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Abstract

Monaural speech separation aims to separate concurrent speak-
ers from a single-microphone mixture recording. Inspired by
the effect of pitch priming in auditory scene analysis (ASA)
mechanisms, a novel pitch-guided speech separation frame-
work is proposed in this work. The prominent advantage of
this framework is that both the permutation problem and the
unknown speaker number problem existing in general models
can be avoided by using pitch contours as the primary means
to guide the target speaker. In addition, adversarial training is
applied, instead of a traditional time-frequency mask, to im-
prove the perceptual quality of separated speech. Specifically,
the proposed framework can be divided into two phases: pitch
extraction and speech separation. The former aims to extract
pitch contour candidates for each speaker from the mixture,
modeling the bottom-up process in ASA mechanisms. Any
pitch contour can be selected as the condition in the second
phase to separate the corresponding speaker, where a condi-
tional generative adversarial network (CGAN) is applied. The
second phase models the effect of pitch priming in ASA. Ex-
periments on the WSJ0-2mix corpus reveal that the proposed
approaches can achieve higher pitch extraction accuracy and
better separation performance, compared to the baseline mod-
els, and have the potential to be applied to SOTA architectures.

Introduction
The human auditory system shows the extraordinary ability
at selectively attending to the target speech in the presence
of interference, which is described as the so-called cocktail
party problem (Cherry 1953). Bregman attributes this abil-
ity to "auditory scene analysis" (ASA) (Bregman 1994), a
process of auditory stream formation and segregation. Specif-
ically, the formation stage aims to form a single auditory
stream from an incoming mixture, by successive auditory
periphery analysis, perceptual features extraction (e.g., pitch,
timbre, spatial location) (Middlebrooks et al. 2017) and tem-
poral coherence analysis (Shamma, Elhilali, and Micheyl
2011). In the segregation stage, attention mechanism (Bey
and McAdams 2002), as well as prior experience (e.g., fa-
miliarity, priming) (Snyder et al. 2008, 2009a,b; Snyder and
Weintraub 2011; Riecke et al. 2009, 2011; McClelland, Mir-
man, and Holt 2006) would serve to enhance the perception
of a particular stream (foreground), while suppressing others
(background).

In the above ASA process, pitch plays an important role.
Pitch, often corresponds to the fundamental frequency (F0)
of harmonics. In the psychoacoustics aspect, a series experi-
ments using from alternating pure tones (Shamma, Elhilali,
and Micheyl 2011), synthetic vowels (Broadbent and Lade-
foged 1957) to natural continuous speech (i.e., multi-speaker
scenario) (Glasberg and Moore 1986; Darwin and Hukin
2000; Darwin, Brungart, and Simpson 2003) showed the F0
difference substantially contributed to the perceptual segre-
gation. Other groups of research find that priming listeners
with perceptual cues (e.g., pitch) of the target speaker could
help them attend to the target speaker when competing speak-
ers are present (Brungart 2001; Freyman, Balakrishnan, and
Helfer 2004; Kidd Jr, Mason, and Gallun 2005). Church and
Schacter (Church and Schacter 1994) showed there was a
significant priming effect when the words were spoken with
the same fundamental frequency at study and test, which
means presenting listeners with the priming word spoken at
the same pitch as the target test word can improve the identi-
fication performance. In the aspect of computational models,
the most representative work is computational auditory scene
analysis (CASA) (Brown and Cooke 1994; Wang and Brown
2008), where pitch as a discriminative cue, can be used to
improve the speech separation performance (Hu and Wang
2010, 2013; Wang, Soong, and Xie 2019).

Due to the robustness of the auditory system in the com-
plex acoustic scene, the computational model for the ASA
process has been explored a lot, in order to extract target
speech from competing inferences, i.e, speech separation.
Recently, the development of deep learning brings opportuni-
ties to tackle this task. A supervised learning framework was
proposed to learn a mapping from mixture to separated speak-
ers through neural networks. Most existing models separate
each speaker simultaneously, which suffers from permutation
problem (Kolbaek et al. 2017) and output dimension mis-
match problem (Hershey et al. 2016). The former is related
to how the output layers are tied to the underlying speakers.
The latter arises from an unfixed number of speakers in the
mixture, leading to unfixed output layers. Although permu-
tation invariant training (PIT) (Yu et al. 2017; Kolbaek et al.
2017) and deep clustering (DC) (Hershey et al. 2016) are
proposed successively to address these two problems, respec-
tively, both of them cannot deal with the problem of unknown
number of speakers.
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In the ASA mechanism, it seems that humanity is not
generally capable of attending to every aspect of the auditory
input, but primarily to one stream at a time. This attended
stream then stands out perceptually, while the rest of the
sound is less prominent (Bregman 1994; Middlebrooks et al.
2017). Therefore, during the computational modeling, the
more reasonable way is to separate one specific speaker each
time instead of all speakers simultaneously. The key problem
then comes to how to define this attended stream, i.e., target
speaker. According to the effect of pitch priming, pitch can
be utilized as the perceptual cue to indicate this target.

To address the problems mentioned before, and more im-
portantly, to integrate the effect of pitch priming in the ASA
mechanism, this work proposes a novel pitch-driven speech
separation framework. It can be further divided into two
phases: pitch extraction and speech separation. The former
aims to extract pitch contours for each speaker from mixtures,
which can be regarded as modeling the process of bottom-up
perceptual cue extraction. In the latter phase, a speech sep-
aration model conditioned on the pitch is proposed, based
on a conditional generative adversarial network (CGAN)
(Mirza and Osindero 2014). Any pitch contour belonging to
a specific speaker from the first phase can be selected as the
condition, and the model will only output the correspond-
ing speaker. Such a model naturally models the role of pitch
prime. Experiments on WSJ0 show the proposed framework
can achieve comparable performance with the Conv-TasNet
model (Luo and Mesgarani 2019) and meanwhile it over-
comes the limitation caused by permutation and unknown
speaker number problems (Takahashi et al. 2019).

Contributions: (1) We proposed a novel pitch-driven
speech separation framework, where only one speaker is
separated each time corresponding to the given pitch condi-
tion. Such framework avoids both permutation and unknown
speaker number problems, and models the effect of pitch
priming in the ASA process; (2) Within conditional sepa-
ration frameworks, we utilize pitch contour instead of con-
ventional speaker embedding, as the condition. Pitch, as a
low-level and short-term perceptual feature, can still be dis-
criminative enough on feature space for those speakers with
similar timbre; (3) Instead of the conventional mask-based
method, the proposed method produces waveform directly,
resulting in improved quality of separated speech.

Related Work
All systems described in this paper operate on monaural
recordings and related work can be divided into two cat-
egories: speaker-independent and speaker-dependent. The
former represents most existing approaches, aiming to sep-
arate all speakers contained in the mixture. The latter ties
the output to a specific speaker, which is more relevant to
our framework. Finally, the effect of pitch priming is intro-
duced, which motivates us to integrate pitch into the speech
separation framework.

Speaker-Independent Speech Separation
Conventional deep-learning-based speaker separation models
utilize multiple output layers in the network, each correspond-
ing to one speaker. When it comes to speaker-independent

models, the permutation problem needs to be addressed.
Therefore, permutation invariant training (PIT) (Yu et al.
2017; Kolbaek et al. 2017) is proposed, which examines all
possible label permutations for each utterance during train-
ing, and uses the one with the lowest utterance-level loss
to train the separation network. However, PIT suffers from
the output dimension mismatch problem since it assumes a
fixed number of speakers. Deep clustering (DC) (Hershey
et al. 2016) looks at the permutation problem from a different
perspective. It firstly maps the time-frequency (T-F) units
into an embedding space where a clustering algorithm (e.g.,
k-means) is performed to assign each T-F unit to one of the
speakers in the mixture, which naturally tackles the output
dimension mismatch problem meanwhile. However, the such
clustering-based approach requires a certain number of clus-
ters during evaluation, hence it cannot deal with the unknown
speaker number in mixtures. Recently, Conv-TasNet (Luo and
Mesgarani 2019) extends the first appearance of utterance-
level PIT (uPIT) to the time domain using a convolutional
encoder-decoder structure, which significantly improves the
perceptual quality. Nowadays, dual-path network achieves
a significant breakthrough. In (Yi Luo and Yoshioka 2020;
Chen, Mao, and Liu 2020; Subakan et al. 2021), dual-path
networks are chosen to apply intra- and inter-chunk oper-
ations iteratively.

Speaker-Dependent Speech Separation
For speaker-dependent separation, the information from the
inferred speaker is taken as the condition to extract the corre-
sponding speaker, i.e, separate one speaker each time, thus
both permutation and speaker-number-unknown problems do
not exist. VoiceFilter (Wang et al. 2019) separates the target
speaker from multi-speaker signals, by using the speaker em-
bedding of a reference signal from the target speaker. WaveS-
plit (Zeghidour and Grangier 2021) proposes an end-to-end
source separation system by inferring a representation for
each source and then estimating each source signal given
the inferred representations. Shi et al. (Shi et al. 2020b) pro-
poses a framework denoted as the Speaker-Conditional Chain
Model, which first infers the identities of variable numbers
of speakers from the mixture. Then, it takes the embedding
from the inferred speakers sequentially as the condition to
extract the corresponding speaker.

The proposed framework can be classified into this cate-
gory, but we utilize pitch instead of speaker embedding as
the prime, which corresponding mechanisms such as pitch
priming can be found during auditory stream segregation in
the multi-speaker scenario.

The Effect of Priming in ASA
There are two types of mechanisms for ASA (Bregman 1994):
(1) primary mechanisms that process incoming mixtures of
sounds in an automatic fashion using simple transformations,
and (2) schema-based mechanisms that are more likely to be
attention-, intention-, and knowledge-dependent. The former
type is what the most existing frameworks are modeled on,
while this work focused on the latter one. Recent research
indicates that prior experience (e.g., priming) might be able
to directly influence perception through non-attention-related
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mechanisms (Snyder et al. 2012). In one early study (Dowl-
ing 1973), listeners were presented with two melodies at the
same time. When the name of one of the tunes was given
prior to hearing the interleaved melodies, it was easier to
perceptually segregate it even when the two melodies were
closer in pitch, demonstrating an effect of prior knowledge on
perceptual segregation. In the sentence-level research, knowl-
edge of the voice characteristics of the target talker could help
the listener attend to the target speaker when other speakers
are present, and improve the target speech recognition (Brun-
gart 2001; Freyman, Balakrishnan, and Helfer 2004; Kidd Jr
et al. 2005; Kidd Jr, Mason, and Gallun 2005). Experiments
on voice-specific effects in auditory priming showed that
the representation of F0 plays an important role, especially
when speakers have similar pitch (Church and Schacter 1994).
These findings inspire us to integrate the priming effect into
nowadays speech separation framework, in order to address
permutation and unknown speaker number problems.

PGSS Framework
Overview
The entire framework in Figure 1 is divided into two phases:
pitch extraction and speech separation, according to two mod-
eling processing in ASA. The pitch extraction phase models
the process of bottom-up perceptual feature extraction. Given
the input mixture, a two-stage approach is proposed to extract
a list of pitch contours, each corresponding to one speaker.
Any pitch contour of a specific speaker can be selected as the
prime (e.g., speaker colored with yellow), then the speech
separation phase aims to separate the corresponding speaker
from the mixture using adversarial training, conditioned on
the given pitch contour. The second phase models the effect
of pitch priming in auditory stream segregation.

Phase I: Multi-Speaker Pitch Extraction
Pitch contour is a sequence of frequency values along the
temporal dimension. It is often modeled through two pro-
cesses: frame-level pitch candidates estimation and speaker
assignment. The former aims to reliably estimate pitch candi-
dates at each frame without indicating which speakers these
pitch candidates belong to. Then the second process assigns
the frame-level pitch candidates to specific speakers, to pro-
duce continuous pitch contours for each speaker. In practice,
this process is associated with how to track the pitch can-
didates belonging to the same speaker across time. In this
work, a novel two-stage multi-speaker pitch extraction ap-
proach is proposed, including frame-level pitch estimation
and utterance-level pitch tracking.

Frame-Level Pitch Estimation The spectrum of a voiced
sound is composed of a series of harmonics, regularly spaced
in frequency at intervals of the fundamental frequency (F0),
which is the principal determinant of perceived pitch (Mid-
dlebrooks et al. 2017). According to this characteristic, a
method is proposed consisting of harmonic modeling and
harmonics-pitch mapping.

Specifically, given a spectrogram Xm, which is trans-
formed from the original mixture x in the time domain by

Figure 1: PGSS system overview.

Short-Time Fourier Transformation (STFT), where m is the
frame index, this stage estimates a posterior pitch probability
P (zm|Xm) where zm denotes pitch states at frame m. We
quantize the frequency range from 60 to 404 Hz into 67 bins
using 24 bins per octave in a logarithmic scale (Liu and Wang
2018). Each bin corresponds to one pitch state. An additional
pitch state represents silence or unvoiced speech, resulting
in 68 pitch states (i.e., classes). P (zm(s)|Xm) equals one
if the ground-truth pitch falls into the s-th bin. Therefore,
frame-level pitch estimation can be treated as a multi-label
classification task, which classifies the frame-level mixture
input (no matter how many speakers it consists of) to a
(several) specific pitch state(s) within 68 possible classes,
hence this model is independent of the speaker number. Two-
dimensional CNNs are applied first to capture harmonic struc-
ture and a fully-connected linear layer is followed to map the
harmonic features to their corresponding pitches.

Cross-entropy is used as the loss function of this multi-
label classification task, which is defined as:

Lm =
68∑
s=1

P (zm(s)|Xm)log(Om(s)) (1)

where O(·) is the 68-units output layer followed by the sig-
moid activation function.

Utterance-Level Pitch Tracking Given the frame-level
result from last stage, this stage aims to link them belong-
ing to the same speaker, to output multiple sequences of
pitch contours, each for a specific speaker. It can be treated
as a sequence-to-multi-sequence (seq2Mseq) mapping prob-
lem, where a conditional chain (cond-chain) model (Shi et al.
2020a) is adopted. Given the input sequence O ∈ O, it is
mapped to a set of N sequences P = {pi| ∈ {1, ..., N}},
by a joint distribution of output sequences over an input
sequence O as a product of conditional distributions. The
model is supposed to automatically learn the efficient rela-
tionship between multiple output sequences, even though the
relationship is mutually exclusive.

When implemented in our task, a conditional encoder-
decoder structure is applied (Figure 2), where an additional
CondChain module preserves the information from pre-
vious output sequences and takes it as a condition for the
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Figure 2: seq2Mseq mapping with conditional model for
utterance-level pitch tracking. Blocks with same name share
weights.

following outputs. In detail, input to the CondChain is the
frame-level pitch estimation. It can be seen as a one-hot
matrix O ∈ RF,T , where F and T are frequency number
and frame number, respectively, and the value 1/0 indicates
whether there exists pitch or not within a T-F unit. The en-
coders (Enc) in CondChain are shared across all steps.
Each step corresponds to a process of decoding an output
pitch sequence. CondChain applies LSTM to store the in-
formation from previous sequences and regards them as con-
ditions. For the Fusion block, due to the same length of two
inputs, a simple concatenation operation is used to stack them
along the feature dimension for each frame. At each step i,
the Decoder (Dec) is used to map the hidden state Hi into
the final pitch contour p̂i ∈ R68×T . The whole process can
be defined as:

E = Enc(O) ∈ RFE×TE

(2)

Hi = CondChain(E, p̂i−1) ∈ RFC×TC

(3)

D = Dec(Hi) ∈ R68×T (4)

Inspired by the conventional seq2seq model, we tackle the
variable numbers of multiple sequences by predicting the
end of the sequence symbol as a stop criterion. Specifically,
an extra silent sequence with zero pitch values is attached
at the end of output sequences, to satisfy the stop condition
during training. The advantage of such stop criterion is that
mixture data can consist of various numbers of speakers
during training, and can be applied to the case of unknown
numbers of speakers during inference.

Phase II: Pitch-Conditional Speech Separation
After obtaining a list of pitch contours from the last phase,
then any of them can be selected as a condition to guide a
specific speaker to be separated at this phase. To allow an
explicit correspondence between pitch contour and mixture
representation, we use a mixture spectrogram as the model
input. Then in order to produce the target waveform directly,
we are motivated by the MelGAN structure (Kumar et al.

Figure 3: Pitch-CGAN architecture.

2019), which is originally proposed for speech synthesis.
The basic idea of MelGAN is it uses a stack of transposed
convolutional layers to upsample the input spectrogram to its
corresponding waveform. Phase information is supposed to
be implicitly learned during this process.

Therefore, the final architecture is designed in a condi-
tional generative adversarial network (CGAN) style (Mirza
and Osindero 2014), shown in Figure 3. The selected pitch
contour is treated as the condition, together with mixture
spectrogram to form the input, denoted as Pitch-CGAN.

Generator The Generator (G) of Pitch-CGAN consists of
two sub-modules: G1 and G2. G1 serves as a basic encoder to
produce the target magnitude from the mixture, conditioned
on a given pitch contour, while G2 applies MelGAN structure
to synthesize the target waveform given the magnitude from
G1.

In the G1, for a spectrogram X ∈ RT×F transformed from
mixture x by STFT and a selected pitch contour P ∈ RT×68

where 68 is quantified frequency bins in section 3.2.1. To
stack them along a new dimension, the frequency dimension
should be the same. We follow the criterion of critical bands
to extend the frequency dimension of P from 68 to F , and
then stack it with X along a new channel dimension C to
produce the input Z ∈ R2×T×F to G1. G1 is composed of a
U-Net-like CNN structure, followed by a bidirectional LSTM
(BLSTM) and a final linear layer to map the output to the
original frequency dimension. More details will be given in
the supplementary.

In G2, a stack of transposed convolution is adopted to up-
sample the lower temporal resolution of the output magnitude
from G1 to match that of the target waveform. Each trans-
posed convolution is followed by a stack of residual blocks
with dilated convolutions to increase the receptive field, as
shown in the blue box in Figure 3.

Discriminator Same as the original MelGAN, multiple dis-
criminators at different frequency scales are used, where each
discriminator intends to learn features for different frequency
ranges of speech. The multi-scale discriminators share the
same network structure to operate on different speech scales
in the frequency domain. Specifically, we adopt 3 discrimina-
tors (D1, D2, D3), where D1 operates on the scale of raw
speech, whereas D2, D3 operate on raw speech downsam-
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pled by a factor of 2 and 4 respectively. The downsampling is
performed using strided average pooling with kernel size 4.

Objective Function With K discriminators, CGAN-Pitch
conducts adversarial training with objectives as:

min
Dk

Ey[(Dk(y|p)− 1)2] + Ex[(Dk(G(X|p)))2] (5)

min
G

Ex[
K∑

k=1

(Dk(G(X|p))− 1)2] (6)

where Dk is the k-th discriminator, X represents the input
mixture magnitude, p is the given pitch contour condition
and y is the corresponding target waveform.

In addition, we adopt the multi-resolution STFT loss pro-
posed in (Yang et al. 2021) to overcome the problem of mea-
suring the differences between the potential features of true
and fake speech and to make the convergence process faster.
For a single STFT loss, we minimize the spectral conver-
gence Lsc and log STFT magnitude Lmag between the target
waveform y and the predicted audio ỹ from the generator
G(X|p):

Lsc(y, ỹ) =
∥|STFT (y)| − |STFT (ỹ)∥F

∥|STFT (y)|∥F
(7)

Lmag_G2(y, ỹ) =
1

N
∥log|STFT (y)| − log|STFT (ỹ)|∥1

(8)
where ∥ · ∥F and ∥ · ∥1 are Frobenius and L1 norms, re-
spectively, and N is the number of elements in the STFT
magnitude. To restrict the output magnitude from G1, we
minimize the log magnitude between the target magnitude S
from G1 and STFT of the predicted audio ỹ:

Lmag_G1(G) = ES,ỹ[
1

N
∥log|S| − log|STFT (ỹ)|∥1] (9)

The multi-resolution STFT objective function is an average
of M single STFT losses with different analysis parameters
(i.e., FFT size, window size and hop size), defined as:

Lmr_stft(G) = Ey,ỹ[
1

M

M∑
m=1

(Lm
sc(y, ỹ) + Lm

mag_G2(y, ỹ))]

(10)
Hence the final training objectives of Pitch-CGAN is:

min
G

Ex[λ
K∑

k=1

(Dk(G(x|p))− 1)2] + Ex[Lmr_stft(G)]

+ Ex[Lmag_G1(G)]
(11)

Experiments
Dataset and Setup
The proposed framework is evaluated on Wall Street Journal
(WSJ0) corpus. The WSJ0-2mix and -3mix datasets are the
benchmarks designed for speech separation, introduced by
(Hershey et al. 2016). For WSJ0-2mix, the 30h training set

Acc (%) Prec (%) Rec (%)

SG 98.5 91.6 84.7
DG 99.3 95.2 93.7

Overall 98.9 93.4 89.2

Table 1: Performance of frame-level pitch estimation w.r.t.
different gender combinations.

Figure 4: Performance of utterance-level pitch tracking w.r.t.
different gender combinations, and absolute energy differ-
ence.

and the 10h validation set contain two-speaker mixtures gen-
erated by randomly selecting speakers and utterances from
the WSJ0 training set si_tr_s, and mixing them at various
Signal-to-Noise Ratios (SNRs) uniformly chosen between 0
dB and 5 dB. The 5h test set was similarly generated using
utterances from 18 speakers from the WSJ0 validation set
si_dt_05 and evaluation set si_et_05. For three-speaker ex-
periments, similar methods were adopted while the number
of speakers was three, resulting in WSJ0-3mix.

Reference pitch is extracted from pre-mixed single-speaker
utterances using the Praat (Boersma 2001). All data are sam-
pled at 16 kHz. The input magnitudes are computed from
STFT with 25 ms window length, 10 ms hop size, and the
Hann window. Further details on the training setup are given
in Appendix.

For the pitch extraction, the results are reported for both
frame level (see Table 1) and utterance level via the er-
ror measure ETotal proposed in (Wohlmayr, Stark, and
Pernkopf 2011). For speech separation, signal-to-distortion
ratio (SDR), SDR improvement (SDRi) (Vincent, Virtanen,
and Gannot 2018), perceptual evaluation of speech quality
(PESQ) (Recommendation 2001) and short-time objective in-
telligibility (STOI) (Taal et al. 2011) are used in the ablation
experiments (Gusó et al. 2022).

Pitch Extraction Performance
Frame-Level Pitch Estimation This stage actually per-
forms a multi-label classification task, thus accuracy, preci-
sion and recall are used. Table 1 shows the results in terms of
different gender combinations. Overall, the precision and re-
call are 93.4% and 89.2%, respectively, and performance for
different-gender pairs (DG) is better than that for the same-
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gender pairs (SG). It can be explained that, for same-gender
speakers, the mean pitch (F0) of each speaker is relatively
close, resulting in the overlap of harmonics that can not be
resolved by the model.

To intuitively show the difference for different gender com-
binations, we plot the estimated frame-level pitch for SG and
DG samples in the supplemental material. We compare them
with corresponding reference pitch (sub-figure (a)) extracted
from the pre-mixed single speaker through Praat. In general,
the trend of estimated pitch variation is consistent with that of
the reference, especially when the pitch contours are continu-
ous over a long time span. However, for the segments where
the duration of continuous pitch is relatively short, the model
tends to connect them together or even miss them directly,
such as the middle part for the SG pair. This situation is more
terrible for SG mixtures, which is in our expectations as the
harmonics for SG speakers are overlapped, and the model
tends to produce only one pitch value.

Since speaker assignment has not been performed, we
cannot plot the estimated results with different colors like the
references.

Utterance-Level Pitch Tracking This stage tracks the
frame-level results belonging to the same speaker, to pro-
duce a single utterance-level pitch contour for each speaker.
The performance of the adopted cond-chain method is com-
pared with a state-of-the-art (SOTA) baseline in speaker-
independent pitch tracking, based on uPIT (uPIT-Pitch) (Liu
and Wang 2018). The results are shown in Figure 4 for mix-
tures with different gender combinations and SNRs. It is
obvious that for SD conditions, the error is systematically
higher than that for DG conditions, due to the less accurate
frame-level results from the last stage.

In general, the cond-chain method performs better than
uPIT within each gender combination where cond-chain is
more robust at different SNRs. Specifically, as the SNRs in-
crease, ETotal first decreases and then increases. It seems to
be inconsistent with the common sense that 0 dB is the most
difficult situation. One possible explanation is that, when
speakers are mixed at relatively high/low SNRs, someone’s
spectrum will be dominant while the others’ will be masked.
As uPIT produces pitch contours for all speakers simultane-
ously in a parallel style and only the information from input
mixtures can be used, those masked speakers’ might be less
accurate, which degrades the overall performance. However,
this situation is not observed in the cond-chain method. It
may be caused that the cond-chain model predicts pitch con-
tours successively where the previous pitch sequence can be
used as a mutually exclusive condition for the current pre-
diction. In addition, the proposed framework divides pitch
extraction into two stages, each with a specific speech char-
acteristics modeling, and optimized separately, resulting in
better performance.

Speech Separation Performance
MelGAN module To verify the importance of MelGAN
structure in the G2 of Pitch-CGAN, performance with and
without G2 is shown in Table 2. The latter means the evalu-
ated target waveform is reconstructed with the mixture phase,

Pitch-CGAN SDRi (dB) PESQ STOI (%)

with G2 15.3 3.4 94.3
w/o G2 10.4 2.7 89.3

Table 2: Effect of MelGAN (G2) moduled.

Index System SDRi (dB)

F0 Pitch-CGAN 15.3
F1 + Pre-tained G1 15.4
F2 + MR STFT loss 15.6
F3 + Deep ResStack 15.9

Table 3: Effect of different training strategies.

which significantly degrades the separation performance, es-
pecially on the perceptual metrics (i.e., STOI and PESQ).
These two metrics are designed to reflect human perception
of speech intelligibility and quality. While G2 is introduced,
Pitch-CGAN can be optimized end to end to generate the
target waveform directly, avoiding extra stage for phase esti-
mation. Hence, Pitch-CGAN with and w/o G2 can be seen
as the systems that represent frequency-domain and time-
domain based CGAN models, respectively.

Training strategy Table 3 shows the SDRi results for Pitch-
CGAN with different training strategies, each of them de-
noted as System F0-F3, respectively for simplicity. With G1
pre-trained, F1 outperforms the basic System F0 with a small
increase in SDRi. Besides, the model converges much faster
due to the restriction on the G1 output to be similar to the
target magnitude first. When multi-resolution STFT loss is
further introduced, performance is improved compared to
F1. We assume that Lmr_stft can measure the difference be-
tween the true and fake speech in a lower signal level, while
discriminator measures them on higher representations. Fi-
nally, by increasing the receptive field of F2 to become F3,
we obtain a further improvement with the best SDRi among
all the systems. With these applied tricks, we achieve better
separation performance and training stability.

Compare with speaker-independent separation systems
According to the output of generator, Pitch-CGAN w/o and
with G2 module can be regarded as the systems in frequency
domain and time domain, respectively. For Pitch-CGAN (w/o
G2), it outperforms the corresponding uPIT (Kolbaek et al.
2017) and DPCL (Hershey et al. 2016) in all metrics. uPIT
and DPCL are both mask-based systems, aiming at minimiz-
ing the mean square error (MSE) between the model output
and reference. Such training objective may not be effective
for all evaluation metrics. For example, MSE is more suitable
for STOI and PESQ because they are calculated on mag-
nitudes but not for SDR which is dependent on waveform
signals. Pitch-CGAN applies the discriminator to judge the
similarity between fake output and real reference, instead
of specifically designed objectives for different evaluation
metrics. However, since the final waveform is reconstructed
by the mixture phase, the performance of frequency-domain
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System 2-speaker 3-speaker
SDRi (dB) PESQ STOI (%) SDRi (dB) PESQ STOI (%)

uPIT 9.4 2.6 87.7 4.7 2.1 79.2
DPCL 9.4 2.7 88.4 7.1 2.2 82.1
TasNet 11.1 2.9 90.7 9.6 2.4 84.6

Conv-TasNet 15.6 3.2 93.9 13.1 2.6 88.2

Pitch-CGAN (w/o G2) 10.4 2.7 89.3 8.9 2.2 84.9
Pitch-CGAN 15.3 3.4 94.3 13.4 2.8 89.3

Table 4: System comparison for speaker-independent separation.

System SDRi (dB)

VoiceFilter (Wang et al. 2019) 7.0
TDAA (Shi et al. 2018) 7.5

SCCM (Shi et al. 2020b) 10.1

Pitch-CGAN 15.3

Table 5: System comparison for speaker-dependent separa-
tion.

systems is still far behind that of time-domain systems.
For Pitch-CGAN (with G2), generator outputs the wave-

form directly and skips the stage of target phase estimation,
which achieves better performance than all the frequency-
domain systems. For a 2-speaker mixture, Pitch-CGAN out-
performs Conv-TasNet (Luo, Chen, and Mesgarani 2018) in
STOI and PESQ but achieves a lower SDRi score. It can
be attributed to the reason that ConvTasNet applies the ob-
jective function aiming at optimizing the SDRi directly, but
the permutation problem still remains. To evaluate the gen-
eralization, results on WSJ0-3mix are also presented, where
Pitch-CGAN achieves the highest scores in all metrics. Since
only one output layer is set, corresponding to the conditional
input, Pitch-CGAN can avoid the unknown speaker number
problem.

Compare with speaker-dependent separation systems
Different from the proposed system conditioned on pitch,
existing speaker-conditional (dependent) separation systems
rely on speaker embedding. VoiceFilter (Wang et al. 2019)
uses an extra pre-trained speaker verification model to ex-
tract speaker embedding from reference signals, and then
concatenates the embedding with a mixture spectrogram to
produce the separated speech. Recently, Shi et al. proposes
the Top-down auditory attention model (TDAA) (Shi et al.
2018) and Speaker-conditional chain model (SCCM) (Shi
et al. 2020b) which both extract the embedding from mixture
instead of reference signals.

Results of these systems are reported in Table 5. Pitch-
CGAN outperforms all the speaker-embedding based systems.
We summarize the following points. Firstly, pitch maintains
the local patterns of spectrogram and variations along time
dimension, while speaker embedding is the higher representa-
tion independent of time. For those speakers with similar tim-
bre, pitch can remain discrimination. However, the error from

pitch estimation may have more impact on separation perfor-
mance than the latter, which can be regarded as the limitation.
Secondly, as discussed before, existing speaker-dependent
systems are all based on mask output, which degrades the
performance as well.

Compare with SOTA separation systems Recently,
monaural speech separation models have been extensively
studied. Existing SOTA systems are mostly based on dual-
path network, where different models are explored, from
RNN-based DPRNN (Yi Luo and Yoshioka 2020) to currently
transformer-based DPTNet (Chen, Mao, and Liu 2020) and
SepFormer (Subakan et al. 2021). When comparing the pro-
posed approach with these SOTA system, the following dif-
ferences are listed: (1) As each time only one speaker is sep-
arated, according to the given pitch condition, the proposed
method avoids the permutation and speaker number mis-
match problems, which are still remained in SOTA systmes;
(2) Our multi-stage approach has pros and cons (e.g., it is not
end-to-end), but at least it improves the explainability of the
system.

This work applies Conv-TasNet as the development archi-
tecture due to its efficiency and widely used in separation task.
We are not aimed to replace the existing model as the SOTA
one but to propose a conceptual and general separation frame-
work which is motivated by the pitch-priming mechanism
in ASA. Such framework would not be limited to a specific
model architecture. We expect if the any SOTA architecture
is adopted, the performance could be further improved. It is
also a great opportunity to attract researchers’ attention to the
psychoacoustics community and to make more contribution
to combine auditory mechanism with deep models.

Conclusion

In this work, we propose a novel pitch-guided speech sepa-
ration (PGSS) framework, which is inspired by the effect of
pitch priming in ASA mechanisms and addresses both permu-
tation and unknown speaker number problems. Additionally,
a separation approach based on CGAN is applied, leading
to improved speech quality. However, such multi-stage ap-
proach has its cons which might be improved in the future by
combining these two phases in an iterative style and updating
each other. The SOTA model architectures should also be
explored to evaluate the flexibility of this work.
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