent
class, we devise an expanding and shrinking approach to
further adjust the decision boundary by considering out-of-
class (negative) instances for determining the intent decision
boundary. Specifically, we can expand the radius of the de-
cision boundary to accommodate more in-class instances if
out-of-class instances are far from the decision boundary;
otherwise, we shrink the radius of the decision boundary.

Our contributions are summarized as follows:

• We propose a K-center contrastive learning method to
learn robust text representations and make a clear margin
of different intents by gathering the semantic features with
the same intent.

• We propose an adjustable spherical decision boundary
learning method to determine accurate and suitable de-
cision conditions of each intent class by expanding or
shrinking the radius of the decision boundary.

• We conduct extensive experiments on three benchmark
datasets. Experimental results show that our method
achieves better performance than the state-of-the-art meth-
ods for open intent classification.

Related Work
Open Intent Classification
Open intent classification, which aims to correctly classify
the known intents into their corresponding classes while iden-
tifying the new unknown intents, has attracted noticeable
attention due to its broad applications in dialogue systems
and question answering. Early approaches leverage machine
learining methods (e.g., SVM) to reject unseen classes for
open world recognition (Schölkopf et al. 2001; Tax and Duin
2004; Rifkin and Klautau 2004; Jain, Scheirer, and Boult
2014). However, these methods relied heavily on feature
engineering which is labor intensive.

With the advance of deep learning, deep neural networks
have dominated the literature of open intent classification,
which can learn the deep semantic features of input texts
automatically. Brychcı́n and Král (2017) calibrated the con-
fidence of the softmax outputs to compute the calibrated

confidence score and leveraged the score to obtain the deci-
sion boundary for unknown intent detection. Yu et al. (2017)
leveraged adversarial learning to produce positive and neg-
ative samples from known samples for training the open
intent classifier. Ryu et al. (2018) exploited the generative
adversarial networks (Goodfellow et al. 2014) to generate
out-of-distribution (OOD) samples with the generator and
learned to reject produced OOD samples with the discrimina-
tor. However, these methods need a confidence score, which
is difficult to be pre-defined in advance, to determine the
likelihood of an utterance being out-of-scope.

Subsequently, Lin and Xu (2019) proposed the DeepUNK
method, which utilized a margin-based method to train the
classifier and detected the unknown intent with local out-
lier factor. Zhang, Xu, and Lin (2021) introduced a post-
processing method to learn a spherical decision boundary
for each known intent class with the aid of a pre-trained in-
tent encoder. Prem et al. (2021) presented a post-processing
method, which utilized multi-objective optimization to tune
a deep neural network based intent classifier and make the
classifier capable of detecting unknown intents. Zhan et al.
(2021) constructed a set of pseudo outliers by using inliner
features via self-supervision in the training stage. The pseudo
outliers were used to train a discriminative classifier that can
be directly applied to and generalize well on the test task.
However, these approaches do not take full advantage of the
representation learning for learning better discriminative and
balanced features.

Contrastive Learning
Self-supervised learning (SSL) has attracted much attention
since it can avoid manually annotating large-scale datasets
and uses the learned representation well for downstream
tasks (Hendrycks et al. 2019; Misra and van der Maaten
2020). Contrastive learning is a popular self-supervised rep-
resentation learning method (Le-Khac, Healy, and Smeaton
2020). The key idea behind contrastive learning is to narrow
the distance between the anchor sample and the positive sam-
ples and increase the distance between the anchor sample and
the negative samples. SimCSE (Gao, Yao, and Chen 2021) is
a representative contrastive learning method, which learned
superior sentence representations from either unlabeled or la-
beled data. KCL (Kang et al. 2020) effectively combined the
strengths of the supervised method and the contrastive learn-
ing method to learn representations that were both discrim-
inative and balanced. CERT (Fang et al. 2020) created aug-
mentation samples of sentences using back-translation, and
then fine-tuned a pretrained language representation model
by predicting whether two augmentation samples are from
the same original sentence or not.

Our Methodology
Problem Definition Suppose we have a training data set
S = {(xi, yi)}Ni of N input instances, where each input
sequence xi = {w1, . . . , wn} has a corresponding output
intent label yi ∈ {1, . . . , C} and n is the sequence length.
Here, C denotes the number of different intent classes in the
training dataset S. The goal of open intent classification is
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Figure 1: An overview of our method. In the first stage (left), we leverage a novel K-center contrastive learning method to
improve the text representation learning. In the second stage (right), we design the adjustable decision boundary learning with
expanding and shrinking to determine the suitable decision conditions for the known intents.

to correctly classify the K known intents into their corre-
sponding classes while identifying the unknown intents as
the (C + 1)th intent type (also called “open intent”).

Model Overview As illustrated in Figure 1, our open in-
tent classification method can be divided into two training
stages. In the first stage, we employ K-center contrastive
learning method to learn the sentence representations. In the
second stage, we design a novel adaptive boundary learn-
ing method to comprehensively learn the in-distribution and
out-of-distribution data, so that the decision boundary can be
clearly determined.

Initial Representation Learning
Following previous work (Zhang, Xu, and Lin 2021), we em-
ploy the pre-trained BERT (Devlin et al. 2019) as sentence
encoder to learn the feature representations of input sentences.
In particular, for each input sentence xi, we obtain the hidden
representations of tokens [CLS,v1,v2, . . . ,vn, SEP ] ∈
R(n+2)×H from the last layer of BERT, where vi is the hid-
den representation of the i-th token and H = 768 denotes
the dimension size of token embeddings. CLS and SEP
represent the beginning and ending symbols. We use mean-
pooling over all tokens representations to obtain the sentence
representations oi for input sequence xi:

oi = mean-pooling([CLS,v1, . . . ,vn, SEP ]) (1)

To further enhance the feature representation learning, we
use the ReLU activation function following the linear map-
ping to get the feature representation hi ∈ RH , and then
obtain zi by normalizing hi:

hi = ReLU(W1oi + b1), zi =
hi

∥hi∥2
(2)

where W1 and b1 are learnable parameters. ∥·∥2 are Eu-
clidean normalization over the input vector.

K-center Contrastive Representation Learning
The general supervised contrastive learning (van den Oord,
Li, and Vinyals 2018) aims to learn an embedding space
where the instances from the same category are pulled closely
and the instances from different category are pushed apart.
Specifically, we minimize a contrastive loss function LCL to
optimize the encoder network:

LCL = − 1

N

N∑
i=1

log
ezi·z+

i /τ

ezi·z+
i /τ +

∑
z−
i ∈Z−

i
ezi·z−

i /τ
(3)

where z+i indicates one positive sample randomly chosen
from the training set which has the same intent label with zi.
ZZZ−

i indicates the set of randomly chosen negative training
samples which have different intent labels with zi. τ is a
temperature value.

The above supervised contrastive loss defined in Eq. (3)
learns more robust representations by incorporating instance-
level semantic discriminativeness into the representation
learning. However, conventional supervised contrastive learn-
ing uses all the samples from the same class to construct
the positive pairs, which could result in the dominance of
instance-rich classes in the representation learning, as re-
vealed in (Kang et al. 2020).

K-center Contrastive Learning To alleviate the problem
of dominating the instance-rich classes, we propose a K-
center contrastive learning (KCCL) method to learn more
balanced feature representations, inspired by (Kang et al.
2020). Different from (Kang et al. 2020) that compares K
positive instances and the negative instances, we also com-
pare each instance pair within the set of K positive instances.
To be specific, for each training instance zi with intent label
yi, we randomly select K samples with intent class yi to form
the positive sample setZZZ+

i . We also randomly select M train-
ing samples from other intent classes as the negative sample
set ZZZ−

i . The K-center contrastive loss function LKCCL can
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be formalized as follows:

LKCCL = − 1

N ·K · (K + 1)

N∑
i=1

K+1∑
m=1

K+1∑
n=1,n ̸=m

log
ez

+
i,m·z+i,n/τ

ez
+
i,m·z+i,n/τ +

∑
zzz−i ∈ZZZ−

i
(ez

+
i,m·zzz−i /τ + ez

+
i,n·z−i /τ )

(4)

where z+i,m and z+i,n are two positive samples in ZZZ+
i . Differ-

ent from the previous contrastive loss defined in Eq. (3), our
KCCL method additionally shortens the distances between
positive samples. In this way, we can better gather the se-
mantic features with the same intent (van den Oord, Li, and
Vinyals 2018; Kang et al. 2020), resulting in better represen-
tation space for learning the intent decision boundary.

In addition to supervised contrastive loss, we also leverage
supervised cross-entropy (CE) loss LCE to learn semantic
discriminative features:

LCE = − 1

N

N∑
i=1

yi log softmax(W2zi + b2) (5)

where yi is the one-hot vector for intent label yi. W2 and b2

are learnable parameters.
Overall, the loss function LS1 of the first stage training is

obtained as a weighted sum between LKCCL and LCE:

LS1
= λ · LKCCL + (1− λ) · LCE (6)

where λ is a pre-defined hyperparameter for controlling the
impact of the two loss functions.

Adaptive Decision Boundary Learning via
Expanding and Shrinking
In this section, we propose a novel inflating and shrinking ap-
proach to learn adaptive decision boundaries for open intent
classification.

Decision Boundary Learning After learning the represen-
tations of input sentences via the KCCL method, we learn
a decision boundary for each known intent class k, which
consists of a decision center ck and the radius of the deci-
sion boundary ∆k. Formally, suppose there is a dataset Sk

containing all the training instances with intent class k. The
decision center ck is a fixed vector and the radius of the
decision boundary ∆k is a learnable parameter. The deci-
sion center ck of class k can be acquired by averaging the
representations of instances in Sk:

ck =
1

|Sk|
∑

zi∈Sk

zi (7)

where |Sk| denotes the number of instances in Sk. For each
known instance zi with the latent class k, the radius ∆k of the
decision boundary should satisfy the following constraints:

∥zi − ck∥2 ≤ ∆k (8)

However, it is non-trivial to optimize the radius ∆k of the
decision boundary for open intent classification. As revealed
in (Zhang, Xu, and Lin 2021), the radius should be large

enough to surround known intent samples as much as possible
so as to reduce the empirical risk, while we should also
decrease the open space risk by shrinking the radius to avoid
To balance the trade-off between the open space risk and
the empirical risk, the adaptive decision boundary (ADB)
method (Zhang, Xu, and Lin 2021) is proposed to optimize
each learnable boundary radius as follows:

LADB =
1

N

N∑
i=1

γi · (∥zi − cyi
∥2 −∆yi

)+

(1− γi) · (∆yi
− ∥zi − cyi

∥2)

(9)

where zi is the representation of input sequence xi obtained
in the first stage. yi is the label of zi. γ is a variable to control
the impact of the two constrains, which is defined as:

γi =

{
1, if ∥zi − cyi

∥2 > ∆yi
,

0, if ∥zi − cyi∥2 ≤ ∆yi .
(10)

The parameters can be updated via stochastic gradient descent
(SGD). As shown in Eq. (9), the ADB method learns the
radius of a specific class boundary by solely considering the
instances belonging to the given class.

Expanding and Shrinking To learn a more accurate and
suitable decision boundary of each intent class, we devise
an expanding and shrinking approach to further adjust the
decision boundary by considering out-of-class (negative) in-
stances for determining the intent decision boundary. Specif-
ically, we can expand the radius of the decision boundary
to accommodate more in-class instances if out-of-class in-
stances are far from the decision boundary; otherwise, we
shrink the radius of the decision boundary. According to our
statistics, the distances from the unknown intents to the de-
cision center conforms to a skewed normal distribution. We
adjust the decision boundary radius according to both tails of
the distribution. If there are large volumes of samples that fall
in the right tail, then we can expand the decision boundary,
and If there are large volumes of samples that fall in the left
tail, then we should shrink the decision boundary.

Formally, we introduce an expansion parameter e and a
shrink parameter s for better expanding and shrinking the
decision boundary. For each training instance zi, if the dis-
tance between the out-of-class (negative) sample z−i and the
decision center cyi

is less than ∆yi
+ s, then we should

reduce the value of the radius ∆yi
. On the contrary, if the

distance between the negative sample z−i and the decision
center cyi is greater than ∆yi + e, then we increase the value
of the radius ∆yi

. We define a novel loss function LADBES

for adaptive decision boundary learning with expanding and
shrinking operations (ADBES) as follows:

LADBES = LADB +
1

N

N∑
i=1

{
η · αi ·

[ ∥∥z−i − cyi
∥∥
2
−

(∆yi + e)
]
+ η · βi ·

[
(∆yi + s)−

∥∥z−i − cyi
∥∥
2

]} (11)

where η is a pre-defined hyperparameter for controlling the
impact of the expanding and shrinking approach. z−i is a
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randomly chosen negative sample which has different intent
label with zi. α and β determine the expanding or shrinking
operations over the decision boundaries, which are defined
as follows:

αi =

{
1,

∥∥z−i − cyi

∥∥
2
> ∆yi

+ e,

0,
∥∥z−i − cyi

∥∥
2
≤ ∆yi + e.

(12)

βi =

{
1,

∥∥z−i − cyi

∥∥
2
< ∆yi

+ s,

0,
∥∥z−i − cyi

∥∥
2
≥ ∆yi + s.

(13)

With the loss function LADBES, we can learn more accu-
rate and suitable decision boundaries, which not only effec-
tively surround most of the known intent instances but also
identify the open intent instances.

Open Intent Classification during Inference
During the inference (testing) phase, the input samples may
come from both known and unknown intent classes. Given
each test sample xj , we obtain its feature representation zj
via the K-center contrastive learning. With the learned radius
of the decision boundaries, the intent class ŷj can be predicted
by thresholding the Euclidean distance between zj and the
decision center ck (i.e., d(zj , ck)) w.r.t. the corresponding
radius ∆k. That is, the model will mark the target instance
as “Unknown” if it is outside any of the learned decision
boundaries. Formally, we predict the open intent as follows:

ŷj =

{
Unknown, if d(zj , ck) > ∆k, k ∈ Y;

arg mink∈Yd(zj , ck), otherwise.
(14)

where Y = {1, . . . ,K} represents the label space of the
known intents.

Experimental Setup
Datasets
We conduct extensive experiments on three publicly available
benchmark datasets. BANKING (Casanueva et al. 2020) is a
fine-grained dataset in the banking domain, which contains
77 intents and 13,083 customer service queries. OOS (Lar-
son et al. 2019) is a dataset for intent classification and
out-of-scope prediction. It consists of 150 intents, 22,500
in-domain queries and 1,200 out-of-domain queries. Stack-
Overflow (Xu et al. 2015) is a dataset released originally in
Kaggle.com. It contains 3,370,528 technical question titles.
We use the processed dataset which has 20 different classes
and 1,000 samples for each class. We provide the detailed
statistics of the datasets in Table 1.

Evaluation Metrics
Following previous work (Zhang, Xu, and Lin 2021), we
adopt the widely used accuracy and macro F1-score as the
evaluation metrics for open intent classification. We treat all
unknown classes as an open class, and calculate the overall
accuracy (denoted as Acc) and macro F1-score (denoted as
F1) over all intent classes. In addition, to better evaluate
the capability of the classifiers for identifying known and
unknown intents, we also compute the macro F1-score over
known intents (denoted as Known) and unknown intents
(denoted as Unknown), respectively.

Dataset Class Train/Valid/Test Length (max/mean)
BANKING 77 9003 / 1000 / 3080 79 / 11.91

OOS 150 15000 / 3000 / 5700 28 / 8.31
StackOverflow 20 12000 / 2000 / 6000 41 / 9.18

Table 1: Statistics of experimental datasets.

Baseline Methods
We compare our method with the five state-of-the-art open
intent classification methods, including MSP (Hendrycks
and Gimpel 2016) that adopts a softmax prediction for
out-of-distribution detection, DOC (Shu, Xu, and Liu 2017)
that uses deep learning to build a multi-class classifier and
leverages Gaussian fitting to tight the decision boundary,
OpenMax (Bendale and Boult 2016) that applies the concept
of meta-recognition to the activation patterns in the penulti-
mate layer to reduce the risk of open space, DeepUnk (Lin
and Xu 2019) that replaces softmax loss with margin loss
to learn discriminative deep features by forcing the network
to maximize inter-class variance and minimize intra-class
variance, ADB (Zhang, Xu, and Lin 2021) that presents a
new post-processing method for open intention classification
by learning the spherical decision boundary for each known
class.

Implementation Details
Following the same settings as in (Zhang, Xu, and Lin 2021),
we keep some classes in the training set as unknown and
integrate them back during testing. In particular, we vary
the number of known classes in the training set with the
proporation of 25%, 50%, and 75% classes, and adopt all
intent classes for testing. It is noteworthy that the unknown
classes are only utilized during testing. To conduct a fair
evaluation and ensure the stability of our model, we run our
model ten times and report the average results over ten runs
of experiments.

In the first training stage, we build our model on top of
the pre-trained BERT model (base-uncased) with 12-layer
transformer and adopt most of its default hyperparameter
settings. We freeze all the parameters of BERT except the
last transformer layer to speed up the training process and
avoid over-fitting. The number of positive samples in KCCL
are in 1 to 10 and the number of negative samples M is set
to be 1. λ is set to be 0.25. In the second training stage, we
freeze BERT model and train the decision boundary only.
The batch size is set to be 32, e in range 0.5 to 1.2, s from 0
to 0.5, η from 0 to 1. We utilize Adam to optimize the model
with a learning rate of 2e-5.

Experimental Results
Main Results
The results are shown in the Table 2. We report the macro
F1 scores of all compared methods over all intent classes
(denoted as “ALL”), unknown (open) intent class (denoted
as “Unknown”) and known classes (denoted as “Known”),
respectively From the results, we can observe that our method
substantially and consistently outperforms the state-of-the-art
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BANKING OOS StackOverflow
Methods ALL Unknown Known ALL Unknown Known ALL Unknown Known

MSP 50.09 41.43 50.55 47.62 50.88 47.53 37.85 13.03 42.82
DOC 58.03 61.42 57.85 66.37 81.98 65.96 47.73 41.25 49.02

OpenMax 54.14 51.32 54.28 61.99 75.76 61.62 45.98 36.41 47.89
25% DeepUnk 61.36 70.44 60.88 71.16 87.33 70.73 52.05 49.29 52.60

ADB 71.62 84.56 70.94 77.19 91.84 76.80 80.83 90.88 78.82
CLAB 75.87 88.73 75.20 81.26 94.49 80.91 86.03 95.12 84.21
MSP 71.18 41.19 71.97 70.41 57.62 70.58 63.01 23.99 66.91
DOC 73.12 55.14 73.59 78.26 79.00 78.25 62.84 25.44 66.58

OpenMax 74.24 54.33 74.76 80.56 81.89 80.54 68.18 45.00 70.49
50% DeepUnk 77.53 69.53 77.74 82.16 85.85 82.11 68.01 43.01 70.51

ADB 80.90 78.44 80.96 85.05 88.65 85.00 85.83 87.34 85.68
CLAB 83.08 81.82 83.36 87.03 90.63 86.98 87.68 89.30 87.52
MSP 83.60 39.23 84.36 82.38 59.08 82.59 77.95 33.96 80.88
DOC 83.34 50.60 83.91 83.59 72.87 83.69 75.06 16.76 78.95

OpenMax 84.07 50.85 84.64 73.16 76.35 73.13 79.78 44.87 82.11
75% DeepUnk 84.31 58.54 84.75 86.23 81.15 86.27 78.28 37.59 81.00

ADB 85.96 66.47 86.29 88.53 83.92 88.58 85.99 73.86 86.80
CLAB 88.12 70.74 88.42 90.53 86.91 90.57 88.11 77.59 88.81

Table 2: The results of open intent classification by varying the proportions (25%, 50% and 75%) of known classes. Here, “ALL”,
“Unknown” and “Known” denote the macro F1 score over all intent classes, unknown (open) intent class and known classes,
respectively.

Dataset Method ALL Unknown Known

BANKING

ADB 71.62 84.56 70.94
CLAB 75.87 88.73 75.20

w/o ADBES 74.11 86.17 73.47
w/o KCCL 73.10 86.28 72.41

OOS

ADB 77.19 91.84 76.80
CLAB 81.26 94.49 80.91

w/o ADBES 79.25 92.85 78.89
w/o KCCL 78.86 92.61 78.50

StackOverflow

ADB 80.83 90.88 78.82
CLAB 86.03 95.12 84.21

w/o ADBES 84.41 94.15 82.47
w/o KCCL 83.35 92.88 81.44

Table 3: Ablation results of CLAB on three datasets over with
25% known classes

baseline methods by a noticeable margin, which demonstrates
the effectiveness of our method. Specifically, compared with
the most competitive ADB method, our method improves
macro F1 scores by 4.25%/2.18%/2.16% on BANKING, by
4.07%/1.98%/2.00% on OOS , and by 5.20%/1.85%/2.12%
on StackOverflow with the proportions of 25%/50%/75%
known classes, respectively.

In addition, we observe that our method not only obtains
significant improvements on unknown classes, but also sub-
stantially improves the performances on known classes com-
pared with the baselines. This may be because our method
can learn accurate and suitable decision boundaries for intent
classes.

Ablation Study
To verify the effectiveness of KCCL and ADBES methods
for open intent classification, we perform ablation tests on
the three datasets with 25% known classes. In particular, we
remove the KCCL (denoted as w/o KCCL) from our proposed
CLAB method by replacing the first stage loss function LS1

with the cross-entropy loss LCE. In addition, we remove the
ADBES (denoted as w/o ADBES) from CLAB by replacing
the decision boundary learning method with ADB (Zhang,
Xu, and Lin 2021).

The ablation test results are summarized in Table 3. The
performance of CLAB drops sharply when discarding KCCL.
This is because KCCL enables CLAB to learn more robust
and balanced text representations. In addition, ADBES also
makes a great contribution to CLAB. This is reasonable
since ADBES plays a critical role in learning adjustable de-
cision boundaries for the known intents. Not surprisingly,
both KCCL and ADBES techniques contribute a noticeable
improvement to our method, since the performance of ADB
(without both KCCL and ADBES) is much worse than that
of CLAB. This is within our expectation since the KCCL can
learn better feature representations and ADBES can learn
better adjustable decision boundaries of known intents.

Analysis of K-center Contrastive Learning
Performance Comparison between KCCL and KCL To
investigate the advantage of KCCL over the previously pub-
lished K-positive contrastive learning (KCL) (Kang et al.
2020), we conduct experiments by varying the proportions
(25%, 50%, and 75%) of known classes on the BANKING
dataset. For a fair comparison, for the KCL, we also use the
ADBES method to learn the decision boundary. We run each
experiment ten times and report the average results in Table
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Percent Method ALL Unknown Known
ADBES 73.10 86.28 72.41

25% KCL+ADBES 74.16 86.31 73.52
KCCL+ADBES 75.87 88.73 75.20

ADBES 81.46 81.86 81.45
50% KCL+ADBES 81.95 81.12 82.19

KCCL+ADBES 83.08 81.82 83.36
ADBES 86.32 69.02 86.59

75% KCL+ADBES 87.12 70.14 87.40
KCCL+ADBES 88.12 70.74 88.42

Table 4: Performance comparison between KCCL and KCL
on the BANKING dataset.

K BANKING OOS StackOverflow

1 72.58 80.18 86.25
2 73.31 80.27 86.39
3 73.21 80.86 86.37
4 74.83 80.58 86.61
5 75.01 80.49 86.26
6 74.55 80.64 85.99
7 72.99 80.75 85.31
8 74.32 80.74 84.31
9 73.01 80.34 84.60
10 72.97 80.74 85.18

Table 5: The macro F1 score of our model by varying the
value of K on three datasets with the proportion 25% of
known intents. Here, K denotes the number of positive ex-
amples used in KCCL.

4. From the results, we can observe that our KCCL method
performs significantly better than KCL, especially with 25%
known intents. This verifies the effectiveness of KCCL in
learning better relations among the positive samples.

In addition, we also report the learning curves correspond-
ing to the average cosine similarity between intra-class and
inter-class samples on the BANKING dataset. As illustrated
in Figure 2, our model can achieve better upper bounds and
faster convergence speed than the compared methods. Specif-
ically, the average similarity between intra-class samples
increases sharply until 400 iterations, while the average simi-
larity between inter-class samples gets converged until 400
iterations. This verifies the effectiveness of our KCCL for
learning more discriminative representations than the com-
pared methods.

Effect of Positive Samples in KCCL To verify the effect
of the number of positive samples (K), we conduct experi-
ments by varying the value of K on three datasets with the
proportion 25% of known intents. We report the F1 results
in Table 5. We can observe from the results that different
values of K have slightly fluctuations on the final results. In
addition, we also notice that the optimal K value for differ-
ent datasets is different. The model with a smaller number
of positive samples can achieve the best effect on the three
corpora. Generally, our method is not very sensitive to the
number of positive samples (i.e., K).
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Figure 2: Similarity comparison of different loss functions on
BANKING with 25% known classes. 10 random sentences
are sampled from the test set of each class. Figure (a) denotes
intra-class cosine similarities. Figure (b) denotes inter-class
cosine similarities.
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Figure 3: Influence of the decision boundary during inference.
The blue and orange dash lines denotes the results learned by
ADBES and ADB respectively.

Analysis of Adjustable Decision Boundary
To further investigate the tightness and coverage of deci-
sion boundary learned by our ADBES method and the ADB
method, we use different ratios of ∆ as boundaries during
testing. The change of the decision boundary is limited to
a small interval, as previous research has found that a large
decision boundary change will inevitably lead to a significant
drop in the F1-score (Zhang, Xu, and Lin 2021). In particular,
for both ADB and ADBES methods, we incorporate KCCL
with the fine-tuned BERT models to learn intent features of
known intents, and then the ADBES and ADB methods are
applied to learn the spherical decision boundary for each
intent class. The experimental results are shown in Figure
3. We observe that ADBES achieves the best performance
with the learned ∆ among all tested decision boundaries, ver-
ifying the effectiveness of the decision boundaries learned
by ADBES. However, the best result is achieved by ADB
when using 0.95∆, which means that the decision boundaries
learned by ADB are overrelaxed.

Distance Distribution Visualization
We visualize the distance distribution and decision bound-
ary of our CLAB method and ADB (without KCCL train-
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Figure 4: Distance distribution visualization. Figures (a), (b) and (c) represent the distributions and decision boundaries learned
by our method with proportions (25%, 50%, and 75%) of known classes on the StackOverflow dataset. Figures (d), (e) and (f)
represent the distributions learned by the ADB method. The circles are divided into 5 sectors representing 5 classes. The points
close to the center of each circle are known class samples, while the points that have different colors with the known classes
represent open class samples. The center of the circle represents the decision center of the corresponding class. The graphs are
drawn according to the Euclidean distance from the sample points to the decision centers. We reduce the value of the distance
exceeding 1 to 0.99. We use the red arc to represent the decision boundary.

ing). The experiments are conducted on the test set with
proportions (25%, 50%, and 75%) of known classes on the
StackOverflow dataset. For a fair comparison, we normal-
ize the sentence representations produced by the original
ADB method. For each dataset, we randomly selected five
categories for demonstration.

As shown in Figure 4, we have two observations. First, the
distance distribution overlap between open intent samples
and known intent samples learned by the ADB baseline is
less than our CLAB method, especially with 25% and 50%
known classes. Second, the decision boundaries learned by
our CLAB method are more accurate and effective for open
intent classification, especially when the proportion of known
classes is 25%. The ability of our method to identify the open
intents is significantly stronger than that of the ADB method.

Conclusion
In this paper, we proposed a novel two-stage method CLAB
to improve the effectiveness of open intent classification.
First, we devised a K-center contrastive learning algorithm to
learn discriminative and balanced intent features, improving
the generalization of the model for recognizing open intents.

Second, we introduced an adjustable decision boundary learn-
ing method with expanding and shrinking to determine the
suitable decision conditions. In particular, we expanded the
radius of the decision boundary to accommodate more in-
class instances if the out-of-class instances were far from the
decision boundary; otherwise, we shrunk the radius of the de-
cision boundary. Extensive experiments on three benchmark
datasets showed the effectiveness of CLAB.
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