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Abstract

Evaluating open-domain conversation models has been an
open challenge due to the open-ended nature of conversa-
tions. In addition to static evaluations, recent work has started
to explore a variety of per-turn and per-dialog interactive eval-
uation mechanisms and provide advice on the best setup. In
this work, we adopt the interactive evaluation framework and
further apply to multiple models with a focus on per-turn
evaluation techniques. Apart from the widely used setting
where participants select the best response among different
candidates at each turn, one more novel per-turn evaluation
setting is adopted, where participants can select all appro-
priate responses with different fallback strategies to continue
the conversation when no response is selected. We evaluate
these settings based on sensitivity and consistency using four
GPT2-based models that differ in model sizes or fine-tuning
data. To better generalize to any model groups with no prior
assumptions on their rankings and control evaluation costs for
all setups, we also propose a methodology to estimate the re-
quired sample size given a minimum performance gap of in-
terest before running most experiments. Our comprehensive
human evaluation results shed light on how to conduct cred-
ible human evaluations of open domain dialog systems using
the interactive setup, and suggest additional future directions.

Introduction

Building open-domain chatbots that can converse with hu-
mans freely has been a challenging area for NLP. Unlike
task-oriented conversations where task completion is crit-
ical, human users can talk about any topics during open-
domain conversations. This open-ended nature thus has
posed more difficulty on evaluating models in a credible and
reproducible way. Plenty of work has focused on develop-
ing automatic evaluation metrics or performing static hu-
man evaluations to compare different conversational models.
However, automatic metrics have been shown to have very
weak correlations with human judgements on open-domain
conversations (Liu et al. 2016; Lowe et al. 2018; Mehri and
Eskenazi 2020); on the other hand, performing static human
evaluations can be both time and cost intensive (Deriu et al.
2020). Additionally, most post-hoc static evaluations cannot
reflect the quality of dialogs that are collected in a realis-
tic interactive setup, and hence are not necessarily the most
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accurate assessment of a user’s satisfaction with the conver-
sation (Liu et al. 2016; Ghandeharioun et al. 2019). There-
fore, apart from several public competitions such as Alexa
Prize!, ConvAI2 (Dinan et al. 2019) and DSTC9 Track 3
(Mehri et al. 2022) in English, as well as Dialog System Live
Competition (Higashinaka et al. 2021) in Japanese, several
studies have adopted interactive evaluations to either anno-
tate per-turn model responses in a multi-turn dialog (Ghan-
deharioun et al. 2019; Adiwardana et al. 2020), or collect
overall per-dialog ratings on a Likert scale to evaluate differ-
ent aspects of conversation quality (Zhang et al. 2018; See
et al. 2019; Dinan et al. 2018; Finch and Choi 2020; Ji et al.
2022). Smith et al. (2022) compared five different interac-
tive setups including per-turn, per-dialog and self-play eval-
uations, and provided a comprehensive analysis for single-
model and pairwise evaluations. However, questions still re-
main regarding which interactive evaluation setup is more
appropriate for different evaluation scenarios (e.g., when
more than two models need to be evaluated).

In this work, we apply the interactive evaluation frame-
work to multiple models with a focus on per-turn evaluation
techniques. We compare Multi-Model evaluation mecha-
nisms with existing Single-Model and Pairwise-Model eval-
uations, and perform a thorough analysis across all three
mechanisms. We adopt two per-turn evaluation setups: Se-
lect One Best from All (SOBA), where users choose the best
response from a list of system response candidates and Se-
lect All That Apply (SATA) where users choose all the best
responses from the list or choose none if they don’t like
of the responses. For the latter, users will either continue
the conversation with a random system response (SATA-
Random), or write a suggested system response (SATA-
User), which will be used in the conversation.

In contrast to (Smith et al. 2022) where model rank-
ings are pre-assumed before running evaluations, we instead
compare the sensitivity and consistency of different evalua-
tion setups without any assumptions on model rankings, and
then use the results to understand model performance. To
achieve this goal, we propose a methodology to determine
the required sample size given a minimum performance gap
of interest, which not only helps control evaluation costs

"https://www.amazon.science/alexa-prize/socialbot-grand-
challenge
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Figure 1: Illustration of Pairwise-Model evaluation. At each turn, the system provides two randomly ordered responses gener-
ated by models A and B, and the user does not know if two responses come from the same or different models. In PM-SOBA,
users always select a preferred response. In PM-SATA, users can select O to 2 appropriate responses; when no response is se-
lected, the system returns a random response if using SATA-Random, or asks the user to write a better pseudo system response
if using SATA-User. Multi-Model evaluation uses the same setups, with more than two responses provided at each turn.

but also better generalizes to scenarios where model rank-
ings remain unknown. It is worth noting that our focus is
on comparing per-turn evaluation setups instead of investi-
gating which models are better, and we leave per-dialog or
self-chat evaluations to future work.

In this study, we have compared all three per-turn eval-
uation setups across Single-Model, Pairwise-Model, and
Multi-Model evaluations, and find that:

¢ Pairwise-Model (PM) and Multi-Model (MM) evalua-
tions generate highly consistent results for model rank-
ings given a minimum performance gap of interest, while
Single-Model (SM) has the least sensitivity to differenti-
ate model performance;

For a model pair of interest, Pairwise-Model Select-
All-That-Apply (PM-SATA) works better at consistently
measuring actual performance gap and providing ex-
plainability of model performance at higher costs, while
Pairwise-Model Select-One-Best-from-All (PM-SOBA)
is more sensitive and works better when models are
clearly different;

For more than two models, Multi-Model Select-All-
That-Apply (MM-SATA) works better at performing a
comprehensive test on both overall equality of all models
and pairwise equality for all matched-pairs (which MM-
SOBA cannot) with a reasonable sample size;

Given a setup, the required sample size is a function of
a minimum performance difference of research interest.
Following the estimations, experiments show high con-
sistency across Pairwise-Model (PM) and Multi-Model
(MM) evaluations for most model pairs.
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Related Work

Evaluating Open-Domain Conversations Using Interac-
tive Setup. Recent work has adopted interactive settings
to evaluate open-domain dialog models both in public com-
petitions (Ram et al. 2018; Dinan et al. 2019; Mehri et al.
2022; Higashinaka et al. 2021) and development of several
state-of-the-art models (Adiwardana et al. 2020; Roller et al.
2020). Mehri et al. (2022) recruited real users to evaluate a
set of chatbots and provide turn-level ratings, and then asked
Amazon Mechanical Turk (AMT) workers to assess each di-
alog across a set of metrics. However, users only interacted
with one system for each dialog and thus only saw a single
response at a time, while we allow workers to interact with
more than one system to evaluate multiple response candi-
dates simultaneously. Smith et al. (2022) compared per-turn,
per-dialog and self-play setups for single-model and pair-
wise evaluations. However, it requires prior knowledge of
model rankings to ideally choose the best evaluation setup,
while researchers don’t necessarily have that knowledge be-
fore running the evaluation. In contrast, we extend the eval-
uation framework to multiple models, and adopt two more
novel per-turn setups, allowing users to select all appropri-
ate responses, all without assumptions on model rankings.

Response Selection. In addition to the Select-One-Best-
from-All (SOBA) setting used by (Smith et al. 2022), our
work adopts a novel Select-All-That-Apply (SATA) setting,
which is essentially a multi-turn response selection task for
open-domain human-bot conversations. Most work in this
field has either directly collected human-written positive and
negative responses, or used adversarial methods to generate
negative responses (Gao et al. 2020; Han et al. 2021; Deriu
et al. 2022). In contrast, we allow workers to not only gen-



erate their own human-bot conversations but also annotate
both positive and negative samples from a list of model-
generated responses. To our knowledge, there is no pub-
lished work that allows users to enter their own response
during an interactive response selection procedure. By in-
troducing a novel user input feature, the worker can steer the
conversation in the direction they prefer when they don’t like
any model-generated responses, and make the dialog error-
free and comprehensible.

Estimating Sample Size. Sample size estimation is a crit-
ical step before conducting any experiment to ensure ade-
quate statistical power. To our knowledge, there has been
little prior work that has discussed how to properly esti-
mate sample size in the field of open-domain dialog eval-
uation. Smith et al. (2022) used a two-sided binomial test
and two-sided independent t-test for pairwise evaluations
and single-model evaluations respectively, and collected di-
alogs until statistically significant results are reached. How-
ever, this approach doesn’t necessarily guarantee enough
statistical power, as statistical power should be determined
when designing an experiment rather than after observing
experiment results (Hoenig and Heisey 2001). In this work,
inspired by practices in clinical research (Friedman et al.
2015), we perform a variety of sample size estimations
before running most experiments depending on the spe-
cific evaluation setting, and then examine sample indepen-
dence using evaluation results. This methodology can not
only generalize to any model pairs of interest without prior
knowledge on rankings, but also promotes the repeatability
of experiments by ensuring a good statistical power, which
is particularly desirable for interactive evaluation work.

Methods
Models

In this work, we use GPT2-based (Radford et al. 2019) mod-
els with a variety of sizes and fine-tuning data to test which
evaluation techniques work best in different scenarios. For
each model, we fine-tune both the Language Modeling Head
and Multiple Choice Head of GPT2 in a Transfer-Transfo
fashion (Wolf et al. 2019). The Language Modeling Head
takes in the dialog history and learns to predict the follow up
response by minimizing the cross-entropy loss. The Multi-
ple Choice Head is fine-tuned to select the ground-truth re-
sponse amongst five candidates where four are randomly se-
lected negative candidates. During inference we use nucleus
sampling to generate the response. We leverage the Hug-
gingFace’s transformers library for all our models.> We use
these four models with detailed descriptions in Appendix:

e GPT2-XL/GPT2-M fine-tuned on Blended Skill Talk
(BST) Dataset (Smith et al. 2020);

e GPT2-XL fine-tuned on Topical Chat (TCS) Dataset
(Gopalakrishnan et al. 2019);

* GPT2-XL fine-tuned on Wizard-of-Wikipedia (WoW)
Dataset (Dinan et al. 2018).

*https://github.com/huggingface/transformers
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Evaluation Mechanisms

Interactive Conversational Setup To enable interactive
evaluation of human-bot conversations, we build an Interac-
tive Evaluation Service to compare responses from one or
more response generators in a multi-turn interaction with a
user. Through a user interface on Amazon Mechanic Turk
(AMT), workers can have live conversations with one or
more models depending on the setup.

Pairwise-Model Evaluation (PM) As shown in Figure 1,
at each turn, AMT workers are shown responses generated
from two models, and then are asked to follow one of the
settings below throughout the conversation:

1. Select One Best from All (SOBA): Workers always se-
lect a preferred response even when neither is good. The
conversation continues using their selected response.

. Select All That Apply with Random fallback (SATA-
Random): Workers select 0 to 2 responses that they think
are appropriate. When both or none are selected, the con-
versation continues with a randomly selected response.

. Select All That Apply with User Input fallback (SATA-
User): Same as SATA-Random, workers select O to 2 re-
sponses based on the appropriateness of responses. When
both are selected, the conversation still continues with a
randomly selected response. But when none is selected,
the worker needs to write a better response that will be
used to continue the conversation.

To facilitate comparisons across different PM per-turn set-
tings, GPT2XL-BST is set as the baseline model and paired
with the other models. However, we do not assume any
model rankings and solely use evaluation results to under-
stand the magnitude of model performance difference as
well as attributes that may influence their performance. Two
kinds of comparisons include:

» Size comparison: Comparing GPT2XL-BST versus
GPT2M-BST, which are both fine-tuned on BST data but
differ in model size.

* Fine-tuning dataset comparison: Comparing two model
pairs with the same size but fine-tuned on different
datasets: (1) GPT2XL-BST versus GPT2XL-TCS; (2)
GPT2XL-BST versus GPT2XL-WoW.

It is worth mentioning that although we only use the gen-
eral response appropriateness, these per-turn settings can be
easily extended to more evaluation dimensions of research
interest, such as persona, empathy, knowledgeable.

Multi-Model Evaluation (MM) As a generalized form of
PM evaluation, all three per-turn settings used in PM are also
adopted for Multi-Model evaluations. We perform a 4-way
comparison using all four GPT2-based models.

Single-Model Evaluation (SM) Workers need to evaluate
if the single provided response is appropriate. Either way,
the conversation continues with that response. Users are not
allowed to provide better system responses in this setup.
This can serve as an independent performance baseline.



Metrics
We use Win-Rate to measure the relative model performance

difference, which is the observed proportion of one model
being selected among all the samples in an evaluation, i.e.,

N
where X 4 is the number of times model A’s response is se-
lected among a total number of N turns. Hence, this metric

is straight-forward and directly shows how often model A’s
response is appropriate.

WR(A) ey

Sample Size for Different Evaluations

An adequate sample size is critical to draw any statistically
convincing conclusions with reasonable costs, which should
also apply to the work of interactive evaluation on open-
domain dialog systems. However, to our best knowledge,
there is little discussion in this field on how to effectively es-
timate sample size before running experiments. Rather than
continuing to collect more samples until a pre-assumed sta-
tistically significant result is reached, we propose a method-
ology to determine the required sample size before actually
performing the experiment, bringing in two-fold benefits of
ensuring a good statistical power and controlling evaluation
costs. Although the quality of a dialog cannot be adequately
captured by the sums of its turns, we assume that in a multi-
turn interaction, first-party users have a full and unbiased
knowledge of previous turns as context and thus can make
a sensible judgement of good responses in the next turn.
Therefore in this paper, following prior per-turn evaluation
work (Adiwardana et al. 2020; Smith et al. 2022), each turn
is considered as an individual and independent sample based
on a partial dialog. Potential cascading effects between two
consecutive turns and anchoring effects among multiple re-
sponses in one turn are later assessed in the results to exam-
ine sample independence on a per-turn level.

In this work, all sample sizes across different evaluations
are estimated at a 95% confidence level with a 80% power
(i.e., the probability of correctly rejecting the null hypothe-
sis that two models perform equally well is 80% in the ex-
periment). The motivation behind this is to make sure that
all interactive evaluation setups are statistically comparable.
The effect size is set to 0.1 for PM and MM evaluations,
which we consider is the minimum meaningful difference
in win-rates for any model pair in the experiments. In other
words, we estimate the minimum number of turns required,
for a win-rate difference of 0.1 between any model pairs to
be statistically significant for 80% of the time if that model
pair is truly different. Table 1 shows the estimated sample
size for different settings. We only describe which tests are
used below and leave more details to Appendix.

PM sample size Two-sided binomial test is used for the
SOBA setting (Joseph L. Fleiss 2003; Friedman et al. 2015),
and McNemar’s test is used for the matched-pairs in SATA
settings. We choose those tests mainly because of the anal-
ogy between human evaluations and certain clinical setups
for which the tests are designed, e.g., in SATA setups, when
a user evaluates two or more response candidates in one turn,

13267

Mechanism Setting # Sample Size

Pairwise SOBA 196

SATA 667
Multiple SOBA 430
(4-model) SATA 445
Single SATA 126

Table 1: Estimations of the required number of turns for dif-
ferent setups when the minimum win-rate difference is 10%
at a 95% confidence level (two-tailed) with a 80% power.
Each sample is equivalent to one turn.

Mechanism #Dial. # Turns Avg. # Turns
Pairwise 668 6,357 9.5
Multiple 260 2,522 9.7
Single 109 1,164 10.7
Total 1,037 10,043 9.7

Table 2: Overall dialog statistics after data cleaning.

the evaluations performed by the same user are not indepen-
dent but actually correlated, suggesting that we need to treat
this turn as a paired sample and use McNemar’s test rather
than two-sample t-test (McNemar 1947; Agresti 2007).

MM sample size Pearson’s chi-squared test is used for the
SOBA setting, and Cochran’s Q test is used for the SATA
settings to detect any pairwise differences in a multiple com-
parison (Cochran 1950; Joseph L. Fleiss 2003). The motiva-
tion is that MM-SOBA is a multinomial distribution where
we view each model as a category and expect to see equal
counts if all models have equal performance, so Pearson’s
chi-square test can be used in this case. Also, MM-SOBA
is the only setting that requires a small pilot (e.g., 150-200
turns for four models) as prototype data to help estimate with
enough power, because Pearson’s chi-squared test is non-
parametric and thus the distribution cannot be approximated
without prior information. On the other hand, MM-SATA is
an extension of PM-SATA and tests for multiple matched-
pairs, so Cochran’s Q test is more appropriate.

SM sample size Similar to PM, two-sided binomial test
is used for SATA with a single response setting. The only
difference is that an empirical win-rate of 0.8 rather than
0.5 is used as the null hypothesis. That is, we expect these
models to perform well for at least 80% of the time.

Results
Data Cleaning

Several qualification checks are used for AMT workers in-
cluding locations, at least 500 approved tasks, and an ap-
proval rate above 95%. For the same model pair/group, each
worker is restricted to one conversation per setting. In each
conversation, the worker needs to chat with the system for
at least 10 turns to generate more diverse and in-depth in-
teractions. In total, 640 paid workers have worked on our
tasks with an average of 2.3 completed conversations per
worker and a maximum of 18 conversations, ensuring diver-
sity in the worker group, and 23 of them are rejected by ini-



tial worker-level quality screening. Moreover, all three per-
turn evaluations are always launched simultaneously to re-
duce measurement errors caused by annotation quality shift
over time. Although inter-annotator agreement doesn’t ap-
ply to our interactive setups, we ask another small group
of expert annotators to perform third-party annotation on a
random sample of 60 conversations collected in Pairwise-
Model Select-All-That-Apply (PM-SATA) setups, and find
that the agreement between such third-party post evaluation
and the conversation participants’ own evaluation is moder-
ate between 0.44-0.51. Details are included in Appendix.

We apply both dialog-level and turn-level filtering to all
collected conversations. Those dialogs where workers have
a fixed selection pattern in all turns (e.g., always selecting
the first response) except in Single-Model evaluations, or
where the average length of their utterances is less than 2 to-
kens, are filtered out entirely. All first turns are also removed
from the results, as they usually consist of user greetings
like “hi/hello” with limited response variation. After filter-
ing 26% of dialogs and 32% of turns (including all first turns
which contribute to about 10%), we still have 1,037 dialogs
and 10,043 turns in total. Table 2 shows the dialog statistics
for each setting. The unit cost for one dialog depends on the
average annotation time, ranging from $0.6 to $1 per dialog
as detailed in Appendix.

Pairwise-Model Evaluations

As shown in Table 3, we find that GPT2XL-BST performs
significantly better than GPT2XL-TCS and GPT2M-BST
in all three settings (i.e., SOBA, SATA-Random, SATA-
User), with a noticeable win-rate advantage of 12%-24%
and 12%-22% respectively, while performing more similarly
to GPT2XL-WoW, with a smaller win-rate gap ranging from
6% to 24%. Here, given the observed results, we mainly fo-
cus on comparing the sensitivity and consistency of different
per-turn settings, and leave more discussions on understand-
ing model rankings as well as sample independence across
all PM, MM and SM evaluations to the end of this section.
A. Comparing sensitivity between SOBA and SATA
For the same model pair, a setting with high sensitivity
can test the existence of performance difference with fewer
samples. We find that SOBA only requires 30% of the sam-
ple size needed for SATA, but still achieves significant re-
sults for GPT2XL-BST versus GPT2XL-TCS and GPT2M-
BST. Win-rate differences between those two model pairs
are also larger in SOBA than SATA. However, one possible
drawback is that SOBA can introduce more false positives
when two model responses are equally good or bad, as a
user always needs to choose one to continue the conversa-
tion. This can lead to deviation or even exaggeration from
true performance difference between a pair of models, es-
pecially when the pair of interest performs more similarly
(e.g., GPT2XL-BST versus GPT2XL-WoW).
B. Comparing consistency between SOBA and SATA
Comparing all four model pairs, we find moderate to
high consistency between SOBA and SATA settings. Specif-
ically, each setting is capable of capturing a significant win-
rate difference (at least 10%) between GPT2XL-BST ver-
sus GPT2XL-TCS and GPT2M-BST, suggesting high sta-
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tistical confidence through cross-validation. For less distin-
guished pairs (e.g., GPT2XL-BST versus GPT2XL-WoW),
the consistency decreases since not all settings show the
same test results. However, such inconsistency doesn’t nec-
essarily mean that the model pair is equivalent. This may
suggest that the model pair should be tested using a smaller
win-rate difference (e.g., using 5% instead of 10%), or a
higher statistical power should be used (e.g., using 90%
power instead of 80%). The sample size then needs to be
re-estimated based on this new combination of win-rate dif-
ference and statistical power as detailed in Appendix.

C. Additional benefits of ties

Our SATA settings make ties possible on a turn-level eval-
uation. One obvious benefit is that ties directly measure how
frequently both model responses meet or fail to meet user’s
expectations. Apart from win-rates, more tie wins or fewer
tie losses can also suggest a similarly good pair of models,
e.g., GPT2XL-BST versus GPT2XL-WoW. Another bene-
fit is that tie losses help capture failures on the system side,
which can inform future model development. Moreover, the
SATA-User setting allows users to steer the conversation to-
wards a desired direction, even though such cases do not
happen very often. More details are included in a separate
section directly comparing SATA-Random and SATA-User.

Multi-Model Evaluations

As presented in Tables 4 and 5, we have three key findings.
A. Win-rate decreases with more models added
Compared with PM evaluations where win-rates are

roughly centered at 50%, win-rates for each individual

model across all three MM settings now shrink to about

19%-37% roughly centered at 25%. This suggests that work-

ers are more selective when presented with more responses

and hence are less likely to select all four responses. One
possible explanation is that learning effects not only exist
in multi-turn interactions (Xu et al. 2021) but also exists
in multi-response selection, making workers more adept to
form a fairer expectation of response quality.

B. Consistency between MM-SOBA and MM-SATA

Despite smaller win-rate values, we find that all three set-
tings show highly consistent results that significantly reject
the null hypothesis where all four models have the same win-
rates. This suggests that at least one pair of models have sta-
tistically different win-rates. While MM-SOBA only tests
for overall equality of all model win-rates, a further exami-
nation can be performed on MM-SATA’s data using McNe-
mar’s test to efficiently identify which pair(s) are different.

C. Additional benefits of MM-SATA

For two MM-SATA settings, McNemar’s test is used to
detect any significant win-rate difference for each model pair

(see Table 5). In both settings, two out of six pairs of mod-

els are tested different, i.e., GPT2XL-BST’s win-rate is sig-

nificantly higher than GPT2XL-WoW’s and GPT2M-BST’s
win-rates. The results not only are consistent with our find-
ings from PM evaluations, but also bring in additional ben-
efits by comparing three more pairs that we have not ex-
amined in PM, e.g., GPT2XL-TCS versus GPT2XL-WoW.

However, despite significance, we also observe shrinking

win-rate gaps with more models added.



Win-rate

Model Setting # Dialogs  # Turns Baseline Model Tie-win Tie-loss
GPT2XL-TCS  SOBA 20 199 62 % 38% - -
SATA-Random 70 667 58% * 48% 10% 5%
SATA-User 66 667 58 %* 46% 7% 3%
GPT2XL-WoW  SOBA 21 198 62%* 38% - -
SATA-Random 70 671 57% 51% 14% 6%
SATA-User 71 671 54% 48% 6% 4%
GPT2M-BST SOBA 21 197 61%* 39% - -
SATA-Random 72 671 57 %* 45% 8% 6%
SATA-User 71 668 57 % * 45% 11% 9%

Table 3: Pairwise-model evaluation: Win-rates of GPT2XL-BST (baseline) vs. other models, for all per-turn evaluation settings.
Win-rates marked with asterisk (*) are statistically significant on a 95% level of confidence with a 80% statistical power.

Win-rate
Setting # Dialogs # Turns GPT2XL-BST GPT2XL-TCS GPT2XL-WoW  GPT2M-BST
SOBA 46 436 28% 19% 27% 25%
SATA-Random 94 896 37% 29% 33% 30%
SATA-User 91 900 32% 25% 29% 27%

Table 4: Multi-model evaluation: 4-way comparison with all GPT2-based models. All three 4-way SOBA results are statistically
significant using Pearson’s Chi-squared test (one-tailed) or Cochran’s Q test (one-tailed). These results suggest that there is at
least one pair of model that is significantly different in terms of win-rates.

Single-Model Evaluations

Results for Single-Model (SM) evaluations are presented in
Table 6. The model win-rate is between 85%-94% when
only one single response is provided, and users cannot enter
their own responses. 95% confidence intervals are also pre-
sented for comparison. Contradictory to our previous find-
ings, GPT2M-BST turns out to be the top performing model
with a noticeable advantage of 7%-11% over all other mod-
els. This is likely because of lack of appropriate dialog-level
filtering for SM evaluations. When a worker always selects
that single response provided in each turn, it is hard to sep-
arate the possibility of model actually performing well from
annotation noise. Therefore, due to limited sensitivity and
consistency, SM single-response evaluation fails to serve as
a good baseline for measuring absolute model performance
when no other models are compared together.

Discussion

In this work, we focus on comparing different per-turn eval-
uation settings for two or more models based on their sensi-
tivity and consistency. We find that PM and MM evaluations
generate very consistent results for model rankings with ad-
equate sensitivity, while SM evaluation fails to serve as a
baseline with the least sensitivity and consistency.

Explanability of model rankings We use four GPT2-
based models that differ in sizes and fine-tuning data to com-
pare different settings. With no assumptions on model rank-
ings, we focus on using the evaluation results given a min-
imum performance difference of interest to understand why
certain model pairs behave differently.

¢ Size comparison: GPT2XL-BST (with 1.5 billion param-
eters) performs better than GPT2M-BST (with 345 mil-
lion parameters) in both PM and MM evaluations. It is
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well known that larger pre-trained models generally have
better performance (Brown et al. 2020).

Fine-tuning dataset comparison: GPT2XL-BST per-
forms better than GPT2XL-TCS, while not behaving sig-
nificantly different from GPT2XL-WoW. GPT2XL-TCS
and GPT2XL-WoW are both fine-tuned on open-domain
knowledge-grounded conversations, but since WoW was
used in BST data collection and thus bears more similar-
ity to BST than TCS.

Comparing two SATA settings As shown in Tables 3, 4
and 5, we see that SATA-Random and SATA-User gener-
ate highly consistent and equally sensitive results for all PM
and MM evaluations. The sole difference between SATA-
Random and SATA-User is their fallback strategy. Specifi-
cally, when all provided system responses fail to meet user’s
expectation, SATA-User asks user to write a better response
for the system side to steer the conversation into a desired
direction, while SATA-Random still continues the conversa-
tion by randomly selecting one response out of the list that
are actually considered as negative cases by users. We man-
ually checked a sample of 33 user-written responses, and
found that about 73% of those responses were at least as
good as system responses and about 55% of responses were
better than system responses. However, with the SATA-User
setting, we also notice that different from organic users re-
cruited through advertising (Mehri et al. 2022), paid workers
sometimes can produce false positives when trying to avoid
spending more time writing a response.

Examining turn-level sample independence When turn-
level samples are collected in a multi-turn interaction, it is
necessary to examine potential cascading effects where one
selected model may gain advantage over other unselected
model(s) in the next turn. For PM and MM evaluations, we



SATA-Random SATA-User
Comparison lpi —pill  Qx® p-value | [[p; —p;]] Q/x® p-value
All 4-Way - 14.77 0.002 - 9.52 0.023
GPT2XL-BST vs. GPT2XL-TCS 0.079* 11.69 0.000 0.069* 8.42 0.003
GPT2XL-BST vs. GPT2XL-WoW 0.041 3.06 0.080 0.029 1.42 0.233
GPT2XL-BST vs. GPT2M-BST 0.072* 9.45 0.002 0.050* 4.37 0.036
GPT2XL-TCS vs. GPT2XL-WoW 0.037 2.86 0.090 0.040 3.07 0.079
GPT2XL-TCS vs. GPT2M-BST 0.006 0.09 0.763 0.019 0.69 0.402
GPT2XL-WoW vs. GPT2M-BST 0.031 1.80 0.178 0.021 0.81 0.366

Table 5: Multi-Model pairwise comparison: a comprehensive examination of all pairs of models using McNemar’s test. ||p; —p;, ||
is the absolute difference between the pair of model win-rates. There are 2 pairs marked with asterisk (*) that are statistically
significant with a p-value < 0.05 in both SATA-Random and SATA-User.

Model # Dial./# Turns  Win-rate 95% CI
GPT2XL-BST 12/128 87% [0.81, 0.93]
GPT2XL-TCS 11/126 84% [0.78,0.91]
GPT2XL-WoW 12/126 83% [0.76, 0.89]
GPT2M-BST 13/127 94% [0.91, 0.98]

Table 6: Single-model single-response evaluation: Win-rates
of all models. workers can select the provided response or
none if they think the response is not appropriate.

calculate the probability of each model getting re-selected
in two consecutive turns. Compared with Table 3 and 4, we
do not see any consistently enlarged win-rate gaps among
different models in either PM or MM evaluations. This may
suggest that workers do not favor certain types of model re-
sponses in two consecutive turns, or that models are capable
of adapting to the previous turn so that earlier advantages
do not accumulate. Either way, since we do not observe sig-
nificant cascading effects, we conclude that these turn-level
samples can be empirically considered as independent sam-
ples in a multi-turn dialog. One interesting finding is that
although not often seen, ties do show some cascading ef-
fects, suggesting that ties are likely clustered within dialogs
created by a subset of workers.

Examining anchoring effects We also examine the exis-
tence of anchoring effects in PM and MM evaluations where
workers may be systematically biased towards the first re-
sponse they see in a list of candidates even though no ab-
solute ratings are required. Although candidates are shown
in a random order, We still find that for all turns collected
in PM evaluations, the first shown response has on average
a selected rate of 55%, higher than the other response with
an average selected rate of 49%. For MM evaluations where
four response candidates are shown together, the first two
responses also have a higher average selected rate of 34%-
35%, while the last two responses only have an average rate
of 28%. These suggest that anchoring effects can contribute
to about 6% of win-rate difference in both PM and MM eval-
uations, and hence a larger minimum win-rate gap of interest
should be used to test model rankings with more confidence.

Repeatability of experiments As a key contribution of
this work, we provide a methodology to promote repeata-
bility of human evaluations by ensuring a good statistical
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power with sample size estimation. On a model-pair level,
we test their performance difference in three settings (i.e.,
SOBA, SATA-Random, SATA-User) of the same statistical
power (i.e., 80%), which can be viewed as repetitive mea-
sures of the same model pair/group. Those highly consistent
results show satisfying repeatability. On a setting level, we
also test each setting more rigorously by repeating the ex-
act same experiment three times for GPT2XL-BST versus
GPT2XL-TCS as one of the distinguished model pairs that
we have observed. All three repetitions generate significant
results at a 95% confidence level, suggesting high repeata-
bility for all three per-turn settings.

Evaluation costs When choosing the best evaluation
setup, there is a trade-off between efficacy and costs. In our
example of four models, we need to perform 3-6 PM evalua-
tions to exhaust all possible pairings, while only one MM
evaluation is required to test all pairs altogether if using
SATA. Translated to turn-level sample size, the number of
turns required in MM-SATA will be between the best and
worst scenarios of PM-SOBA but smaller than PM-SATA.

Conclusion and Future Work

In this work, we extend the interactive evaluation settings
to multiple models with a focus on per-turn evaluation tech-
niques, and show that two novel Select-All-That-Apply set-
tings work well with additional benefits from allowing ties
and user-written responses. Besides, we propose a method-
ology to estimate required sample size given a minimum per-
formance gap, which promotes repeatability, helps control
costs, and does not require prior knowledge on rankings and
hence will work for any pair of models. A thorough anal-
ysis comparing Single-Model, Pairwise-Model, and Multi-
Model evaluations is also conducted based on sensitivity and
consistency of different settings to help choose the best eval-
uation setup for more research scenarios.

While our work has taken a step forward towards cred-
ible human evaluations for open-domain dialog systems, it
is worth noting that per-turn evaluations alone cannot ade-
quately evaluate the whole conversation, where per-dialog or
self-play evaluations or a mix of different techniques should
be further investigated in future work.
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