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Abstract

Recent work for continual relation learning has achieved re-
markable progress. However, most existing methods only fo-
cus on tackling catastrophic forgetting to improve perfor-
mance in the existing setup, while continually learning rela-
tions in the real-world must overcome many other challenges.
One is that the data possibly comes in an online streaming
fashion with data distributions gradually changing and with-
out distinct task boundaries. Another is that noisy labels are
inevitable in real-world, as relation samples may be contami-
nated by label inconsistencies or labeled with distant supervi-
sion. In this work, therefore, we propose a novel continual re-
lation learning framework that simultaneously addresses both
online and noisy relation learning challenges. Our framework
contains three key modules: (i) a sample separated online pu-
rifying module that divides the online data stream into clean
and noisy samples, (ii) a self-supervised online learning mod-
ule that circumvents inferior training signals caused by noisy
data, and (iii) a semi-supervised offline finetuning module
that ensures the participation of both clean and noisy sam-
ples. Experimental results on FewRel, TACRED and NYT-H
with real-world noise demonstrate that our framework greatly
outperforms the combinations of the state-of-the-art online
continual learning and noisy label learning methods.

Introduction
Relation extraction (RE), aiming to identify the relationships
between entities in texts, is an essential task in information
extraction (IE), which can apply to many downstream nat-
ural language processing (NLP) tasks, such as information
retrieval and question answering. However, traditional RE
methods (Zeng et al. 2014; Zhang et al. 2017; Baldini Soares
et al. 2019; Zhu et al. 2020; Li et al. 2022) always assume the
relations are predefined and fixed, which cannot handle the
new relations emerging in the real-world scenarios. Hence,
the ability to continually learn relations from sequential data
has gained much attention in recent RE research (Wang et al.
2019a; Han et al. 2020; Cui et al. 2021; Zhao et al. 2022),
which is often coined as continual relation extraction (CRE).
Despite rapid advances in CRE, most of recent researches
are devoted to improving performance in the existing CRE
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Figure 1: Differences between CRE and ON-CRE. CRE is
offline and task-based with whole clean data, whereas ON-
CRE is online and task-free with falsely labeled data (black
samples). An episode holds the samples only allowed to use
once for parameter update during a specific time period.

setup. However, the existing setup still lacks practicality in
certain aspects.

On the one hand, it is an offline task-based sequential
learning setup, which means that a sequence of tasks are
learned, one at a time, with all data of current task avail-
able but not of previous or future tasks. In other words, the
model knows the task boundaries at the training time and the
CRE process is divided perfectly with separate tasks. This
setup, however, is rarely encountered in practical applica-
tions. Therefore, we propose an online task-free CRE setup
that keeps on learning relations over time in a streaming
fashion, using each streamed sample only once, with data
distributions gradually changing and without the notion of
separate tasks. Figure 1 shows the differences between CRE
and our proposed setup. The samples in an episode could
come from different tasks. Unfortunately, existing methods
(Wang et al. 2019a; Han et al. 2020; Cui et al. 2021; Zhao
et al. 2022) cannot be applied in online task-free CRE sce-
narios as they are all trained in the offline paradigm.

On the other hand, previous works assume that all the
samples are labeled correctly. However, learning from data
riddled with noisy labels is an inevitable scenario in real-
world especially in the context of RE. Supervised RE models
suffer from the lack of large-scale high-quality training data,
since manually labeling data is time-consuming and human-
intensive. To alleviate this issue, distant supervision (Mintz
et al. 2009) has been used to automatically label data by
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aligning existing knowledge bases (KBs) with plain texts.
Obviously, such automatic labeling mechanism inevitably
brings noisy labels, because an entity pair may not express
the relation from KBs in a specific sentence. Therefore, con-
sidering the noisy relations in CRE is quite necessary, which
is beneficial for more realistic CRE in real-world.

To this end, we aim to jointly tackle the problems of on-
line and noisy relation learning in CRE, which to the best
of our knowledge have not been studied in prior work. We
leverage the replay-based continual learning approach to
handle this new scenario, while previous works have proved
that replay-based methods are the most effective in NLP
applications (de Masson d'Autume et al. 2019) including
RE (Wang et al. 2019a). Nonetheless, replaying a noisy
memory will aggravate the forgetting process due to the un-
reliable mapping of previously acquired knowledge (Kim
et al. 2021), which indicates that maintaining a clean re-
play buffer is extremely important. Moreover, existing noisy
label learning methods suffer from handling the online task-
free setting (Rolnick et al. 2019; Aljundi et al. 2019; Prabhu,
Torr, and Dokania 2020) because they assume that the whole
dataset is given to purify the noise. Therefore, we propose a
purification technique that could divide the online task-free
data stream into clean and noisy samples. Empirical results
by Arpit et al. (2017) show that deep neural networks learn
the simple pattern first before memorizing the noisy labels
through long-term training, which is consistent with the re-
quirements of online learning as each streamed sample is
used only once. Specifically, we train a purifier in online
manner and separate samples based on the mean square er-
ror (MSE) loss (Karim et al. 2022) because clean samples
tend to have lower loss compared to noisy ones.

Although the purifier can separate the samples, directly
dropping the noisy samples filtered by purifier is infeasible
because the noise rate may be high which signifies plenty
of data is wasted. However, learning with noisy labeled data
could lead to incorrect back propagation signals. Therefore,
we utilize all the streaming data at online learning stage to
alleviate noisy errors using self-supervised contrastive learn-
ing (Chen et al. 2020), which treats all the data as unlabeled
data and learns general relation representations. At infer-
ence, we perform finetuning in a semi-supervised fashion
via conditional entropy minimization (Grandvalet and Ben-
gio 2004) using all the samples stored in the memory includ-
ing clean and noisy samples. Taking noisy data as unlabeled
data and incorporating its unsupervised features improve the
overall performance significantly.

In this paper, we propose a simple continual relation
learning framework to simultaneously address both on-
line and noisy relation learning challenges, which con-
tains Sample Separated online purifying, Self-Supervised
online learning and Semi-Supervised offline finetuning (S6).
Specifically, we first separate the delay buffer storing the in-
coming data stream into a clean delay buffer and a noisy de-
lay buffer. If the clean or noisy delay buffer is full, specific
samples are stored in corresponding replay buffer. Simul-
taneously, an online learner is trained in a self-supervised
fashion with data in replay and delay buffer. At test time, we
copy the parameters of the learner and finetune on clean and

noisy replay buffers in a semi-supervised fashion. In sum-
mary, the main contributions of this paper are three-fold:
• To the best of our knowledge, we are among the first

to consider Online and Noisy learning scenarios in the
realm of CRE, which is a more realistic setup called ON-
CRE. We define the problem and construct three bench-
marks for this problem.

• We propose S6, a novel continual relation learning
framework for ON-CRE based on sample separated on-
line purifying, self-supervised online learning and semi-
supervised offline finetuning.

• Experimental results demonstrate that S6 outperforms
current state-of-the-art on two synthetic noise bench-
marks of FewRel and TACRED, and one real-world noise
benchmark of NYT-H.

Related Work
Continual Learning Existing continual learning mainly
focuses on three aspects: (1) Regularization-based meth-
ods (Zenke, Poole, and Ganguli 2017) update important pa-
rameters with constraints to relieve catastrophic forgetting.
(2) Dynamic architecture methods (Chen, Goodfellow, and
Shlens 2016) extend the model architecture to learn new
tasks, so the model size increases continually. (3) Memory-
based methods (de Masson d'Autume et al. 2019) save some
samples from old tasks and replay them back in new tasks,
which have been proved to be the most effective method in
NLP. In CRE, Wang et al. (2019a) utilizes an explicit align-
ment model to mitigate the sentence embedding distortion
when encountering new relations. Han et al. (2020) intro-
duces a joint training process for memory activation and
consolidation. Cui et al. (2021) tries to refine the relation
prototypes to better recover the interruption of the embedded
space. And Zhao et al. (2022) incorporates both contrastive
learning and knowledge distillation to maintain the stability
of the relation embedding. But these methods cannot be ap-
plied to ON-CRE as they are all trained in offline scenarios.

Online Learning In the online continual learning sce-
nario, even though the learner is allowed to store samples
as they come, it can only use a training sample (unless it is
in the memory) once to update its parameters (Aljundi et al.
2019). On the contrary, the offline setting allows unrestricted
access to the entire dataset corresponding to a specific task,
and one can revisit the samples multiple times during the
learning process (Rebuffi et al. 2017). There are few studies
in online RE. Peng et al. (2019) adopts an online clustering
algorithm to extract potential semantic centers of each rela-
tion. Wang et al. (2022) deploys a caching updater to refresh
the relation representations at each training step in an online
manner. However, online CRE is not studied in prior work.

Noisy Label Learning Learning with noisy labeled data
has been a long-studied problem. Recent work (Wang et al.
2019b; Kun and Jianxin 2019; Wei et al. 2020) tries to
overcome this issue by regularizing, repairing, filtering, etc.
However, these methods are unsuitable in online continual
learning setting because they require plenty of samples to
work. Distantly supervised RE (Mintz et al. 2009) needs to
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consider the negative impact of noisy relations, but they are
different from the sentence-level RE because they assume
several samples with same relation stored in a bag which is
also coined as bag-level RE. Neither noisy label learning nor
distantly supervised RE methods are suitable for ON-CRE.

Methodology
Problem Statements
We consider the scenario of online noisy continual relation
learning. A sample (xt, yt), where xi is the input data in-
cluding the natural language text and entity pair, and yt ∈ R
is the relation label, arrives at each time step t and the data
distribution is gradually changing without task identifiers.
Moreover, we assume that some of the data is incorrectly la-
beled. The goal of ON-CRE is to keep learning new tasks
while avoiding catastrophic forgetting of previous tasks in
both online and noisy learning settings.

Model Overview
The overview of S6 is illustrated in Figure 2, which contains
three key components: sample separated online purifying,
self-supervised online learning and semi-supervised offline
finetuning. In ON-CRE, a delay buffer D of limited size is
used to store the incoming data and our first objective is to
separate this buffer into a clean delay buffer C and a noisy
delay buffer N . Whenever C or N is full, we put several
samples into clean replay bufferMC or noisy replay buffer
MN . First, we train a purifier consisting of an encoder fϕ(·)
and an online classifier on D. Then we adopt MSE loss to
determine a threshold and separate D into C and N . Simul-
taneously, we also define a learner fθ(·) and train it on D
via self-supervised contrastive loss. Moreover, we perform a
replay onMC andMN to relieve catastrophic forgetting in
fθ(·). At inference time, we copy the parameters of learner
fθ(·) and add a relation classifier to finetune on MC and
MN in a semi-supervised fashion.

Encoder
For the input relation sample (x, y), we utilize BERT (De-
vlin et al. 2019) as the backbone of fϕ(·) and fθ(·) to encode
entity pairs and context information to get the relation rep-
resentation. Following (Baldini Soares et al. 2019), given a
sample x including a sentence and its entity pair (E1, E2),
we augment x with four special tokens to indicate the begin
and end of each entity mentioned in the sentence. Then the
augmented sentence x̃ is fed to BERT and the output corre-
sponding to the positions of E1 and E2 are concatenated to
map to a hidden representation h ∈ Rd as follows:

h = W[h[E1];h[E2]] + b = W[BERT(x̃)] + b (1)

where W ∈ Rd×2d and b ∈ Rd are trainable parameters.
And h serves as the input feature for online classifier, pro-
jection head and relation classifier.

Sample Separated Online Purifying
Deep neural networks learn the simple pattern first before
memorizing the noisy labels through long-term training,

Data Stream

MSE

Delay Buffer Copy

CE
EntMin
(VAT)

Sample separated online purifying

Self-supervised online learning

Semi-supervised offline finetuning

Figure 2: Illustration of the S6 framework.

which means that clean samples tend to have lower loss
compared to noisy samples in brief period of online train-
ing. Therefore, we train a temporary purifier (denoted as
fϕ(·) below for symbol convenience) and set an appropri-
ate separation threshold during each online learning episode.
Specifically, whenever the delay bufferD is full, we perform
supervised learning on D to obtain a purifier fϕ(·):

Lp =
1

|D|
∑

(x,y)∈D

−y log fϕ(y|x) (2)

For every xi, its prediction probabilities obtained by pu-
rifier fϕ(·) is denoted as pi = [p1i , p

2
i , ..., p

n
i ], where n is

the size of relation set RD in D. Similarly, the ground-
truth label distribution for xi is yi = [y1i , y

2
i , ..., y

n
i ], where

yji ∈ {0, 1}. We adopt mean square error (MSE) loss (Karim
et al. 2022) to measure the differences li between pi and
yi. Then we estimate the separation threshold lt for clean
and noisy samples as the mean of loss distribution lD =
[l1, l2, ..., l|D|]:

lt =
1

|D|

|D|∑
i=1

MSE(pi,yi) =
1

|D|

|D|∑
i=1

n∑
j=1

(pji − yji )
2 (3)

Based on the separation threshold, the samples with loss
lower than lt are sent to clean delay buffer C and the rest
ones are sent to noisy delay buffer N . This sample separa-
tion process corresponds to the line 3 ∼ 19 in Algorithm 1.

Whenever C or N is full, we perform sample selection
to store several samples in replay buffer MC or MN . We
stipulate that lC and lN are loss distribution containing loss
values for samples in C and N , respectively. Then we let
l
rj
C [K1] indicate that it only contains the lowest K1 loss val-

ues for samples with relation rj ∈ RD in lC , while l
rj
N [K2]

only contains the highest K2 loss values for samples with re-
lation rj ∈ RD in lN . The select rules for the replay buffers
are expressed as:

MC ← MC ∪ {(xi, yi) : ∀li∈ l
rj
C [K1], rj ∈ RD}(4)

MN ← MN ∪{(xi, yi) : ∀li∈ l
rj
N [K2], rj ∈ RD}(5)
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Algorithm 1: Online Purifying and Learning for S6

Input: Online streaming data (x1, y1), ..., (xn, yn), and the
learner fθ(·).

Output: The learner fθ(·), the clean replay buffer MC and the
noisy replay bufferMN .

1: D = C = N =MC =MN = ∅
2: for t← 1 to n do
3: if D is full then
4: Initialize a purifier fϕ(·) for current D
5: for minibatch B ∈ D ∪MC ∪MN do
6: Bϕ = {(x, y) : (x, y) ∈ B ∩ D}
7: Update fϕ(·) on Bϕ based on Equation 2
8: Update fθ(·) on B based on Equation 6
9: end for

10: Calculate the threshold lt based on Equation 3
11: for i← 1 to |D| do
12: li = MSE(fϕ(xi),OneHot(yi))
13: end for
14: C ← C ∪ {(xi, yi) : ∀ li < lt}
15: N ← N ∪ {(xi, yi) : ∀ lt ≤ li}
16: Reset D
17: else
18: D ← D ∪ (xt, yt)
19: end if
20: if C is full then
21: UpdateMC based on Equation 4
22: Reset C
23: end if
24: ifN is full then
25: UpdateMN based on Equation 5
26: ResetN
27: end if
28: end for
29: return fθ(·),MC ,MN

In other words, we hold K1 number of highly confident
(with low loss values) clean samples with every relation
from C in the clean replay bufferMC . In contrast, K2 num-
ber of noisy samples with high loss values are stored in the
noisy replay bufferMN . The sample selected process is de-
scribed in line 20 ∼ 27 in Algorithm 1.

Self-supervised Online Learning
Through purification, we actually have separated clean sam-
ples and noisy samples. However, directly dropping the
noisy samples is such a waste which may result in few clean
samples for fully supervised learning. Hence, we alleviate
this issue via learning only from xt using self-supervised
contrastive learning. To mitigate catastrophic forgetting, we
treat all the data in current delay buffer and replay buffers
as unlabeled data to learn general relation representations,
and finetune the representation using only the samples in
the replay buffers at inference time, which is similar with
GDumb (Prabhu, Torr, and Dokania 2020).

Specifically, we add a projection head g(·) on top of the
learner fθ(·), and train it using self-supervised contrastive
loss. For a minibatch B from D ∪ MC ∪ MN , we apply
easy data augmentation (Wei and Zou 2019) (e.g., random
insertion, random swap, random deletion) to create positive
samples. Then we train it using the normalized temperature-

scaled cross-entropy loss (Chen et al. 2020):

Ls = −
2|B|∑
i=1

log
eu

⊤
i uj/τ∑2|B|

k=1,k ̸=i e
u⊤

i uk/τ
(6)

where uz = g(fθ(xz))
||g(fθ(xz))||2 , z ∈ {i, j, k} denotes the L2 nor-

malized feature, and τ > 0 is the temperature. The process
of online learning is shown in line 5 ∼ 9 in Algorithm 1.

Semi-supervised Offline Finetuning
At any inference time, we finetune the online learner fθ(·)
using only the samples in both clean and noisy replay
buffers. Since the labels of the noisy replay buffer cannot
be trusted, we consider them as unlabeled data. Therefore,
we can define the labeled and unlabeled sets,MC andMN ,
and finetune the learner fθ(·) in a semi-supervised fashion.
The semi-supervised methods we consider in this paper have
a learning objective of the following form:

Lf = min
θ
Ll(MC , θ) + ωLu(MN , θ) (7)

where ω is a non-negative scalar weight and θ is the parame-
ters for the learner fθ(·). Ll is a standard cross-entropy clas-
sification loss of all clean relation samples, and Lu is a loss
defined on unsupervised relation samples. Here we adopt
the conditional entropy minimization (EntMin) (Grandvalet
and Bengio 2004) to encourage the model to make confident
predictions on unlabeled data, because we assume that un-
labeled data does have a class we are training on, even if it
is unknown. Here we treat fθ(·) as a conditional distribution
of relations over samples, and the loss is defined as:

Lu =
1

|MN |
∑

x∈MN

∑
y∈RM

−fθ(y|x) log fθ(y|x) (8)

where RM denotes the relation set in replay buffers. We
should point out that many semi-supervised learning tech-
niques could be applied to this fine-tuning stage, which will
not affect our overall framework. For instance, the virtual
adversarial training (VAT) (Miyato, Dai, and Goodfellow
2017) could also be used as:

Lu =
1

|MN |
∑

x∈MN

KL(fθ(x) || fθ(x+∆x)) (9)

∆x = arg max
|δ|2=ϵ

KL(fθ(x) || fθ(x+ δ)) (10)

where ϵ is a hyperparameter. The offline finetuning is de-
scribed in Algorithm 2.

Algorithm 2: Offline Finetuing for S6

Input: Testing data (x1, y1), ..., (xn, yn), the learner fθ(·), the
clean and noisy replay buffersMC andMN .

1: Copy fθ(·) for offline finetuing
2: Update fθ(·) onMC ∪MN based on Equation 7
3: for t← 1 to n do
4: Classify the relation of xt using fθ(·)
5: end for
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Experiments
In our evaluation, we compare S6 with other state-of-the-art
models on the ON-CRE setup. We test on two datasets of
FewRel (Han et al. 2018) and TACRED (Zhang et al. 2017)
with synthetic noise. And we adopt the NYT-H (Zhu et al.
2020) dataset obtained by distant supervision (Mintz et al.
2009) to evaluate under the real-world noise.

Experimental Design
Setup We create a synthetic noisy labeled dataset from
FewRel and TACRED. Namely, we assign {20%, 40%,
60%, 80%} samples of the dataset to other relations within
the dataset by a uniform probability. Following previous
work (Han et al. 2020; Cui et al. 2021; Zhao et al. 2022),
we create 10 tasks with 8 relations in each task by select-
ing random classes without replacement for FewRel, and 10
tasks with 4 relations in each task for TACRED. In NYT-H,
we only use its test set (9,955 sentences in total) because it
is manually labeled and we can know which sentences are
labeled incorrectly via distant supervision. We randomly di-
vide 7 tasks with 3 relations in each task. And for each re-
lation, we use 50% of the clean samples as the test samples.
The main differences between ON-CRE and CRE are: (i)
the task boundaries are agnostic instead of available, (ii) the
data of one episode instead of data of one task is accessed
at a time, (iii) the data is allowed to use only once instead
of multiple times for parameter update, and (iv) the data is
partly noisy instead of completely pure. For metrics, we use
the overall accuracy which calculates the accuracy on the
test set of all tasks on FewRel and TACRED following (Han
et al. 2020). And we adopt the macro-F1 on NYT-H because
it is an extremely imbalanced dataset.

Baselines Since we aim to tackle the ON-CRE problem,
we design the baselines combining existing state-of-the-art
online task-free continual learning methods and noisy label
learning methods. We do not compare with the existing CRE
models (Wang et al. 2019a; Han et al. 2020; Cui et al. 2021;
Zhao et al. 2022) because they are trained in offline sce-
narios and require the task boundaries. Therefore, we select
three online continual learning methods (ER (Rolnick et al.
2019), MIR (Aljundi et al. 2019) and GDumb (Prabhu, Torr,
and Dokania 2020)) and equip them with three noisy label
learning methods (SL (Wang et al. 2019b), Pencil (Kun and
Jianxin 2019) and JoCoR (Wei et al. 2020)) having robust
loss, architecture or regularization. And we should point out
that existing sample selection methods (Pleiss et al. 2020)
are unable to deploy in online scenarios directly. Besides,
Multitask stores all previous samples in memory, trains the
model on all data for each new task and servers as an upper
bound. Finetune serves as a lower bound since it performs
online training on the new tasks without using any memory.

Implementation Details All continual learning methods
use BERT (Devlin et al. 2019) as their backbones. And the
size of memory for replaying is set to 1,600, 800, 400 for
FewRel, TACRED and NYT-H, respectively. For noisy label
learning methods, we use α = β = 1.0 in SL, α = 0.1, β =
0.4, λ = 600 in Pencil, and λ = 0.1 in JoCoR, respectively.

Datasets FewRel TACRED NYT-H

Noise Rate (%) 20 40 60 80 20 40 60 80 64.63

Multitask 73.1 68.9 55.3 36.9 78.4 47.7 18.2 11.0 40.4
Finetune 14.9 14.0 12.7 7.6 15.5 12.9 8.5 3.7 8.7

ER 45.4 31.8 18.9 11.1 27.3 18.9 10.2 5.4 14.1
ER+SL 51.4 38.6 24.5 16.0 31.8 20.2 10.9 6.0 15.9
ER+Pencil 52.2 35.0 16.4 8.2 32.1 19.7 10.6 5.7 19.4
ER+JoCoR 45.6 32.0 20.9 13.5 27.0 19.0 12.8 8.6 14.2

MIR 44.8 34.7 24.1 16.2 27.3 19.0 10.0 5.3 12.5
MIR+SL 51.6 37.0 23.7 15.1 31.5 19.8 10.1 5.2 14.2
MIR+Pencil 54.6 26.1 13.8 7.4 32.0 20.8 10.8 5.6 16.2
MIR+JoCoR 46.9 34.2 22.7 15.1 27.3 18.8 10.3 5.6 13.8

GDumb 54.2 39.3 24.9 17.8 40.7 22.5 9.8 6.3 22.2
GDumb+SL 52.5 42.2 26.9 16.9 37.8 23.4 10.2 6.6 20.5
GDumb+Pencil 52.9 39.3 25.5 15.9 37.5 22.8 10.2 6.4 19.6
GDumb+JoCoR 54.2 43.3 25.9 15.2 36.7 21.4 9.1 5.8 22.4

S6 (Ours) 66.1 66.0 58.8 50.1 61.2 43.9 24.3 12.2 29.1

Table 1: Main results. Results of all the methods are the av-
erage of random five times.

For fair comparison, We need to ensure that S6 uses roughly
the same size of replay buffer as others. For FewRel, we set
the size ofD, C,N as 1,000, 1,000 and 2,000. For TACRED
and NYT-H, we set the size ofD, C,N as 200, 200 and 400.
The learning rates of fϕ(·) and fθ(·) are 5e-6 and 5e-5. The
update sizes K1 and K2 are both 5. The batch size is 16 for
both online and offline training. And we train 60 epochs in
the finetuning stage.

Main Results
According to the main results in Table 1, S6 performs the
best in all synthetic noise types with different levels of 20%,
40%, 60% and 80% as well as real-world noise. Obviously,
S6 significantly outperforms other baselines on FewRel, es-
pecially when the noise rate is high. With the increase of
noise rate, the performances of other methods drop sharply,
while S6 still maintains its performance. When the noise rate
is 80%, S6 outperforms other baselines over 30%, which in-
dicates the superiority of our method. In some cases espe-
cially the high noise scenario, the noise label learning meth-
ods are not very effective or even worse than vanilla base-
lines. The online learning holds an episode to store fewer
samples but these methods require plenty of samples to esti-
mate the optimizing dynamics and reduce the noise by reg-
ularizing or repairing. So our proposed purifying technique
is more suitable in online scenarios.

However, S6 drops significantly like other baselines on
TACRED as the noise increases. Because the samples in TA-
CRED are imbalanced, purifying the data and training the
learner are more challenging compared to balanced FewRel
benchmark when the noise increasing. Nonetheless, our
method still has obvious advantage over the existing meth-
ods on imbalanced benchmark. Note the performance gap
between GDumb and S6 on NYT-H is not as big as the re-
sults on others. NYT-H is an extremely unbalanced dataset
in which some relations have thousands of samples and oth-
ers have only dozens or several samples. As will be shown
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Figure 3: Impact of noisy data. We only replace the select
rules illustrated in Equation 4 and 5 with random sampling
onD keeping the same update size. In the first five tasks, the
accuracy of the first task is plotted.

Datasets FewRel TACRED NYT-H

Noise Rate (%) 20 40 60 80 20 40 60 80 64.63

Greedy Sampler 78.3 54.8 39.7 18.9 72.4 55.5 36.2 17.1 36.3
Sample Separator 99.7 96.3 80.7 61.6 87.0 69.3 47.2 23.7 34.5

Table 2: Purification of noisy data. Greedy sampler is pro-
posed by GDumb and sample separator is our method.

later, the purifying technique is more suitable for the bal-
anced scenario, and this is also the reason why S6 performs
well on FewRel with high noise rate but not very well on TA-
CRED. Actually, the performance gain on NYT-H is mainly
the contribution of self-supervised online learning and semi-
supervised offline finetuning. And we will demonstrate the
effectiveness of proposed three key components later.

Analysis of Online Purifying
We conduct extensive experiments to verify the importance
and effectiveness of online purifying. We notice that the
quality of samples in clean replay buffer is essential for re-
lieving catastrophic forgetting. We also highlight the superi-
ority of proposed sample separator.
• Impact of Noisy Data To find the impact of noisy sam-

ples in the replay buffer, we compare the performance
of S6 without online purifying module and GDumb on
FewRel with different noise rates, and the results are il-
lustrated in Figure 3. It shows that the noisy relations
accelerate catastrophic forgetting. When encountering
more noise, significantly hastened forgetting processes
appear, while the forgetting curves of S6 and GDumb
change very gently on the clean (0% noise) dataset.
Therefore, we believe that an ideal replay buffer should
maintain clean and shield the model from noise samples.

• Purification of Noisy Data We examine the propor-
tion of clean samples in the clean replay buffer on three
benchmarks, as shown in Tabel 2. The sample separator
keeps the proportion of clean samples at a high level on
FewRel with 20% and 40% noise rate. Even with 80%
noise, it could still filter almost 40% of the noisy sam-
ples in the clean replay buffer, which shows the effec-
tiveness of our purifying technique. However, it suffers
grave declines encountering with imbalanced datasets
like TACRED and NYT-H. If the imbalance is not seri-
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Figure 4: Self-supervised and supervised comparison. We
replace the loss function illustrated in Equation 6 with su-
pervised contrastive learning loss (Khosla et al. 2020).
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Figure 5: Online learner improves GDumb. GS + OL de-
notes the greedy sampler combining online learner, while
GS + DL is the original GDumb.

ous and the noise rate is not high, our method still filters
the noisy samples effectively. Hence, our method shows
great power of purifying the balanced dataset but per-
forms modestly effective on imbalanced ones. On NYT-
H, it is even worse than greedy sampler as the number
of samples is extremely imbalanced. In this way, all the
samples corresponding to some rare relations are actually
not divided into clean delay buffer because of the com-
mon relations with excessive samples.

Effectiveness of Online Learning
We conduct two experiments to demonstrate the advan-
tages of self-supervised online learning. We first show the
self-supervised learning circumvents inferior training sig-
nals caused by noisy signals compared to supervised learn-
ing. Then we verify the effectiveness of our online learner.
• Self-supervised and supervised comparison The re-

sults of self-supervised contrastive learning versus super-
vised contrastive learning are shown in Figure 4. Overall,
our method outperforms the supervised contrastive learn-
ing paradigm. And the performance gap increases as the
noise rate increases, which is consistent with intuition.
When the training data is dominated by noisy samples,
the supervised contrastive loss is misled by the wrong
training signals, so as to degrade the overall performance
significantly. Nonetheless, the performance of supervised
fashion is close or even slightly better under the low noise
rate or clean scenario, because the clean labels provide
more accurate optimization directions.

• Online learner improves GDumb The learner obtained
by self-supervised online learning can replace the dumb
learner in GDumb, which results in better performance as
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Replay Buffer FewRel TACRED NYT-H

Num.Acc.Cov. Num.Acc.Cov. Num.Acc. Cov.

Only Clean 1,171 49.1 ✓ 460 10.5 ✓ 168 18.2 13 / 21
Twice Clean 2,330 49.6 ✓ 902 10.8 ✓ 312 20.4 13 / 21
Noisy & Clean1,946 50.1 ✓ 795 12.2 ✓ 324 29.1 ✓

Table 3: Offline finetuning results on FewRel, TACRED and
NYT-H. Only Clean merely utilizes the clean replay buffer.
Twice Clean doubles the capacity of the clean replay buffer,
while Noisy & Clean utilizes both noisy and clean replay
buffers. Num. denotes the number of samples in the replay
buffers. Acc. denotes the overall accuracy (%) of different
methods. And Cov. means the relations in the replay buffers
whether cover the whole relation set or the ratio of coverage.

shown in Figure 5. The improvement on GDumb is mod-
est at low noise rate but noticeable at high noise rate espe-
cially on TACRED. It indicates that although the quality
of samples in the replay buffer is poor, the online learn-
ing process leads to better relational representations, and
eventually outperforms the original dumb learner by no-
ticeable margins. Note that the performance of GS + OL
on TACRED with 80% noise is close to S6. We speculate
that the advantage of sample separator is slight under this
noisy and imbalanced situation because its ability to se-
lect clean samples into the clean replay buffer is similar
to the greedy sampler, which also demonstrates the effec-
tiveness of online learning.

Importance of Noisy Memory
In semi-supervised offline finetuning, the learner utilizes
both the clean and noisy replay buffers. To show the neces-
sity of utilizing noisy samples, we conduct experiments on
FewRel and TACRED both with 80% noise and the NYT-
H. The results are illustrated in Tabel 3. Utilizing both noisy
and clean samples consistently outperforms only utilizing
clean samples or utilizing twice clean samples. There are
three reasons for this phenomenon. First, there is a lot of
noise in both datasets (80% and 64.63%). It is very difficult
to maintain a good clean replay buffer, and will inevitably
bring a lot of noise into the buffer. Therefore, even if the
buffer capacity is expanded, more noisy rather than clean
samples are stored in replay buffer, resulting in little im-
provement. Second, the samples in clean replay buffers may
have close MSE losses and tend to be similar, while utilizing
the noisy samples enhances data diversity. Third, as men-
tioned before, sometimes the relations in the clean replay
buffer cannot cover the whole relation set in extremely im-
balanced dataset such as NYT-H. If we just train the learner
on the clean replay buffer, the learner has no chance to
access these rare relation information and would degrade
the final performance. Although without the supervised sig-
nals, incorporating their unsupervised features in a semi-
supervised fashion is beneficial for finetuning. This method
could also serve as a remedial measure to ensure the par-
ticipation of all the relations. More powerful purifying and
sampling methods are worth exploring in the future.
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Figure 6: Case study on NYT-H.

Difficulties of Handling Real-world Noise
To provide a deeper understanding of the difficulties of
handling real-world noise, we analyze two cases shown
in Figure 6. We find the imbalance of samples belong-
ing to relations with similar semantics and the strong as-
sumption of distant supervision make some relations hard
to learn reasonably. Here we have two pairs of relations
that both have similar number of clean samples. The re-
lations /location/country/administrative divisions and /loca-
tion/administrative division/country are symmetric and tend
to have similar difficulties for models to learn. But the
performance of the relation /location/country/administra-
tive divisions is clearly poor because the relation /loca-
tion/location/contains is the most frequently appearing re-
lation in NYT-H. Obviously, these two relations have very
similar semantics (the head entity is a country and the
tail entity is a city in most cases), so the learning atten-
tion of models is mostly attracted by this common rela-
tion. Moreover, the performance gap between /people/de-
ceased person/place of death and /people/person/children
is even greater. We examine the relation set in NYT-H
and find two other relations (/people/person/place lived and
/people/person/place of birth) that easily cause the noise
under distant supervision because it is common that the
place of birth, live and death for a person remain the same in
real-world, which means many entity pairs are labeled with
three relations simultaneously. So the models become con-
fusing when trying to understand these three relations. We
notice the performance on relation /people/person/children
is well for two reasons. On the one hand, different from /peo-
ple/deceased person/place of death, there is no other rela-
tion to interfere with it. On the other hand, its noise rate is
only around 20%, which is not so difficult for online purify-
ing and learning.

Conclusion
This paper defines a more difficult but realistic continual re-
lation learning setting called ON-CRE that requires models
to address both online and noisy relation learning scenarios.
We propose a novel continual relation learning framework
called S6 consisting of sample separated online purifying,
self-supervised online learning and semi-supervised offline
finetuning. Experimental results show that S6 outperforms
the state-of-the-art models substantially in ON-CRE, provid-
ing a good solution and prospect for more realistic CRE. We
also analyze the limitation of the purifying technique and the
difficulties of handling real-world noise, encouraging more
effective methods in the future research.
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