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Abstract

Quantitative information plays an important part in the fi-
nancial and data analysis areas. Prior work relied on pattern-
matching methods and complex hand-crafted rules to extract
quantitative information due to the lack of labeled data. Such
methods can be unstable and difficult to scale to the open do-
main. In this paper, we study quantitative information extrac-
tion in the low-resource setting. We propose a search-based
approach by searching from the syntactic structures to ac-
quire basic training data. The search process is simple yet
effective. Then, a prefix-based text-to-text generation method
is employed to extract the quantitative information. The pre-
fix design can fully leverage pre-trained language models for
text generation to serve the information extraction purpose.
Experimental results show that our approaches achieves high
performance with a limited amount of labeled data. The ex-
traction result could further boost the performance of other
tasks such as quantitative reasoning.

Introduction
Quantitative information in the text is extremely valuable
in the financial and data analysis areas. For example, finan-
cial reports contain quantitative information that contributes
to the understanding of companies’ fundamentals which is
not reflected in data tables. Quantitative information extrac-
tion helps to understand these numbers and extracts them
into structured representations where standard financial ta-
bles or charts can be generated from. Despite these valu-
able applications, the task of Quantitative information ex-
traction seems to be less studied and focused on. Most ex-
isting approaches in question answering and reading com-
prehension (Rajpurkar et al. 2016; Seo et al. 2017; Yu et al.
2018) do not explicitly address understanding quantities and
might fail to answer queries that require quantitative infer-
ence and reasoning. The understanding of quantities could
empower new applications like quantity search (Ho et al.
2019) to support analytic queries like “cities with more than
one million inhabitants”, “companies with PE small than
10”. In this paper, we study quantitative information extrac-
tion, which can be considered as a prerequisite to obtaining
a deep understanding of quantities.
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A major problem for quantitative information extraction
is that the task is highly domain relevant, leading to a lack
of labeled data for the open domain. Hence, quantitative in-
formation extraction is not well studied as a research topic.
Prior work mainly rely on pure rule-based pattern-matching
approaches or rules combined with statistical methods to ex-
tract quantitative information. For example, Saha, Pal, and
Mausam (2017) propose BONIE that uses bootstrapping to
learn the dependency patterns to extract numerical relation
triples. However, not all quantities are expressed in forms of
“relation”. BONIE fails to extract any quantitative informa-
tion from “What are the top 100 universities in the US?”,
and we should know that “100” refers to “universities in
the US”. Other similar studies like MARVE (Hundman and
Mattmann 2017) design complex pattern-matching rules on
the dependency structures. The rules are complex and is not
generic.

We argue that only relying on pattern-matching rules
is far from enough for open domain quantitative informa-
tion extraction, as well as training fully-supervised mod-
els on domain-specific data. To gain higher performance
on open domain information extraction, low-resource ap-
proaches should be considered first. The model should be
able to fit on the smallest amount of data that is acquired
from the open domain with minimum human effort. Based
on these principles, we propose a low resource quantitative
information extraction method based on automatically gen-
erated training data.

To obtain the training data, we propose a novel search-
based approach by searching possible extraction results from
the constituency parsing (CP) structures. The approach is
simple yet effective, with no pattern-matching rules re-
quired. Previous studies already show the effectiveness of
applying CP in information extraction (Bast and Haussmann
2013; Barkschat 2014; Evans et al. 2017; Cetto et al. 2018;
Jiang and Diesner 2019). Our search-based approach sig-
nificantly improves the recall compared with existing rule-
matching approaches (Saha, Pal, and Mausam 2017; Hund-
man and Mattmann 2017). To build an information extrac-
tion model on limited amount of training data, we transform
the information extraction task into a text generation task to
fully leverage the pre-trained weights of a language model.
Figure 1 shows the main concept of such transformation. We
design a natural language prefix to guide the model on what
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The Prince of Ning was said to have an army of over 80, 000 men.

have an army of.
the agent of value 80,000 is the prince of ning.
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…

Input Text

Batch-decoding Prefix

Back-tracking Prefix

Generated Extraction ResultPrefix

Figure 1: Generation-based quantitative information extraction overview.

to generate, and constraint the model to generate text from
the input only. Therefore, the generated text can be consid-
ered as the extraction result. Our design make best use of the
knowledge from pre-trained language models without fur-
ther fine-tuning the model on a different objective. Experi-
mental results show that out approach achieves high preci-
sion and recall, and the extraction results could further boost
the performance of other quantity-related task such as quan-
titative reasoning.

Our work could further encourage endeavors on the quan-
titative information task and may even provide a new per-
spective on designing open information extraction methods
by leveraging text generation models.

Related Work
Quantitative Information Extraction Quantitative Infor-
mation Extraction is a sub-task of Open Information Ex-
traction. Prior studies fall into three categories: open in-
formation extraction (OIE)-based, syntactic parsing (SP)-
based, and semantic role labeling (SRL)-based approaches.
For OIE-based approaches, Saha, Pal, and Mausam (2017)
propose BONIE that uses bootstrapping to learn the depen-
dency patterns to extract numerical relation triples. SP-based
approaches extract numerical information from a syntax tree
built by dependency parsing (DP) or constituency parsing
(CP). DP-based methods (Hundman and Mattmann 2017)
rely on dependency pattern matching, which is complex
and might fail to handle quantitative information with long-
range dependency. Alonso and Sellam (2018) extract small
pieces of text which contain quantities from the constituency
parsing tree. We argue that small pieces of text are not suf-
ficient to fully understand the quantities, more details like
the unit, quantity value, date, and some context are needed.
In the SRL-based approach, quantitative information is con-
sidered as different types of semantic roles (Lamm et al.
2018a), and can be extracted using the SRL model trained on
manually labeled data (Lamm et al. 2018b). More recently,
Ho et al. (2019) propose a sequence tagging model trained
on the data collected from extraction results of OpenIE us-
ing distant supervision. It is worth noting that the model

trained with distant supervision only handles simple quan-
titative semantic roles, for fine-grained quantitative seman-
tic roles (Lamm et al. 2018a), it will be labor-intensive to
acquire the training data. (Ravichander et al. 2019) extract
NUMSETs, which are grounded representations for quantity
mentions, to serve the purpose of quantitative reasoning.

Text Generation Generation tasks has been widely stud-
ied recently. There are different variants of generation tasks,
such as text generation, text-to-text generation, and data-to-
text generation. Early generation systems can be divided into
a pipeline of two sub tasks: content selection and surface re-
alization (Reiter and Dale 1997). Recent studies tend to train
neural models in an end-to-end fashion (Wiseman, Shieber,
and Rush 2017; Liu et al. 2018; Wiseman, Shieber, and Rush
2018; Chen et al. 2020; Zeng et al. 2018; Zhang et al. 2020).
More recently, large pre-trained models (Rothe, Narayan,
and Severyn 2020; Raffel et al. 2020; Lewis et al. 2020)
have also achieved new state-of-the-art results on generation
tasks. To leverage a generation model for information ex-
traction, the results can not be open-ended, which means the
generation process should be more controlled. Controlled
text generation is also a hot research area. It considers con-
trolling attributes, such as identity of the speaker (Li et al.
2016), sentiment (Dou et al. 2018), tense (Hu et al. 2017),
politeness (Sennrich, Haddow, and Birch 2016) and text
length (Kikuchi et al. 2016). ToTTo (Parikh et al. 2020)
propose content control on the topics of generated text. Lu
et al. (2022) propose a unified text-to-structure generation
framework for different information extraction tasks (UIE).
Our work could be considered as a middle-ground between
text-to-text generation and quantitative information extrac-
tion. Different from UIE, our work is based on a text-to-text
generation framework to fully leverage pre-trained language
models.

Task Definition and Data Construction
Task Definition
The RDF model (Lassila et al. 1998) represents each fact as a
<subject, predicate, object> triple. Lamm et al. (2018a) de-
fine the quantitative semantic role labeling (QSRL) schema
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Figure 2: Search Quantitative Facts from the CP structures.

for quantitative fact extraction. Following QSRL, quantity
answers the question “what does this number measure?”,
and we distinguish quantity from the value it takes on and
the unit in which it is measured. As time expressions co-
occur with numbers frequently, we introduce the time argu-
ment, which is the time when a quantity takes on a particu-
lar value. Meanwhile, we maintain the subject and predicate
concept from the RDF structure to build the agent and re-
lation argument. agent plays a direct role in influencing or
motivating a quantity; relation here is similar to the rela-
tional phrase in OIE, which indicates the relation between
agent and quantity.

In summary, for the input text, we define results of quan-
titative information extraction as a set of quantitative facts,
each quantitative fact is a tuple of 6 arguments: <quantity,
agent, relation, value, unit, time>. Our definition of quanti-
tative fact is mainly syntactic-based and can be considered
as an extended RDF schema or a simplified QSRL schema
which preserves the most common quantitative semantic
roles. Such schema allows us to perform basic quantitative
fact extraction by leveraging syntactic features.

Building Quantitative Facts from Scratch
To build quantitative facts from scratch without manually
labeling data, we propose a search-based approach on the
constituency parsing tree, which has two advantages over the
approaches that are based on DP rule matching: 1) search-
ing on the CP tree is simpler and more robust than design-
ing DP matching rules, 2) the extraction results are self-
contained because DP rules are at the token level while
quantitative facts are usually phrases. The idea of searching
on the CP tree might also inspire new approaches in informa-
tion extraction. In addition, we introduce several constituent-
level dependency patterns to filter out the none-quantitative
fact candidates. For all input text, the constituency and de-
pendency parsing trees are obtained using (Zhou and Zhao

2019), and we use Recognizers-Text1, a rule-based tool, to
extract values, time, and units.

Constituency parsing breaks text into phrases or words
according to the phrase structure grammar. Non-terminal
nodes of the tree are phrases while terminals are words. An
observation is that for a given numerical value, the quantita-
tive facts are usually its siblings or siblings of its ancestors in
the constituency parsing tree. Candidates with close distance
are more likely to be the extraction results. Thus, the generic
extraction process is quite simple: searching quantitative
fact candidates on the constituency parsing tree starting
from the numerical value in bottom-up order. Figure 2
shows the overall search process starting from “50,000”.
Each search rule consists of “the path to the parent value
node” (optional) and “the specific search path” (the colored
arrow).

We consider a non-terminal node as a “value node” or
“time node” if it contains a numerical value or time expres-
sion extracted by Recognizers-Text. The slashed squares in
Figure 2 represent the value nodes. For simplicity, we de-
fine “value mention” as the least ancestor that contains the
numerical value (“$50,000” is a value mention in Figure 2).
Note that given the value, the value mention is the least value
node in the constituency parsing tree.
♦ Quantity Extraction: quantity is what the numerical
value measures, it should be close to the value mention.
We find that there are two common cases: 1) quantity ex-
ists within the value mention or the parent node of the value
mention; 2) quantity exists at the same level or the ances-
tor level of the value mention, and is positioned next to the
value node. For 1), we introduce the search rule S1 as:
Search Rule 1 (S1). Searching nouns with their modifiers
right to the value from the value mention or the parent node
of the value mention.
In Figure 2, “supplies” will be the quantity candidate
matched by S1 because it is the noun from the parent node
of the value mention “$50, 000”. For sentences of the second
type, the value may measure actions or events. For example,
in the sentence “it cost us $50 to ship these supplies”, “to
ship these supplies” is the quantity of “50”. As such, the
quantity will be a verb phrase (VP). Prepositional phrases
(PP) could also be considered as quantity candidates. For
example, “of supplies” in “$500 of supplies” and “for med-
ical emergency” in “$2,000 for medical emergency” are the
quantity candidates. Therefore, we introduce the search rule
S2 as:
Search Rule 2 (S2). Searching the right closest sibling (or
cousin) NP, VP, or PP nodes of value mention and all its
ancestor value nodes.
It is worth noting that the output of S1 is one candidate and
that of S2 is a collection of candidates in bottom-up level
order. Some of the candidates are not valid, because they
might be value nodes of a different value, or they could
be time nodes. For example, for “218,590” in the sentence
“There were 218,590 people, 79,667 households, and 60,387
families residing in the county.”, “people” will be matched
by S1, “79,667 households” and “60,387 families” will be

1https://github.com/microsoft/Recognizers-Text
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matched by S2, and we shall filter out “79,667 households”
and “60,387 families” because they are not the quantities of
“218,590”. Therefore, we design the filter rule F1 as:
Filter Rule 1 (F1). Filtering out candidates that are NP
value nodes or time nodes.
Because constituency parsing does not express relations be-
tween constituents, we introduce some constituent-level de-
pendency rules to filter out the non-quantity candidates.
Filter Rule 2 (F2). Filtering out the candidate if its depen-
dency relation with the value mention is not nsubj or nsubj-
pass and is not “close”.

A dependency relation is “close” if one constituent is the
dependent (directly or indirectly) of the other or the shortest
dependency path is less than two. For example, in the sen-
tence “The oil price increased by 10% in January but fell
below 20 dollars a barrel in April.”, “a barrel” will be fil-
tered out as it is not a “close” dependency relation to “10%”
though they are cousins in the CP tree.

The overall process is we first search the candidate (de-
noted by c1) with S1, then we search candidates (denoted
by C2) with S2 in bottom-up order and filter using F1 and
F2. After that, We obtain the ordered set of candidates
C = {c1}

⋃
C2. To extract self-contained quantity, we fur-

ther merge the candidates in C that are adjacent in the orig-
inal text and share the same phrase-level parent in the con-
stituency parsing tree. The first remained candidate is the
quantity. For example, for the value “500,000” in sentence
“500,000 coronavirus test kits donated by Jack Ma arrived
in the US”, c1 is “coronavirus test kits” (nouns) and C2 is
{“donated by Jack Ma” (VP), “arrived in the US” (VP)}.
After merging, the first remained candidate (quantity) will
be “coronavirus test kits donated by Jack Ma”.
♦ Relation Extraction: The relation here is similar to the
relational phrase in OIE, which is usually a verb with and
the preposition after it (if any). The verb indicates how the
value is changed, such as “increased”, or the action that is
taken on the value, such as “donated”. The preposition after
the verb is also important, for example, it could help dis-
tinguish between absolute and relative change, such as “to”
in “increased to” and “by” in “increased by”. In the con-
stituency parsing tree, relation is usually in the least verb
phrase (VP) ancestor of the value mention (Jiang and Dies-
ner 2019). Thus, the search rule for extraction is quite sim-
ple, we search verb and the preposition after it from the least
VP ancestor of the value mention as relation.
♦ Agent Extraction: agent plays a direct role in influencing
or motivating a quantity, and it is usually to the left of the
relation. We design the search rule S3 for agent extraction
as:
Search Rule 3 (S3). The left closest sibling (or cousin) NP
node of the relation.
We further apply the filter rule F2 to the output of S3 to ob-
tain the extracted agent.
♦ Time Extraction: We extract time from the value mention
or the first sibling or cousin time node of value nodes in the
bottom-up search order.

Summary
For each value, we extract the quantitative semantic roles
via searching on the constituency parsing tree starting from
its value mention in bottom-up order. The search rules uti-
lized are quite simple. As a benefit of constituency parsing,
our approach could partially resolve the ellipsis for text with
multiple quantities. For example, in the sentence “revenues
for private commercial stations increased from $1.4 billion
to $1.5 billion”, the correct agent “revenues for private com-
mercial stations” for both “$1.4 billion” and “$1.5 billion”
could be extracted. While for DP rule-matching, it requires
complex dependency patterns, which will inevitably intro-
duce errors. The extraction results from the search-based
approach can be considered as distant supervision for the
generation model.

Infomation Extraction via Text Generation
Due to the lack of manually labeled data and existing open
datasets, fully training a classic (i.e. sequence labeling) in-
formation extraction model can be difficult. Recently, large-
scale pre-trained language models have achieved state-of-
the-art results in various tasks by fine-tuning on task-specific
data. However, the fine-tune and pre-train objectives are not
strictly aligned. Language models are mainly pre-trained
with the Masked Language Modeling (MLM) objective,
while the downstream tasks use task-specific heads such as
classification for fine-tuning.

Under the low-resource setting, how to better leverage
the knowledge from the pre-trained model becomes par-
ticularly important. Models with task-specific heads enjoy
the low-level knowledge of the pre-trained language model
to achieve better performance. We argue that only low-
level knowledge is insufficient for low-resource tasks lack
of training data. Prior studies on prompt-tuning suggests that
the cloze prompt (Schick and Schütze 2021) and the prefix
prompt (Li and Liang 2021; Lester, Al-Rfou, and Constant
2021) are forms that can fully leverage the language models,
as these forms strictly match the pre-train objectives.

Inspired by TWT (Li et al. 2021), a data-to-text task con-
ditioned on both the input data and a given prefix, we trans-
form the information extraction task into a text generation
task. The decoder of the text generation model is fed with a
manually constructed prefix as a hint or control factor, which
allows the model to generate the following text conditioned
on the prefix. The generated text are considered as the ex-
traction result. For the example in Figure 1, to extract the
quantitative facts from text “The prince of Ning was said
to have an army of over 80,000 men.”. We first input the
text into the encoder of the model. Then we construct a pre-
fix “The agent of 80,000 is” with one numerical value in-
cluded. Finally, the decoder of the model generates the fol-
lowing text “the prince of Ning” as the agent of 80,000.
By changing the prefix, we can extract all the arguments
of one quantitative fact and all the quantitative facts. Low
resources quantitative information extraction benefits from
such transformation, due to:

• Open-ended Target: Different from the relation extrac-
tion task, the information extraction task is not a classifi-
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cation problem. The arguments are open-ended, making
the task a close match to text generation.

• Fixed Prefix Template: Unlike prompt tuning, which re-
quires prompt construction based on different inputs and
answer construction based on different labels. The pre-
fix of our method is rather fixed and the answer can be
considered as the result directly without mapping to true
labels, which decreases the loss from these stages.

• Pre-acquired Numerical Values: The numerical value
can be pre-acquired easily with heuristic rules or other
tools, making the value an known argument for the pre-
fix. The value may serve as the knowledge to guide the
model “generate” results of other unknown arguments.

Model Overview
We adopt a transformer-based model (Rothe, Narayan, and
Severyn 2020) with the complete encoder-decoder struc-
ture. Both the encoder and decoder are initialized with pre-
trained parameters. The text to be extracted is the input of
the encoder and the decoder generates the extraction results.
We design different forms of prefixes to allow a generation
model serve the information extraction purpose. For the de-
coder, we employ different decoding strategies to accelerate
decoding speed or gain higher performance. We also intro-
duce the copy mechanism and a source tracing approach to
ensure the generated extraction result can be strictly aligned
and back-traced to the input.

Prefix Design
Given the input data x, we design a natural language pre-
fix template “the arg of value is”, where value is one
of VALUES = {value1, value2, ..., valuen} extracted by
Recognizers-Text from x, and arg is one of ARGS =
{quantity, agent, relation, time}. The prefix construction
process to build a set of prefixes P = {p1, p2, ..., pn} can be
described as Algorithm 1.

Decoding Strategy
To leverage the prefix for extraction purposes, the decoding
strategy should be designed to generate extraction results in-
stead of next words. Typically, the extraction results are la-
beled as tagged sequences(Panchendrarajan and Amaresan
2018) or span-based segments(Li et al. 2019). Such label-
ing schema allow the model to extract all results at the same

Algorithm 1: Prefix Construction
Input: T
Parameter: VALUES, ARGS
Output: P = {p1, p2, ..., pn}

1: Initialize P← {}
2: for each value ∈ VALUES do
3: for each arg ∈ ARGS do
4: pi = the arg of value is
5: Update P← P+ pi
6: end for
7: end for
8: return P

time. For generation-based methods, the results are decoded
in an auto-aggressive style. In order to complete a full ex-
traction, the model is required to complete n different gen-
erations, where n equals to the amount of arguments to ex-
tract. For example, to extract the quantity, agent, relation
and time for each value, the model is required to generate 4
times, where each time the result for a different argument is
extracted. To address this problem, as shown in Figure 1, we
design two different decoding strategies to complete a full
extraction.

To maintain a matching inference speed with the tradi-
tional extraction models, we adopt a batch-decoding strat-
egy for prefixes with different lengths. We left pad all the
prefixes from P for each value to the same length with the
token representing the end of sequence (EOS token). The
batched prefixes are input into the model and the results are
generated in parallel:

Pvocab(w) = softmax(f([p1; p2; ...; pn], ct))

Pvocab(w) is a set of next word probabilities conditioned
on different prefixes from {p1, p2, ..., pn}. ct is the context
vector. To gain higher extraction performance, we design a
back-tracking strategy for each argument to be extracted. We
build a prefix including all history extraction results as prior
knowledge for the next generation to back-track:

Pvocab(wn) = softmax(f([p1, o2, p2, ..., pm, om], ct))

Pvocab is the probability of the next word wn conditioned on
the prefix. om is the history generated tokens conditioned on
prefix pm. The more accurate the prior extractions are, the
higher performance the following extractions acquire.

Extraction Confidence and Source Tracing
Generation models tend to generate open-ended targets with
hallucinated content which is not faithful to the input (Xiao
and Wang 2021). For information extraction, we argue that
the generated text should be more than faithful to the input.
The concept of faithful refers to the generations is relevant to
the input, but the expressions (how to say it) can be different.
Text with the same semantics as the ground truth but realized
differently cannot be considered as a true positive, as it is not
a hard alignment with the input text.

To maintain a high extraction confidence, where the gen-
erated results can be aligned to the input text, we adopt a
copy strategy. Li and Wan (2018) introduced the copy mech-
anism (Oriol, Meire, and Navdeep 2015; Gu et al. 2016) to
improve faithfulness of the generations. The copy mecha-
nism is mainly proposed to address the out-of-vocabulary
(OOV) problem. For the extraction-purposed generation, we
expect the text to be generated in an out-of-vocabulary way.
Specifically, the generated tokens after the prefix should
originate from the vocabulary of the input text, while main-
taining the generation abilities of pre-trained language mod-
els.

To achieve such goal, we adopt the copy mechanism.
For an encoder-decoder model, the context vector is h∗

t =∑
i a

t
ihi, where ati denote the encoder-decoder attention

weight. Let Pvocab(w) denote the probability of generating
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a token w, the final probability distribution over both the vo-
cabulary and the input text will be:

P (w) = (1− pcopy)Pvocab(w) + pcopy
∑

i:wi=w

ati

When pcopy = 1, the tokens are hard copied from the in-
put text over a probability distribution represented by the
encoder-decoder attention weight. pcopy is calculated using
a binary classifier based on the decoder input word embed-
ding xt, the output of last decoder layer st, and the context
vector weighted on the encoder-decoder cross attentions h∗

t .
Additionally, we explicitly ”teach” the model when to copy
from the input text. We consider tokens of the extraction re-
sults in the golden target as copied tokens, denoted by Va.
Following Chen et al. (2020), we maximize the copy proba-
bility pcopy with an extra loss term at the copied tokens:

L = Lc + λ
∑

wj∈Va

(1− pjcopy)

where Lc is the loss between the model’s output and the
target, wj is the target token at position j. λ is a hyper-
parameter representing the weight for the copy loss. Va is
a set of vocabularies corresponding to the aligned words.

One remaining problem for generation-based extraction
models is source tracing. As the extraction results are gener-
ated as pure text, tracing the source of the extraction result,
i.e., the start and end positions of the extraction results from
the input can be difficult. To trace the source of the results,
we find the highest probabilities from the encoder-decoder
weight between the generated result and the input tokens.
Tokens from the input text with the highest probabilities are
considered as the source of the extraction result.

Experiments
We first perform human evaluation on the search-based ap-
proach to examine it’s performance on building high quality
training data. Then we evaluate quantitative information ex-
traction on two tasks: 1) quantitative fact extraction and 2)
quantitative reasoning.

Search-based Approach Human Evaluation
We sample and label 200 sentences from the DROP
dataset (Dua et al. 2019) and 200 sentences from the test
data of BONIE (Saha, Pal, and Mausam 2017) with the
schema of quantitative fact. Each sentence contains at least
one numerical value. In total, we labeled 453 agents, 475
relations, 496 quantities, and 186 time, which is a total of
613 quantitative facts. We use partial match and exact match
as the evaluation metrics, denoted by PM and EM, respec-
tively. We compare our approach with a simplified search-
based baseline Searchs and two DP-rule-matching base-
lines: MARVE (Hundman and Mattmann 2017) and BONIE
(Saha, Pal, and Mausam 2017). Searchs extracts quantity
from the value mention, time from the time node closest to
the value mention, relation from the first VP value node in
top-bottom order, and agent from the left sibling node of the
relation.

For a fair comparison between BONIE (Saha, Pal, and
Mausam 2017), MARVE (Hundman and Mattmann 2017),
and our approach, we make some adjustments to the output
schemas. BONIE outputs numerical triple <arg1, relation,
arg2> with an extra additional. One of the arg1 and arg2
contains numerical value while the other is the subject or
object, relation is similar to the relational phrase in OIE,
and additional is the additional information of the sentence.
MARVE outputs <value, quantified, related> where quan-
tified is the object or concept measured by the value, and re-
lated is a collection of words or entities related to a measure-
ment. For BONIE, we consider a correct extraction of agent
or quantity if either arg1 or arg2 matches the labeled text.
Some relation phrases from BONIE are normalized, we con-
sider all these types of relations correct. For MARVE, we
only evaluate quantity. Either quantified or related matches
the labeled quantity will be considered as correct.

The left part of Table 1 shows that the search-based ap-
proach achieves the best overall performance, the recall is
improved significantly. BONIE extracts empty results for
319 out of 400 sentences on our data, which is consis-
tent with the original paper results (1512 out of 2000 sen-
tences have empty results from the ClueWeb12)2. BONIE
and MARVE perform poorly on sentences with multiple nu-
merical values. The search-based approach has significantly
better results under the EM metric, the reason is that DP-
based pattern matching works at token-level while the quan-
titative facts are mostly phrases. It should be noted that the
searching rules are quite simple, which also indicates the
effectiveness of search-based approaches in information ex-
traction as simple methods often work better than complex
ones. The significantly improved recall and performance on
extractions makes the search-based approach a strong base-
line for building training data.

Quantitative Information Extraction
As the search-based approach produces high quality quanti-
tative facts, we consider the quantitative facts labeled data.
Therefore, we are able to train the generation-based quan-
titative information extraction model without manually la-
beled data. Theoretically unlimited amount of labeled data
can be produced with such approach. To further examine the
performance of our model under the low resource setting, we
only search the quantitative facts from 1,000 sentences. Al-
together 4000 quantitative facts are produced. We roughly
split the sentences and quantitative facts with the ratio of
8:1:1 for training, validation and testing.

We adopt T5 (Raffel et al. 2020), a pre-trained text-to-
text using the transformer framework as the backbone of our
model. T5 achieved state-of-the-art results on many text gen-
eration benchmarks, including ToTTo (Parikh et al. 2020).
For our model, we adopt the back-tracking prefix, as the
batch-decoding prefix is mainly designed to improve decod-
ing speed, which is not a priority in this work. We compare
our model with a vanilla T5-based generation model by in-
troducing the prefix only at inference time. We train both the

2https://github.com/dair-iitd/OpenIE-standalone/tree/master/
data
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Search Searchs BONIE Marve Baseline Gen Our Gen
P R P R P R P R P R P R

quantity PM 0.84 0.91 0.66 0.82 0.57 0.15 0.82 0.28 0.81 0.75 0.86 0.88
EM 0.64 0.89 0.33 0.70 0.34 0.10 0.31 0.11 0.73 0.46 0.80 0.60

agent PM 0.85 0.94 0.67 0.98 0.80 0.20 - - 0.86 0.82 0.90 0.90
EM 0.58 0.91 0.57 0.97 0.72 0.18 - - 0.74 0.39 0.84 0.55

relation PM 0.89 0.97 0.44 0.82 0.85 0.21 - - 0.71 0.42 0.83 0.71
EM 0.74 0.97 0.26 0.73 0.69 0.17 - - 0.62 0.28 0.80 0.56

time PM 0.71 0.92 0.73 0.80 - - - - 0.56 0.96 0.79 0.81
EM 0.61 0.91 0.66 0.78 - - - - 0.56 0.94 0.73 0.57

Table 1: Extraction results. The left part evaluates the search-based approach and the right part evaluates the gen-based models.

RTE-Q ∆ NewsNLI ∆ RedditNLI ∆ NR ST ∆ AWPNLI ∆
Nat.
Avg. ∆

Synth.
Avg. ∆

All
Avg. ∆

MAJ 57.8 0.0 50.7 0.0 58.4 0.0 33.3 0.0 50.0 0.0 0.0 0.0 0.0
GPT 68.1 +10.3 72.2 +21.5 52.4 -6.0 36.4 +3.1 50.0 +0.0 +8.6 +1.6 +5.8
BERT 57.2 -0.6 72.8 +22.1 49.6 -8.8 36.9 +3.6 42.2 -7.8 +4.2 -2.1 +1.7
Q-REAS 56.6 -1.2 61.1 +10.4 50.8 -7.6 63.3 +30 71.5 +21.5 +0.5 +25.8 +10.6
+ Our method 59.6 +1.8 62.8 +12.1 55.2 -3.2 62.7 +29.4 68.6 +18.6 +3.6 +24.0 +11.7

Table 2: Accuracies(%) of quantitative reasoning. ∆ captures the improvement over the baseline MAJ.

baseline and our approach with 8 NVIDIA Tesla V100 32G
GPUs. Following (Raffel et al. 2020), we employ a constant
learning rate of 1e−3 with AdaFactor optimizer (Shazeer
and Stern 2018). Decoding is conducted via greedy search.
For other settings (including the baselines), the batch size is
128, and the maximum number of input and output tokens
are 256 and 128, respectively. Tokens shorter or longer than
the maximum length will be padded or truncated. For sim-
plicity, the best checkpoint is chosen based on the BLEU
metric on the validation set. We evaluate the precision and
recall on the test set with the best checkpoint.

The right part of Table 1 shows the experiment results of
the generation-based models. Our model achieves high per-
formance on the data built with the search-based approach.
The comparison with the baseline generation model sug-
gests that the copy mechanism and the back-tracking de-
coding strategy are both effective designs. By examining
specific cases, we find that the generation model may even
remove some of the false positive results from the search-
based approach. The results also demonstrate that with only
a few amount of labeled data, the generation-based model
is capable of completing extraction tasks. By adopting more
data produced by the search-based approach, the generation
model may achieve even better results. But we tend to prove
the effectiveness of our model designs under the low re-
source setting, making our model also possible to work with
a limited amount of manually labeled data.

Quantitative Reasoning
We further examine the effectiveness of the extracted
quantitative facts on the downstream task: quantitative
reasoning in natural language inference (NLI) on the
EQUATE (Ravichander et al. 2019) dataset. EQUATE con-
sists of 3 natural (RTE-Q, NewsNLI and RedditNLI) and
2 synthetic (StressTest and AwpNLI) test sets. Ravichan-
der et al. (2019) design a strong heuristic baseline Q-REAS.

We replace the quantity parser in Q-REAS with our search-
based approach and compare the best results with the major-
ity class (MAJ) baseline and the original Q-REAS.

Table 2 shows the comparison results. By only replac-
ing the quantity parser with our method, Q-REAS achieves
better accuracy on all the natural-sourced data with an im-
provement of 3.1%, while slightly underperforms on the
synthetic-sourced data. The overall accuracy is improved
by 1.1% compared to the original Q-REAS and is the best
among all the baselines in Ravichander et al. (2019), in-
cluding GPT (Radford et al. 2018) and BERT (Devlin et al.
2019) fine-tuned on NLI. The synthetic data is specifically
designed for arithmetic problems with many ellipses and co-
references in quantity or unit, e.g., “Joan had 8 kittens, she
gave 2 to Tom.”, this leads to slightly decreased accuracy.
Handling such synthetic data is not the focus of this paper. It
should be noted that there are several cascade components in
Q-REAS. The quantity parser of Q-REAS is the only com-
ponent we changed, and it can be difficult to utilize all ar-
guments in a quantitative fact for reasoning. The improved
performance by only replacing the quantity parser proves the
effectiveness of our approach.

Conclusion and Future Work
We propose a search-based approach to build quantitative
facts from scratch and a prefix-based generation model that
fully leverages pre-trained weights for quantitative informa-
tion extraction. Our method could significantly improve the
recall and the extraction could further boost the performance
of quantity related downstream tasks. The idea of search-
ing might inspire new approaches on how to build train-
ing data from a cold start and the generation schema may
also encourage further endeavors on low-resource informa-
tion extraction. For future work, we will focus on paragraph-
/document-level extraction, and integrate the extraction for
more downstream tasks such as reading comprehension.
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