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Abstract

Recently, word enhancement has become very popular for
Chinese Named Entity Recognition (NER), reducing segmen-
tation errors and increasing the semantic and boundary infor-
mation of Chinese words. However, these methods tend to
ignore the semantic relationship before and after the sentence
after integrating lexical information. Therefore, the regulari-
ty of word length information has not been fully explored in
various word-character fusion methods. In this work, we pro-
pose a Lexicon-Attention and Data-Augmentation (LADA)
method for Chinese NER. We discuss the challenges of using
existing methods in incorporating word information for NER
and show how our proposed methods could be leveraged to
overcome those challenges. LADA is based on a Transformer
Encoder that utilizes lexicon to construct a directed graph and
fuses word information through updating the optimal edge
of the graph. Specially, we introduce the advanced data aug-
mentation method to obtain the optimal representation for the
NER task. Experimental results show that the augmentation
done using LADA can considerably boost the performance
of our NER system and achieve significantly better results
than previous state-of-the-art methods and variant models in
the literature on four publicly available NER datasets, namely
Resume, MSRA, Weibo, and OntoNotes v4. We also observe
better generalization and application to a real-world setting
from LADA on multi-source complex entities.

1 Introduction
Named Entity Recognition (NER) plays an essential role in
structuring of unstructured text. It is a sequence tagging task
that extracts named entities from unstructured text. The main
task of NER is to automatically identify named entities such
as Person (PER), Location (LOC), Organization (ORG), etc.
in given text (Zhao et al. 2020). NER is a basic task of many
NLP systems including relation extraction (Takanobu et al.
2019; Wei et al. 2020; Cheng et al. 2021), entity linking (Le
and Titov 2018; Hou et al. 2020; Gu et al. 2021), knowledge
graph (Ji et al. 2020; Chawla et al. 2021), etc.

Due to the additional word segmentation process of Chi-
nese (Zhao et al. 2019), Chinese NER is more difficult com-
pared to English NER. In particular, Chinese NER has some
ambiguity in many cases, and the boundaries of new words
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Figure 1: (a) An example to show entity nesting for Chinese
NER. (b) An example to show the complex combination and
entity indefinite length for Chinese NER.

are vaguely grasped. Besides, the task also has many oth-
er challenges, such as complex combinations, entity nesting,
and indefinite length. As shown in Figure 1(a), there is a sce-
nario where a shorter entity is completely contained within
another longer entity. For example, “(Mail)” and “
(Email Phishing Attack)” are two entities: mail
and attack event. In Figure 1(b), “ 360(360 Secu-
rity Brain)” is easily misidentified as “ (Brain)”, and
“2020(2020 Global Ad-
vanced Persistent Threat Research Report)” is a longer entity
that is easily misidentified as “(Research Report)”.

Traditionally, the task of Chinese NER is decoupled into
a pipeline of two separated subtasks, namely word segmen-
tation and word sequence labeling (Yang et al. 2016; Zhao
et al. 2021). The major disadvantage of this method is er-
ror propagation: word segmentation errors negatively impact
the identification of named entities (Peng and Dredze 2015;
Sun and He 2017). With the development of deep learning,
neural networks have been introduced to the NER task and
achieved impressive results (Huang et al. 2015; Lample et al.
2016; Habibi et al. 2017; Gregoric et al. 2018; Lin and Lu
2018). To avoid the segmentation errors, most of neural Chi-
nese NER models are character-based. Although character-
based model has achieved good performance than word-
based model, it does not exploit word information in char-
acter sequence. To explicitly inform each character about its
related word information, previous works (Zhang and Yang
2018; Liu et al. 2019; Yan et al. 2019) have proposed to in-
tegrate word information into character sequences via word-
character lattice structure.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

13236



As the number of matched words for each character is
dynamically changed, such lattice structure is deprived of
batch training, which makes the model inefficient and diffi-
cult to deploy. Then, the soft-lexicon feature strategy (Peng
et al. 2020) is used to overcome the problems of low rea-
soning efficiency and poor portability of sequence struc-
ture. However, this method mainly relies on the weighting of
word frequency to embed the word information. The prob-
lem is that it ignores the length information of each word
and does not fully explore the regularity of the word length
in the semantic information before and after the sentence.

To address the above issue, we propose a novel Lexicon-
Attention and Data-Augmentation (LADA) method to inte-
grate word information into character-based model for Chi-
nese NER. The key insight comes from multimodal learning
in computer vision (Gao et al. 2019; Yu et al. 2019), where
the character and word sequences are viewed as two differ-
ent modalitie. In order to utilize word information accurate-
ly according to sentence semantics, we first design lexicon-
attention mechanism to capture the local composition and
potential word boundaries by using the lexicon knowledge.
We construct a directed graph to search and update edges to
obtain optimal lexical information. Then, we further choose
to concatenate the representations of the four word sets to
represent them as a whole and add it to the character rep-
resentation. Since entity-labeled data is much smaller than
non-entity-labeled data, the available valid data is relatively
small. Therefore, we introduce an Adaptive Rank Generative
Adversarial Network (AR-GAN) for data augmentation to
alleviate the problem of entity label data imbalance.

Finally, we conducted extensive experiments on four
public datasets and unique Cyber Threat Intelligence (C-
TI) datasets to evaluate the proposed model. We find that
our framework is quite effective for various NER, which
achieves state-of-the-art (SoTA) performances for widely-
used benchmark datasets. In particular, we obtain 98.70%,
98.50%, 70.18%, 85.91%, and 95.23% F1 on Resume, M-
SRA, Weibo, OntoNotes, and CTI datasets respectively.

In summary, our contributions of this paper are summa-
rized as follows:

• We propose a Lexicon-Attention and Data-Augmentation
(LADA) framework for Chinese NER, which adds vo-
cabulary information to the character representation lay-
er and effectively integrates word-character information.
• We propose a lexicon attention mechanism that con-

structs a directed graph with dictionary words. In this
work, we make full use of the length information of each
word in the dictionary, and effectively realize lexicon en-
hancement through character graph.
• We introduce an AR-GAN method for data augmentation

to alleviate the problem of entity-labeled data imbalance
and improve the performance of NER.
• The experimental results show that our method can con-

siderably boost the performance of our NER system, and
achieve significantly better results than previous SoTA
methods. In particular, we constructed the CTI datasets,
and also observed that LADA has better generalization
and application on multi-source complex entities.

2 Related Work
Based on the level of granularity, most of the models can be
divided into three categories: word-based models, character-
based models, and hybrid models.

Word-Based Models Collobert and Weston (Collobert
and Weston 2008) proposed one of the first word-based
models for NER, with feature constructed from orthograph-
ic features, dictionaries and lexicons (Yadav and Bethard
2018). Later, Collobert et al. (Collobert et al. 2011) re-
placed the hand-crafted features with word embeddings,
which improved the automation of NER tasks. The landmark
BiLSTM-CRF model (Huang et al. 2015) was proposed and
achieved good performance. Ma et al. (Ma and Hovy 2016;
Chiu and Nichols 2016) used CNN to capture spelling char-
acteristics, and Lample et al. (Lample et al. 2016) used LST-
M instead. The above models all have segmentation errors
when applied to Chinese NER, because Chinese word seg-
mentation is compulsory for those models.

Character-Based Models Peng and Dredze (Peng and
Dredze 2015) first proposed to add segmentation features
for better recognition of entity boundary. Later, Dong et
al. (Dong et al. 2016) integrated radical-level features into
character-based model. To eliminate the ambiguity of char-
acter, Sun and He (Sun and He 2017) took the position
of character into account. Although the above models have
achieved good results, they all ignore word information in
character sequence.

Hybrid Models Some efforts have been made to integrate
word boundary information into character-based models.
Motivated by the success of multi-task learning for Natural
Language Processing, Peng and Dredze (Peng and Dredze
2016) first proposed to jointly train Chinese NER with Chi-
nese word segmentation task. Cao et al. (Cao et al. 2018)
applied adversarial transfer learning framework to integrate
the task-shared word boundary information into the Chinese
NER task. Zhang and Yang (Zhang and Yang 2018) pro-
posed another way to obtain word boundary information,
which uses lattice LSTM to integrate word information into
character-based model. Gui et al. (Gui et al. 2019a) proposed
a CNN-based NER model (LR-CNN) that encoded matched
words at different window sizes. In addition, Gui et al. (Gui
et al. 2019b) converted lattice into graph and used graph neu-
ral networks (GNNs) for encoding. However, NER is very
sensitive to sentence structure, and these methods still need
to use LSTM as the backbone encoder, which makes the
model complex. Later, Yan et al. (Yan et al. 2019) adapt-
ed Transformer Encoder to model the character-level fea-
tures and word-level features by incorporating the direction-
aware, distance-aware and un-scaled attention. Zhu et al.
(Zhu et al. 2019) proposed a Convolutional Attention Net-
work (CAN) to improve the performance of Chinese NER,
which makes the model more efficient and robust. Xue et
al. (Xue et al. 2020) proposed Porous Lattice Transformer
Encoder (PLTE), which models all characters and matching
lexical words in parallel with batch processing.

Recently, Li et al. (Li et al. 2020b) devised a FLAT model
for Chinese NER, which converts the lattice structure into a
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Figure 2: Overview of our overall architecture. Our network mainly consists of five components, i.e., word embeddings, char
embeddings, data augmentation, sequence encoding layer, and decoding layer.

flat structure consisting of spans to overcome the shortage
of lattice-based model. ZEN 2.0 (Song et al. 2021; Diao et
al. 2020) adopt a large volume of data and advanced train-
ing technology to integrate n-gram representations. Lattice-
BERT (Lai et al. 2021) adopt the multi-granularity structures
in lattices to aggregate the coarse-grained word information.
Wu et al. (Wu et al. 2021) proposed a novel multi-metadata
embedding based cross-transformer (MECT) to improve the
performance of Chinese NER by fusing the structural infor-
mation of Chinese characters. In the latest research, RICON-
NER (Gu et al. 2022) adopt a simple but effective method to
investigate the regularity of entity spans in Chinese NER,
and achieved good performance.

3 Methodology
In this section, we introduce the proposed model for the task
of NER (LADA-Trans-NER) in details, and the architecture
of our proposed model is shown in Figure 2. We first intro-
duce the character representation layer and incorporate lex-
icon information. Next, we utilize AR-GAN for data aug-
mentation to alleviate the problem of entity label data im-
balance and encode through the sequence Transformer En-
coder. Finally, we apply a Conditional Random Field (CRF)
(Lafferty, McCallum, and Pereira 2001) layer to perform the
decoding for Chinese NER.

3.1 Character Representation Layer
Character embeddings are used to map discrete characters
into continuous input vectors. Given a Chinese sentence as
s = {c1, c2, . . . , cn}, where ci denotes the i-th character.
Each character ci is represented using a dense vector (em-
bedding):

xci = ec(ci), xci ∈ Rd, (1)

where ec denotes the character embedding lookup table1.
The character feature representations can be formulated as:

X = [xc1, x
c
2, . . . , x

c
n], X ∈ Rn×d. (2)

3.2 Incorporating Lexicon Information
The problem with the purely soft-lexicon NER model (Peng
et al. 2020) is that it fails to exploit the regularity of the word
length. To address this issue, we proposed a lexical attention
mechanism, as described below, to capture the local com-
position and potential word boundaries by using the lexicon
knowledge. In particular, we first introduce the concept of
Lexicon-based Character Graphs (LCG) for NER.

Lexicon Attention The whole sentence is converted into
a directed graph g = (ν, ε), where each character ci ∈ ν
is a graph node, and the connection between the first and
last characters in a lexicon word can be regarded as an edge
ε, as shown in Figure 3. The potential words in the lexi-
con that match a character subsequence can be formulated
as wb,e = {cb, cb+1, . . . , ce−1, ce}, where the index of the
first and last letters are b and e, respectively. Once a charac-
ter subsequence matches a potential word wb,e, we construct
one edge eb,e ∈ ε, pointing from the beginning character cb
to the ending character ce.

For edge update, we first calculate the in-degree d+(ci)
and out-degree d−(ci) of each node, which can be formulat-
ed as:

d+(ci) =
i∑

j=1

I{cj→ci} (1 ≤ j ≤ i), (3)

d−(ci) =
n∑
k=i

I{ci→ck} (i ≤ k ≤ n). (4)

1The lookup table is a matrix of embedded vectors for each
character in the vocabulary.
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Figure 3: Illustration of lexicon-based character graphs con-
struction. The sentences are composed of characters, which
connect to form the vertices. The words in the lexicon form
the edges of the graph.

Then the optimal forward path pλ and the optimal successor
path pγ function can be formulated as:

ebest ← pλ = arg max
ci∈Rs

(ej,i) ∃d+(ci), (5)

ebest ← pγ = arg max
ci∈Rs

(ei,k) ∃d−(ci), (6)

where ebest is the optimal path.
The entire training process is described at Algorithm 1

(see Appendix A for details).

Categorizing Matched Words In this work, each charac-
ter c of a sentence s corresponds to four word sets marked
by the four segmentation labels “BMES”. For each character
ci in the input sequence, the four set is constructed by:

B(ci) = ci,k ∃ci,k ∈ L : ebest (i < k ≤ n),

M(ci) = cj,k ∃cj,k ∈ L : ebest (1 ≤ j < i < k ≤ n),

E(ci) = cj,i ∃cj,i ∈ L : ebest (1 ≤ j < i),

S(ci) = ci ∃ci ∈ L : ebest,

(7)

where L : ebest denotes the lexicon used in the optimal path.
The word set B(ci) consists of all lexicon matched words

on s that begin with ci. Similarly, M(ci) consists of all lex-
icon matched words in the middle of which ci occurs, E(ci)
consists of all lexicon matched words that end with ci, and
S(ci) is the single-character word comprised of ci. In addi-
tion, if a word set is empty, a special word “NONE” is added
to the empty word set.

Word-Character Fusion The key to word-character fu-
sion is to condense the four word sets of each character into
a fixed-dimensional vector. In order to retain information as
much as possible, we choose to concatenate the representa-
tions of the four word sets to represent them as a whole and
add it to the character representation:

ec(B,M,E, S) = [vc(B)⊕ vc(M)⊕ vc(E)⊕ vc(S)], (8)
xc ← [xc; ec(B,M,E, S)], (9)

where vc denotes the function that maps a single word set to
a dense vector.

3.3 Data Augmentation
Since entity-labeled data is much smaller than non-entity-
labeled data, the available valid data is relatively small.
Therefore, we introduce an AR-GAN method to alleviate
the problem of entity-labeled data imbalance and improve
the performance of NER.

As shown in Figure 4, the inputs of the ranker Rφ consist
of one synthetic sequence and multiple raw word-character
fusion sentences. Given the reference sentence U, we rank
the input sentences according to the relative scores. It is il-
lustrated that the generator tries to fool the ranker and let the
synthetic sentence to be ranked at the top with respect to the
reference sentence.
Gθ’s learning goal is to generate a synthetic sequence that

gets a higher score than real data. However, the goal of Rφ
is to rank the synthetic sentence lower than word-character
fusion sentences. Thus, this can be treated as Gθ and Rφ
play a minimax game with the objective function ψ:

min
θ

max
φ

ψ(Gθ, Rφ) = E
s∼Υh

[logRφ(s|U, C−)]

+ E
s∼Gθ

[log(1−Rφ(s|U, C+))],
(10)

where θ and φ are the variable parameters in G and S,
respectively. E is the expectation operator. s ∼ Υh and
s ∼ Gθ denote that s is from word-character fusion sen-
tences and synthesized sentences, respectively. U is the ref-
erence set used for estimating relative ranks.C+ andC− are
the comparison set with regard to different input sentences
s.

To avoid trivializing description, we put the details of rank
score and policy gradient in Appendix B.

Figure 4: The illustration of AR-GAN. S denotes the raw da-
ta sampled from the word-character aggregation sentences.
G is the sentence generated by the generator Gθ, U is fused
by word-character.

3.4 Adaptive Transformer Encoding
The canonical self-attention in (Vaswani et al. 2017) is de-
fined based on the tuple inputs, i.e, query, key and value,
which performs the scaled dot-product as A(Q,K,V) =

softmax(QKT /
√
dk)V, where Q ∈ Rlq×d, K ∈ Rlk×d,

V ∈ Rlv×d and d is the input dimension.
Self-lattice attention with relative position encoding is

designed to model character-level self-correlations, which
takes the character features after data augmentation F and
relative position encoding P as inputs. This module is a vari-
ant of the multi-head attention mechanism, which can be for-
mulated as:
headi = softmax((QWQ

i )K[i]T + P [i])(VWV
i ), (11)
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O = [head1; ...;headz]W
o, (12)

where WQ
i ∈ Rd×d/z , WV

i ∈ Rd×d/z , W o
i ∈ Rd×d are

trainable parameters, K[i] ∈ Rn×d/z is the i-th partition of
K, and P [i] ∈ Rn×n contains relative position information
of the i-th partition.

3.5 Decoding and Training
Considering the dependency between successive labels, we
use a CRF layer to make sequence labeling. Given the se-
quence of final node states cT1 , c

T
2 , . . . , c

T
n , the probability of

a label sequence ŷ = ŷ1, ŷ2, . . . , ŷn can be formulated as:

p(ŷ|s) =

exp(
n∑
i=1

Φ(ŷi−1, ŷi, c
T
i ))∑

y′∈Y(s)

exp(
n∑
i=1

Φ(ŷ′ i−1, ŷ
′
i, c

T
i ))

, (13)

where Φ(yi−1, yi, c
T
i ) = W(yi−1,yi)c

T
i + b(yi−1,yi) is the

scoring function, and W(yi−1,yi)c
T
i and b(yi−1,yi) are the

weight vector and bias, Y(s) is the set of all arbitrary label
sequences.

Given N manually labeled data (si, yi)|Ni=1, we minimize
the sentence-level log-likelihood loss to train the model:

Lner = −
n∑
i=1

log(p(yi|si)). (14)

4 Experiments
In this section, we evaluate our method on manually anno-
tated and public datasets, and show that our system outper-
forms baselines. Precision (Prec.), recall and F1 are used as
evaluation metrics for this work.

4.1 Datasets
CTI Datasets In order to solve the issue of scarcity
and imbalance of entity categories in existing datasets, we
have collected some CTI datasets for comprehensive exper-
iments. In particular, we have used crawler tools to collect
data from open network threat intelligence such as the we-
b, security community blogs, security reports, etc. The label
of each sentence is manually marked and contains 17 entity
types (see Appendix C.1 for details).

Most of public datasets (i.e., OntoNotes, MSRA, Re-
sume, Weibo, etc.) only focus on entity class: Person, Loca-
tion, Organization and Misc. However, the entity categories
covered by these existing NER datasets are not comprehen-
sive enough, so we expand some network entity categories.
As shown in Table 1, we split the dataset into three parts:
training set, testing set, and development set, which contain
2,417, 1,050, and 3,671 entities, respectively.

Public Datasets We conducted experiments on four main-
stream Chinese NER benchmarking datasets.
• Resume (Zhang and Yang 2018): It is composed of re-

sumes collected from Sina Finance2 and is annotated
with 8 types of named entities, i.e., CONT, EDU, LOC,
PER, ORG, PRO, RACE, and TITLE.
2https://finance.sina.com.cn/stock/

Datasets Types Train Test Dev

Resume Sentences 3.82k 0.48k 0.46k
Entities 1.34k 0.15k 0.16k

MSRA Sentences 46.36k 4.37k -
Entities 74.80k 6.20k- -

Weibo Sentences 1.35k 0.27k 0.27k
Entities 1.89k 0.42k 0.39k

OntoNotes Sentences 15.72k 4.31k 4.30k
Entities 4.32k 7.70k 6.95k

CTI Sentences 0.22k 0.13k 1.18k
Entities 2.42k 1.05k 3.67k

Table 1: Statistics of five benchmarking datasets.

• MSRA (Levow 2006): It is a manually annotated multi-
lingual corpus in the news domain and contains 3 types
of entities, i.e., ORG, PER, and LOC.
• Weibo (Peng and Dredze 2015; He and Sun 2016): It

consists of annotated NER messages drawn from the so-
cial media Sina Weibo3 and the corpus contains 4 types
of entities, i.e., PER, ORG, LOC, and GPE.
• OntoNotes 4.0 (Weischedel et al. 2011): It is also a

dataset in the news domain and contains 4 types of en-
tities, i.e., PER, ORG, LOC, and GPE.

4.2 Baselines
In this work, the baselines mainly include two groups of
models: previous SoTA models and the variant models of
our model. The models are listed as follows:

Previous SoTA Methods To illustrate how well our mod-
el can handle NER tasks, we compare our proposed model
with the following existing SoTA models, including Lattice
LSTM (Zhang et al. 2018), LR-CNN (Gui et al. 2019a), L-
GN (Gui et al. 2019b), TE-NER (Yan et al. 2019), CAN-
NER (Zhu et al. 2019), PLTE-NER (Xue et al. 2020), Soft-
Lexicon-LSTM (Peng et al. 2020), FLAT (Li et al. 2020b),
ZEN 2.0 (Song et al. 2021), Lattice-BERT (Lai et al. 2021),
MECT-NER (Wu et al. 2021) and RICON-NER (Gu et al.
2022). Due to space limitation, the details of baseline set-
tings are given in Appendix C.2.

Variant Models To analyze the contribution of each com-
ponent in our model, we ablate the full model and demon-
strate the effectiveness of each component.

• SoftLexicon-Trans-NER: We conducted an ablation ex-
periment to verify the effectiveness of lexical attention,
using the SoftLexicon-Trans-NER model to compare the
LA-Trans-NER model.
• LA-Trans-NER: This model is a part of our model with-

out the data augmentation component. Obviously, we are
to verify the effectiveness of this component on model
improvement.

3https://www.weibo.com
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Models Resume MSRA Weibo OntoNotes
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Lattice LSTM1 94.81 94.11 94.46 73.88 92.79 93.18 52.71 53.92 53.92 74.89 71.56 73.88
LR-CNN2 95.37 94.84 95.11 94.50 92.93 93.71 65.06 50.00 56.54 76.40 72.60 74.45
LGN3 95.28 95.46 95.37 94.19 92.73 92.73 - - - 76.13 73.68 74.89
TE-NER4 - - 95.00 - - 92.74 - - 58.17 - - 74.43
CAN-NER5 95.05 94.82 94.94 93.53 92.42 92.97 - - - 75.05 72.29 73.64
PLTE-NER6 95.34 95.46 95.40 94.25 92.30 93.26 62.21 49.54 55.15 76.78 72.54 74.60
SoftLexicon (LSTM)7 95.53 95.64 95.59 93.56 93.44 93.50 56.99 61.41 61.24 77.31 73.85 75.54
FLAT8 95.86 - 94.93 96.09 - 94.35 68.55 - 63.42 81.82 - 75.70
ZEN 2.09 - - - - - 96.20 - - - - - 88.81
Lattice-BERT10 - - - - - 97.10 - - - - - -
MECT-NER11 96.40 95.39 95.89 94.55 94.09 94.32 61.91 62.51 63.30 77.57 76.27 76.92
RICON-NER12 - - - 95.94 96.33 96.14 - - - 81.95 84.78 83.33

SoftLexicon-Trans-NER 93.20 93.37 93.29 90.81 90.83 90.10 52.72 54.64 54.38 75.01 70.72 71.91
LA-Trans-NER 96.61 95.85 95.23 96.62 96.99 96.80 66.58 62.85 67.39 82.82 79.28 84.92
LADA-CNN-NER 90.28 93.50 91.86 91.12 92.58 91.85 60.89 54.49 54.10 75.29 74.10 75.85
LADA-LSTM-NER 97.10 96.37 97.12 97.25 96.58 98.89 66.80 63.81 68.10 83.15 85.90 85.36
LADA-Trans-NER (Ours) 98.89 97.78 98.70 98.90 97.21 98.50 68.89 65.90 70.18 84.19 86.56 85.91

Table 2: Main results (Prec., Recall, and F1) on Resume, MSRA, Weibo and OntoNotes datasets. Zhang et al. (2018)1, Gui
et al.(2019a)2, Gui et al. (2019b)3, Yan et al. (2019)4 , Zhu et al. (2019)5, Xue et al. (2020)6, Peng et al. (2020)7, Li et al.
(2020b)8, Song et al. (2021)9, Lai et al. (2021)10, Wu et al. (2021)11, Gu et al. (2022)12.

• LADA-CNN-NER: This model is a variant of our mod-
el, but we utilize CNN in the sequence encoding layer.
• LADA-LSTM-NER: This model is another variant of

our model, but we utilize LSTM instead of Transformer
in the sequence encoding layer.

4.3 Results and Discussion
The results on public datasets and manually annotated
datasets are shown in Table 2 and Table 3 respectively. We
have gathered several experiment findings from the results.

Discussion on SoTA Methods First, compared with other
SoTA methods, FLAT has the highest precision on MSRA
and Weibo datasets, reaching 96.09% and 68.55% respec-
tively. ZEN 2.0 performs best on OntoNotes, the F1 score
has reached 88.81%. Meanwhile, RICON-NER has higher
precision than other SoTA methods on OntoNotes, reach-
ing 81.95%. Lattice-BERT has performed well on MSRA,
with F1 score of 97.10%. MECT-NER has higher precision
of 96.40% on Resume, but it has poor performance on CTI.
The reason is that CTI datasets contain many non-Chinese
special characters, but the MECT-NER model mainly inte-
grates the radical information of Chinese character structure.

Second, compared with other SoTA methods, the Softlex-
icon model shows a better effect on CTI datasets of multi-
source entities. From Table 3, the maximum accuracy is
93.84%, which is only 1.77% lower than our model. There-
fore, the lexicon-based model can greatly improve the per-
formance on CTI datasets.

Third, from Table 2 and Table 3, we can observe that:
(1) Compared with other models, LADA-Trans-NER mod-
el has the best performance in precision (98.89% on Re-
sume, 98.90% on MSRA, 68.89% on Weibo, 84.19% on

Models Prec. Recall F1
Lattice LSTM 85.50 80.19 81.02
LR-CNN 83.02 87.91 88.00
LGN 84.50 83.41 82.47
TE-NER 77.10 77.25 73.18
CAN-NER 79.02 78.30 88.15
SoftLexicon (LSTM) 93.84 90.95 91.50
FLAT 93.17 - 91.95
ZEN 2.0 - - 93.75
MECT-NER 54.19 53.01 52.50

SoftLexicon-Trans-NER 90.95 89.62 90.10
LA-Trans-NER 92.90 92.95 91.64
LADA-CNN-NER 89.20 89.42 89.01
LADA-LSTM-NER 93.89 93.61 93.73
LADA-Trans-NER (Ours) 95.61 95.85 95.23

Table 3: Main results (Prec., Recall, and F1) on CTI datasets.

OntoNotes and 95.61% on CTI). (2) Our model is more suit-
able for multi-source complex datasets or other sequence la-
beling tasks. LADA-Trans-NER model achieved competi-
tive performance by training on our training set, then evalu-
ating on our testing set.

Ablation Study All the components of our model play an
important role in improving performance. If any component
is missing, then the performance will decrease. We also con-
ducted additional experiments on LADA-Trans-NER with
ablation consideration.

The performance of SoftLexicon-Trans-NER: Com-
pared with the LA-Trans-NER model, the precision of the
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Figure 5: Performances of variant models on CTI datasets.

LA-Trans-NER model have decreased in different degrees
(3.41%↓ on Resume, 5.81%↓ on MSRA, 13.86%↓ on Wei-
bo, 7.81%↓ on OntoNotes, 1.95%↓ on CTI). Experiments on
five datasets found that lexical attention mechanism plays a
key role in improving the performance of NER system.

The performance of LA-Trans-NER: In this study, we
removed the data augmentation module as a reference. Com-
pared with our model, the F1 score have decreased in differ-
ent degrees (3.47%↓ on Resume, 1.70%↓ on MSRA, 2.79%↓
on Weibo, 0.99%↓ on OntoNotes). Among them, the F1 s-
core dropped the most by 3.59% on CTI datasets. Therefore,
the AR-GAN data augmentation component can well solve
the issue of unbalanced entity labels, and it also greatly pro-
motes the performance of NER system.

The performance of LADA-CNN-NER: In this study,
we replaced the sequence encoding layer with CNN to verify
the performance of Transformer. From Figure 5, the perfor-
mance of this variant model is worse than others, with low
accuracy and relatively large loss on CTI datasets. Similar-
ly, it can be seen that LADA-CNN-NER performs the worst
than other variant models. Compared with our model, the
precision decreased by 8.9% on OntoNotes (see Table 2).

The performance of LADA-LSTM-NER: In this study,
we used LSTM as the sequence encoding layer to continu-
ously verify the performance of Tranformer. It can be seen
from Table 2 that the effectiveness of this model is bet-
ter than other variant models, only inferior to our model.
Most obviously, the F1 score of LADA-LSTM-NER mod-
el is 98.89% on MSRA, which exceeded our model in
this indicator (↑ 0.49%). Therefore, we found that Trans-
former can play a positive role in improving the perfor-
mance of NER system by combining lexical-attention and
data-augmentation module.

4.4 Case Study
To intuitively verify that our model can better utilize fine-
grained correlations in word-character spaces, we analyze
two examples from CTI datasets (see Appendix for details).

In the first case, due to the inherently sequential na-
ture, the character “(Country)” has only access to its self-

matched words “(Britain)” in the lattice LSTM. Hence,
the lattice LSTM incorrectly recognizes “(Britain)” as a
geopolitical entity. Similarly, although LR-CNN introduced
the mechanism of lexical rethinking, it failed to identify ac-
curately. Since Softlexicon uses lexical weighting, the fi-
nal entity is also “ (Britain)”. In the latest RICON-
NER model, “ (Britain Organization)” conforms
to the regularity “XX + (Organization)” and is recog-
nized as organization type. However, in the latter half of the
sentence, “(Mail Phishing Attack)” divides
“(Mail)” and “(Phishing Attack)” into two
different entities. LADA-Trans-NER can correctly detects
the attack entity “(Mail Phishing Attack)”.
The reason is that LADA-Trans-NER can fully capture the
longest lexical information “(Mail Phishing
Attack)”, eliminating the interference of other irrelevant lex-
ical information.

In the second case, there is an organization entity “360
(360 Security Brain)” and a report entity “2020
(2020 Global Advanced
Persistent Threat Research Report)”. It is difficult for lattice
LSTM to detect the uncommon entity, but can only recog-
nize simple entities “ (Brain)”, “(Global)” and “
(Research Report)”. Compared with lattice LSTM,
LR-CNN performs better, and can detect the organizational
entity “(Security Brain)” and the report entity “
(Global Advanced Persistent
Threat Research Report)”, but the entity name is not fully
identified. Softlexicon can accurately detect organizational
entities “360 (360 Security Brain)”, but the lat-
ter half of the sentence is incorrectly recognized as “
(Research Report)”. In RICON-NER model, “2020 
(2020 Global Advanced Per-
sistent Threat Research Report)” follows the specific pattern
“XX + (XX + Report)” which ends with indicator word
“XX + (XX + Report)” and mostly belongs to report
type. However, this model incorrectly recognizes “360 
(360 Security Brain)” as non-entity. LADA-Trans-NER
can accurately exploit vocabulary information and filter out
irrelevant words. These results show that the exact matching
between each pair of character and word is critical, and our
model can better understand the context semantics.

4.5 Parameter Sensitivity
In this part, we evaluate our model on different settings of
the parameters. Specifically, we are concerned about the im-
pact of dropout, learning rate decay and the dimensions of
the parameters. Due to the limited space, more details about
the hyper-parameter settings can be found in Appendix C.3.

Resume MSRA Weibo OntoNotes CTI

No 96.15 96.12 68.53 84.89 90.45
YES 98.70 98.50 70.18 85.91 95.23

Table 4: Results with and without dropout on Resume, M-
SRA, Weibo, OntoNotes and CTI datasets (F1 score).
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Dim. Resume MSRA Weibo OntoNotes CTI

10 92.13 92.83 65.59 80.50 89.45
30 94.82 94.36 66.63 82.33 91.72
50 98.70 98.50 70.18 85.91 95.23

100 97.12 97.01 68.92 84.18 92.21
150 96.95 96.63 68.36 83.01 91.83
200 95.23 95.52 68.90 83.19 90.10

Table 5: Results of our proposed model influenced by differ-
ent word embedding dimension (F1 score).

First, we compared the results achieved by our model with
and without dropout layers, and show those results in Table
4. All other hyper-parameters remain the same as our best
model. After using dropout, the F1 score has improved in
each dataset. This demonstrates the effectiveness of dropout
in reducing overfitting. Dropout is essential for state of the
art performance, and the improvement is statistically signif-
icant. Our model achieved an essential and improved perfor-
mance, because of introducing dropout.

Second, we analyzed the parameter sensitivity of learning
rate decay, and compared the results achieved by our mod-
el with and without learning rate decay. Similarly, all other
hyper-parameters remain the same as our best model. Af-
ter using learning rate decay, the accuracy has improved on
each dataset (see Appendix for details). Therefore, learning
rate decay is very effective in finding global optimization.

Third, we evaluated our model on different parameter’s
dimensions. From Table 5, we listed the result our mod-
el achieved on different word embedding dimension. In our
work, we discovered that when the dimension equals 50, we
get the best results in our model.

4.6 Computation Efficiency
Table 6 lists the running speeds during training and infer-
ence of four baselines and our model. For fair compari-
son, all of these models are implemented using PyTorch
and tested using the NVIDIA GeForce MX250 GPU. Due
to the restriction of variable-sized set of matched words,
Lattice LSTM (Zhang et al. 2018) and LR-CNN (Gui et al.
2019a) are non-batch parallel, while LGN (Gui et al. 2019b),
LA-Trans-NER and LADA-Trans-NER can leverage paral-
lel computation of GPU. First, LADA-Trans-NER (batch
size=16) runs 4.07, 3.87, and 2.13 times faster than lattice
LSTM, LR-CNN, and LGN (batch size=16) on the training
speed, respectively. Furthermore, the inference speed of our
model are about 4.53, 4.05, and 2.23 times faster than the
transition-based model lattice LSTM, LR-CNN, and LGN
respectively, which verify the efficiency of our model.

To further investigate the influence of sentence length,
we analyze the performance of our LADA-Trans-NER mod-
el and other baseline approaches with respect to different
grouped sentence lengths, as shown in Figure 6. We parti-
tion the sentence length into five groups ([0-14], [15-29],
[30-44], [45-59], [≥60]). We can observe that LADA-Trans-
NER consistently runs faster than compared baselines un-
der different sentence lengths. Especially, when the sentence

Models Training Inference
(sent/s) (sent/s)

Lattice LSTM 28.70±2.62 32.01±0.25
LR-CNN 30.20±1.81 35.82±0.64
LGN 26.35±1.56 34.90±1.02
LGN* 54.91±1.78 65.01±0.94
LADA-Trans-NER 35.05±2.13 36.11±1.43
LADA-Trans-NER* 116.95±1.24 145.02±1.08

Table 6: Running speed of different models, compared with
Lattice LSTM, LR-CNN, LGN. The default batch size is 1,
while * denotes the model is run with 16 batch size.

Figure 6: Running speed against sentence length. Sen/s de-
notes the number of sentences processed per second.

length is less than 15, LADA-Trans-NER (batch size=16)
runs 4.53, 4.05, and 2.23 times faster than Lattice LSTM,
LR-CNN, and LGN (batch size=16) respectively. However,
the speed gap becomes smaller as the sentence length in-
creases. In summary, the LADA-Trans-NER model firmly
outperforms current LSTM-based, CNN-based, and Graph-
based methods in terms of efficiency.

5 Conclusions
In this work, we proposed a novel Lexicon-Attention and
Data-Augmentation (LADA) method for Chinese NER,
which effectively integrates word-character information. We
introduced a lexicon-attention mechanism to capture the lo-
cal composition and potential word boundaries by using the
lexicon knowledge. We further choose to concatenate the
representations of the four word sets to represent them as
a whole and add it to the character representation. Specially,
we introduced an adaptive data augmentation method to alle-
viate the problem of entity label data imbalance. The model
was trained and tested in an NER setting. Experimental re-
sults show that LADA is superior to most NER systems in
the literature and it can be applied to scenarios with imper-
fect entity labeling on CTI datasets.

13243



Acknowledgments
We sincerely thank the anonymous reviewers for their in-
sightful comments and suggestions that helped improve the
paper. This work was partly supported by the National Key
Research and Development Program of China (No. 2019YF-
B1005204), and partly by the Key Deployment Projects of
the Chinese Academy of Sciences (No. E1X0081104, No.
KGFZD-145-21-03).

References
Cao, P.; Chen, Y.; Liu, K.; Zhao, J.; and Liu, S. 2018. Adver-
sarial Transfer Learning for Chinese Named Entity Recog-
nition with Self-Attention Mechanism. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 182-192.
Chawla, A.; Mulay, N.; Bishnoi, V.; and Dhama, G.
2021. KARL-Trans-NER: Knowledge Aware Representa-
tion Learning for Named Entity Recognition using Trans-
formers. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 15436-15445.
Cheng, Q.; Liu, J.; Qu, X.; Zhao, J.; Liang, J.; Wang, Z.;
Huai, B.; Yuan, N.; and Xiao, Y. 2021. HacRED: A Large-
Scale Relation Extraction Dataset Toward Hard Cases in
Practical Applications. In Findings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (ACL-IJCNLP), 2819-2831.
Chiu, J. P.; and Nichols, E. 2016. Named Entity Recognition
with Bidirectional LSTM-CNNs. In Transactions of the As-
sociation for Computational Linguistics (TACL), 357-370.
Collobert, R.; and Weston, J. 2008. A Unified Architecture
for Natural Language Processing: Deep Neural Networks
with Multitask Learning. In Machine Learning, Proceedings
of the 25th International Conference (ICML), 160-167.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. P. 2011. Natural Language
Processing (Almost) from Scratch. In Journal of Machine
Learning Research, 12(1): 2493-2537.
Diao, S.; Bai, J.; Song, Y.; Zhang, T.; and Wang, Y. 2020.
ZEN: Pre-training Chinese Text Encoder Enhanced by N-
gram Representations. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Process-
ing (EMNLP), 4729-4740.
Dong, C.; Zhang, J.; Zong, C.; Hattori, M.; and Di, H. 2016.
Character-Based LSTM-CRF with Radical-Level Features
for Chinese Named Entity Recognition. In Natural Lan-
guage Understanding and Intelligent Applications, 239-250.
Springer.
Gregoric, A. Z.; Bachrach, Y.; and Coope, S. 2018. Named
Entity Recognition With Parallel Recurrent Neural Net-
works. In Proceedings of the 56th Annual Meeting on As-
sociation for Computational Linguistics, 69-74.
Gui, T.; Ma, R.; Zhang, Q.; Zhao, L.; Jiang, Y.-G.; and
Huang, X. 2019a. CNN-Based Chinese NER with Lexicon
Rethinking. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 4982-4988.

Gui, T.; Zou, Y.; Zhang, Q.; Peng, M.; Fu, J.; Wei, Z.; and
Huang, X.-J. 2019b. A Lexicon-Based Graph Neural Net-
work for Chinese NER. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), 1039-1049.
Gu, Y.; Qu, X.; Wang, Z.; Huai, B.; Yuan, N. J.; and Gui,
X. 2021. Read, Retrospect, Select: An MRC Framework to
Short Text Entity Linking. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 12920-12928.
Gu, Y.; Qu, X.; Wang, Z.; Zheng, Y.; Huai, B.; and Yuan,
N. J. 2022. Delving Deep into Regularity: A Simple but Ef-
fective Method for Chinese Named Entity Recognition. In
Proceedings of the 2022 North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies (NAACL), 1863-1873.
Habibi, M.; Weber, L.; Neves, M. L.; Wiegandt, D. L.; and
Leser, U. 2017. Deep Learning with Word Embeddings im-
proves Biomedical Named Entity Recognition. In Bioinfor-
matics (Oxford, England), 33(14): 37-38.
He, H.; and Sun, X. 2017. F-Score Driven Max Margin Neu-
ral Network for Named Entity Recognition in Chinese So-
cial Media. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Lin-
guistics (EACL), 713-718.
Hou, F.; Wang, R.; He, J.; and Zhou, Y. 2020. Improving
Entity Linking through Semantic Reinforced Entity Embed-
dings. In Proceedings of the 58th Annual Meeting on Asso-
ciation for Computational Linguistics, 6843-6848.
Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional LSTM-
CRF Models for Sequence Tagging. In arXiv preprint arX-
iv:1508.01991.
Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; and Yu, P. S. 2020.
A Survey on Knowledge Graphs: Representation, Acquisi-
tion, and Applications. In Computer Science arXiv preprint
arXiv:2002.00388.
Lafferty, J.; McCallum, A.; and Pereira, F. C. 2001. Con-
ditional Random Fields: Probabilistic Models for Segment-
ing and Labeling Sequence Data. In Machine Learning, Pro-
ceedings of the 18th International Conference (ICML), 282-
289.
Lai, Y.; Liu, Y.; Feng, Y.; Huang, S.; and Zhao, D. 2021.
Lattice-BERT: Leveraging Multi-Granularity Representa-
tions in Chinese Pre-trained Language Models. In Proceed-
ings of the 59th Annual Meeting on Association for Compu-
tational Linguistics, 1716-1731.
Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami,
K.; and Dyer, C. 2016. Neural Architectures for Named En-
tity Recognition. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (NAA-
CL), 260-270.
Le, P.; and Titov, I. 2018. Improving Entity Linking by Mod-
eling Latent Relations between Mentions. In Proceedings of
the 56th Annual Meeting on Association for Computational
Linguistics, 1595-1604.

13244



Levow, G. A. 2006. The third international Chinese language
processing bakeoff: Word segmentation and named entity
recognition. In Proceedings of the 5th SIGHAN Workshop
on Chinese Language Processing, 108-117.
Li, X.; Yan, H.; Qiu, X.; and Huang, X. 2020b. FLAT: Chi-
nese NER Using Flat-Lattice Transformer. In Proceedings of
the 58th Annual Meeting on Association for Computational
Linguistics, 6836-6842.
Lin, B. Y.; and Lu, W. 2018. Neural Adaptation Layers for
Cross-domain Named Entity Recognition. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2012-2022.
Lin, K.; Li, D.; He, X.; Zhang, Z.; and Sun, M. T. 2017. Ad-
versarial Ranking for Language Generation. In Proceedings
of the 31th Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 1-11.
Liu, W.; Xu, T.; Xu, Q.; Song, J.; and Zu, Y. 2019. An
Encoding Strategy Based Word-Character LSTM for Chi-
nese NER. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAA-
CL), 2379-2389.
Ma, X.; and Hovy, E. H. 2016. End-to-end Sequence Label-
ing via Bi-directional LSTM-CNNs-CRF. In Proceedings of
the 54th Annual Meeting on Association for Computational
Linguistics, 4345-4357.
Peng, M.; Ma, R.; Zhang, Q.; and Huang, X. 2020. Simpli-
fy the Usage of Lexicon in Chinese NER. In Proceedings of
the 58th Annual Meeting on Association for Computational
Linguistics, 3827-3838.
Peng, N.; and Dredze, M. 2015. Named Entity Recognition
for Chinese Social Media with Jointly Trained Embeddings.
In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 548-554.
Peng, N.; and Dredze, M. 2016. Improving Named Entity
Recognition for Chinese Social Media with Word Segmen-
tation Representation Learning. In Proceedings of the 54th
Annual Meeting on Association for Computational Linguis-
tics, 4321-4332.
Song, Y.; Zhang, T.; Wang, Y.; and Lee, K. F. 2021. ZEN
2.0: Continue Training and Adaption for N-gram Enhanced
Text Encoders. In arXiv preprint arXiv:2105.01279.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. In Journal of Ma-
chine Learning Research, 15(1):1929-1958.
Sun, X; and He, H. 2017. F-score Driven Max Margin Neu-
ral Network for Named Entity Recognition in Chinese So-
cial Media. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Lin-
guistics (EACL), 713-718.
Takanobu, R.; Zhang, T.; Liu, J.; and Huang, M. 2019. A
Hierarchical Framework for Relation Extraction with Rein-
forcement Learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, 7072-7079.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. In Advances in Neural Information
Processing Systems, 5998-6008.
Wei, Z.; Su, J.; Wang, Y.; Tian, Y.; and Chang, Y. 2020. A
Novel Cascade Binary Tagging Framework for Relational
Triple Extraction. In Proceedings of the 58th Annual Meet-
ing on Association for Computational Linguistics, 1476-
1488.
Weischedel, R.; Pradhan, S.; Ramshaw, L.; Palmer, M.; Xue,
N.; Marcus, M.; Taylor, A.; Greenberg, C.; Hovy, E.; Belvin,
R.; et al. 2011. OntoNotes Release 4.0. In LDC2011T03,
Philadelphia, Penn.: Linguistic Data Consortium.
Wu, S.; Song, X.; and Feng, Z. 2021. MECT: Multi-
Metadata Embedding based Cross-Transformer for Chinese
Named Entity Recognition. In Proceedings of the 59th An-
nual Meeting on Association for Computational Linguistics,
1529-1539.
Xue, M.; Yu, B.; Liu, T.; Zhang, Y.; Meng, E.; and Wang, B.
2019. Porous Lattice-based Transformer Encoder for Chi-
nese NER. In arXiv preprint arXiv:1911.02733.
Yadav, V.; and Bethard, S. 2018. A Survey on Recent Ad-
vances in Named Entity Recognition from Deep Learning
models. In Proceedings of the 56th Annual Meeting on As-
sociation for Computational Linguistics, 2145-2158.
Yan, H.; Deng, B.; Li, X.; and Qiu, X. 2019. TENER: Adapt-
ing Transformer Encoder for Name Entity Recognition. In
arXiv preprint arXiv:1911.04474.
Yang, J.; Teng, Z.; Zhang, M.; and Zhang, Y. 2016. Combin-
ing Discrete and Neural Features for Sequence Labeling. In
International Conference on Intelligent Text Processing and
Computational Linguistics, 140-154.
Zhang, Y.; and Yang, J. 2018. Chinese NER Using Lattice
LSTM. In Proceedings of the 56th Annual Meeting on Asso-
ciation for Computational Linguistics, 1554-1564.
Zhao, S.; Cai, Z.; Chen, H.; Wang, Y.; Liu, F.; and Liu, A.
2019. Adversarial Training Based Lattice LSTM for Chinese
Clinical Named Entity Recognition. In Journal of Biomedi-
cal Informatics 99: 103290.
Zhao, S.; Hu, M.; Cai, Z.; and Liu, F. 2020. Modeling Dense
Cross-Modal Interactions for Joint Entity-Relation Extrac-
tion. In Proceedings of the Twenty-Ninth International Join-
t Conference on Artificial Intelligence and Seventeenth Pa-
cific Rim International Conference on Artificial Intelligence
(IJCAI-PRICAI), 4032-4038.
Zhao, S.; Hu, M.; Cai, Z.; Chen, H.; and Liu, F. 2021. Dy-
namic Modeling Cross- and Self-Lattice Attention Network
for Chinese NER. In Proceedings of the AAAI Conference
on Artificial Intelligence, 14515-14523.
Zhu, Y.; Li, D.; and Wang, G. 2019. CAN-NER: Con-
volutional Attention Network for Chinese Named Entity
Recognition. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAA-
CL), 3384-3393.

13245


