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Abstract

Error correction in automatic speech recognition (ASR) aims
to correct those incorrect words in sentences generated by
ASR models. Since recent ASR models usually have low
word error rate (WER), to avoid affecting originally correct
tokens, error correction models should only modify incorrect
words, and therefore detecting incorrect words is important
for error correction. Previous works on error correction ei-
ther implicitly detect error words through target-source at-
tention or CTC (connectionist temporal classification) loss,
or explicitly locate specific deletion/substitution/insertion er-
rors. However, implicit error detection does not provide clear
signal about which tokens are incorrect and explicit error de-
tection suffers from low detection accuracy. In this paper, we
propose SoftCorrect with a soft error detection mechanism to
avoid the limitations of both explicit and implicit error detec-
tion. Specifically, we first detect whether a token is correct
or not through a probability produced by a dedicatedly de-
signed language model, and then design a constrained CTC
loss that only duplicates the detected incorrect tokens to let
the decoder focus on the correction of error tokens. Com-
pared with implicit error detection with CTC loss, SoftCor-
rect provides explicit signal about which words are incorrect
and thus does not need to duplicate every token but only in-
correct tokens; compared with explicit error detection, Soft-
Correct does not detect specific deletion/substitution/inser-
tion errors but just leaves it to CTC loss. Experiments on
AISHELL-1 and Aidatatang datasets show that SoftCorrect
achieves 26.1% and 9.4% CER reduction respectively, out-
performing previous works by a large margin, while still en-
joying fast speed of parallel generation.

Introduction
Correction (Cucu et al. 2013; D’Haro and Banchs 2016;
Anantaram et al. 2018; Du et al. 2022) has been widely used
in automatic speech recognition (ASR) to refine the output
sentences of ASR systems to reduce word error rate (WER).
Considering the error rate of the sentences generated by
ASR is usually low (e.g., <10%, which means only a small
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proportion of tokens are incorrect and need correction), how
to accurately detect errors is important for correction (Leng
et al. 2021b). Otherwise, correct tokens may be changed
by mistake, or error tokens cannot be corrected. Previous
works conduct error detection in different ways: 1) Implicit
error detection, where the errors are not explicitly detected
but embedded in the correction process. For example, Liao
et al. (2020); Mani et al. (2020); Wang et al. (2020); Zhu
et al. (2021) adopt an encoder-decoder based autoregressive
correction model with a target-source (decoder-encoder) at-
tention (Vaswani et al. 2017); Gu and Kong (2021) dupli-
cate the source tokens several times and leverage a CTC
(connectionist temporal classification) loss (Graves et al.
2006), where the target-source alignments learnt in decoder-
encoder attention or CTC paths play a role of implicit er-
ror detection. 2) Explicit error detection, where the specific
deletion/substitution/insertion errors are detected out explic-
itly. For example, Leng et al. (2021b,a); Du et al. (2022);
Shen et al. (2022) rely on the predicted duration to deter-
mine how many target tokens each source token should be
corrected to (e.g., 0 stands for deletion error, 1 stands for no
change or substitution error, ≥ 2 stands for insertion error).

Implicit error detection enjoys the advantage of the flexi-
bility of model learning but suffers from the limitation that it
does not provide clear signal for model training about which
tokens are incorrect. In the contrast, explicit error detection
enjoys the advantage of clear signal but suffers from the lim-
itation that it requires precise error patterns and thus new er-
ror will be introduced once error detection is not accurate.
For example, if a substitution error is predicted as an inser-
tion error by explicit error detection, then the model can-
not correct this error but introduce new error by inserting a
wrong token. A natural question arises: can we design a bet-
ter error detection mechanism that inherits the advantages
of both implicit and explicit error detection and avoids their
limitations?

To answer this question, in this paper, we propose a soft
error detection mechanism with an error detector (encoder)
and an error corrector (decoder). Specifically, we dedicat-
edly design a language model as the encoder to determine
whether a token is correct or not and design a constrained
CTC loss on the decoder to only focus on correcting the de-
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tected error tokens (focused error detection):
• Instead of predicting correction operations such as dele-

tion, substitution and insertion (Leng et al. 2021b,a; Du
et al. 2022), we only detect whether a token is correct
or not. To this end, we can either use a binary classi-
fication (Fang et al. 2022) or the probability from lan-
guage model for error detection. We choose the latter
one since the probability from a language model contains
more knowledge in language understanding and vocabu-
lary space (Hinton et al. 2015; Gou et al. 2021) than a
simple binary classification. However, previous methods
for language modeling such as left-to-right language mod-
eling (e.g., GPT (Brown et al. 2020)) and bidirectional
language modeling (e.g., BERT (Devlin et al. 2019)) are
not suitable in our scenario: 1) left-to-right language mod-
els like GPT only leverage unidirectional context informa-
tion (e.g., left), which cannot provide enough context in-
formation for accurate probability estimation; 2) bidirec-
tional language models like BERT can leverage bidirec-
tional context information, but it needs N passes (where N
corresponds to the number of tokens) (Salazar et al. 2020)
to estimate the probability of all the N tokens in a sen-
tence, which cannot satisfy the fast speed requirement for
error detection. In this paper, we train the encoder with
a novel language model loss, to output probabilities ef-
fectively and efficiently to detect error tokens in source
sentence.

• Instead of duplicating all the source tokens multiple times
in CTC loss, we only duplicate the incorrect tokens de-
tected (as indicated by the probabilities from the encoder
trained with our novel language model loss) and use a con-
strained CTC loss to let the decoder focus on the correc-
tion of these duplicated error tokens, resulting in a focused
error correction. Compared with the standard CTC loss
that duplicates all the tokens, our constrained CTC loss
provides clear signals about which part of tokens should
be corrected.
Furthermore, previous works (Weng et al. 2020; Liu et al.

2018) have shown that the multiple candidates generated by
ASR beam search can be leveraged to verify the correctness
of tokens (Leng et al. 2021a) in each candidate. To further
improve correction accuracy, we take multiple candidates
from ASR beam search as encoder input. Accordingly, the
error detection in the encoder contains two steps, i.e., first
selecting a better candidate from multiple candidates (equiv-
alent to detect which candidates are likely to be incorrect)
for further correction, and then detecting which tokens are
likely to be incorrect in the selected candidate. The contri-
butions of this paper are summarized as follows:
• We propose SoftCorrect with a soft error detection mech-

anism for ASR error correction to inherit the advantages
of both explicit and implicit error detection and avoid their
limitations.

• We design a novel language model loss for encoder to en-
able error detection and a constrained CTC loss for the
decoder to focus on the tokens that are detected as errors.

• Experimental results on AISHELL-1 and Aidatatang
datasets demonstrate that SoftCorrect achieves 26.1% and

9.4% CER reduction respectively, while still enjoying fast
error correction with parallel generation.

Background
Error Correction for ASR
Error Correction Models Error correction is widely used
in ASR systems (Shivakumar et al. 2018; Hu et al. 2020) to
reduce word error rate. Error correction models usually take
the sentences outputted by ASR systems as input and gener-
ate corrected sentences, and have evolved from early statistic
machine translation models (Cucu et al. 2013; D’Haro and
Banchs 2016), to later neural-network based autoregressive
models (Tanaka et al. 2018; Liao et al. 2020; Wang et al.
2020), and to recent non-autoregressive models (Leng et al.
2021b,a; Du et al. 2022). Non-autoregressive error correc-
tion models generate sentences in parallel with the help of
a duration predictor (Gu et al. 2018) to predict the num-
ber of tokens that each input token can be corrected to,
which achieve much faster inference speed than autoregres-
sive counterparts and approximate correction accuracy, mak-
ing it suitable for online deployment.

Multiple Candidates Recent works (Zhu et al. 2021; Liu
et al. 2018; Imamura and Sumita 2017; Weng et al. 2020)
show that the multiple candidates generated by ASR beam
search can have voting effect (Leng et al. 2021a), which can
be beneficial for both autoregressive and non-autoregressive
correction models. They first align the multiple candidates
to the same length using multi-candidate alignment algo-
rithm based on the token-level similarity and phoneme-level
similarity, and take the aligned candidates as encoder input.
SoftCorrect also leverages multiple candidates since the dif-
ference of beam search results can show the uncertainty of
ASR model and give clues about potential error tokens.

Error Detection by Target-Source Alignments
Error detection can be achieved via the alignments between
the target (correct) sentence and the source (incorrect) sen-
tence, which can be either explicit or implicit.

Explicit Alignment By explicitly aligning the source and
target sequences together with edit distance (Leng et al.
2021b), we can obtain the number of target tokens (duration)
aligned with each source token and train a duration predic-
tor. Thus, we can detect insertion, deletion and substitution
error with corresponding duration (e.g., 0 stands for deletion
error, 1 stands for no change or substitution error, ≥ 2 stands
for insertion error). However, the duration predictor is hard
to optimize precisely and thus new error will be introduced
once duration prediction is not accurate.

Implicit Alignment Errors can be “detected” via implicit
alignment between target and source sequences. For exam-
ple, Transformer (Vaswani et al. 2017) based autoregres-
sive models embed the target-source alignment in decoder-
encoder attention (Wang et al. 2020; Zhu et al. 2021),
and CTC-based models (Libovickỳ and Helcl 2018; Sa-
haria et al. 2020; Majumdar et al. 2021) leverage a CTC
loss (Graves et al. 2006) to align target with duplicated
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Figure 1: Overview of SoftCorrect. We use A B C E to represent the ground-truth tokens, while B′ B′′ B′′′ D′ E′ to represent
incorrect tokens. We use ϕ to represent blank token for alignment purpose only, which is leveraged in both multi-candidate
alignment and CTC alignment. In this case, the ground-truth sentence is ABCE, while the 4 candidates are AB′CD′E,
AB′CD′E′, AB′′CD′E′, and AB′′′D′E, respectively. The selected candidate is AB′′CD′E, where B′′ and D′ are detected
as incorrect tokens and duplicated when fed into decoder.

source implicitly. A desirable property of CTC loss is that
it enables parallel error correction, without the need of dura-
tion prediction and with more flexibility during correction.
Thus, in this paper, we adopt the CTC based solution but
enhance it with a soft error detection mechanism.

SoftCorrect
System Overview
As shown in Figure 1, SoftCorrect consists of an error detec-
tor (the encoder) and a focused error corrector (the decoder).
We introduce the whole system step by step:

• Motivated by the voting effect in multiple candidates
for error detection, we leverage multiple candidates from
ASR beam search. We first align these candidates to the
same length following Leng et al. (2021a). The aligned
candidates are shown in the bottom left of Figure 1. The
aligned candidates are converted into token embeddings,
concatenated along the position and fed into a linear layer.

• The detector is a standard Transformer Encoder (Vaswani
et al. 2017) which takes the output of the previous step as
input, and generates a probability for each token in each
candidate. Specifically, the output hidden of the encoder
is multiplied with a token-embedding matrix to generate
a probability distribution over the whole vocabulary. For
example, the output probability distribution in the last po-
sition in Figure 1 can provide the probability for token E
and E′ simultaneously. Since ASR usually has low WER,
to prevent encoder from learning trivial copy, we propose
an anti-copy language model loss to train the encoder to
output this probability distribution.

• Based on the probability, we can choose the token with the
highest probability in each position from multiple candi-
dates and obtain a better candidate, which usually contains
less errors and thus makes the error detection easier. This

step is illustrated as the “Candidate Selection” module in
Figure 1 and the selected candidate is AB′′CD′E. Noted
that we conduct position-wise selection and the tokens in
selected candidate (e.g., B′′ and E) can come from differ-
ent candidates.

• After candidate selection, we combine the probability of
each token in selected candidate with its corresponding
probability from the ASR model. The error detection score
for each token is the weighted linear combination of en-
coder probability and ASR output probability reflecting
the similarity between token pronunciation and audio. A
token is detected as incorrect when the combined proba-
bility is lower than a threshold (Huang and Peng 2019).

• The corrector (decoder) takes the generated candidate as
input and outputs refined tokens. It is trained with a con-
strained CTC loss, which learns to only modify the de-
tected “incorrect” tokens while directly copying remain-
ing tokens to output. Therefore, we only duplicate the in-
correct tokens detected in previous step. As shown in the
bottom right of Figure 1, the detected and duplicated error
tokens are B′′ and D′.
In the next subsections, we introduce the details of the

anti-copy language model loss in encoder to generate token
probability for error detection, and the constrained CTC loss
in decoder for focused error correction.

Anti-Copy Language Modeling for Detection
We use the encoder to output a probability for each to-
ken in the multiple candidates, where this probability can
be used in candidate selection and error detection. Since
we need to select better candidate as well as detect errors,
the probability from binary classification based error detec-
tion method (Omelianchuk et al. 2020) is unsuitable for the
lack of knowledge in language understanding and vocabu-
lary space (Hinton et al. 2015; Gou et al. 2021). Indeed,
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Figure 2: Illustration of the proposed anti-copy language model loss as formulated in Equation 1. The tokens in red color
represent the target tokens in each term. The remaining tokens in the vocabulary are represented as “...”.

the probability we need is like a kind of language model-
ing, which determines whether a token is natural/reasonable
given the context information. Common language model-
ing methods are unsuitable for probability estimation since
GPT-based methods lack bidirectional context information
and BERT-based methods are too slow with N-pass (Salazar
et al. 2020) inference. To alleviate these issues, we propose a
novel method to not only leverage bidirectional information
but also provide fast probability estimation.

A straightforward way is to train the Transformer encoder
to predict ground-truth (correct) tokens in each position
given multiple aligned candidates as input. In this way, the
encoder can learn to output probability to determine whether
a token is natural/reasonable given the context information.
However, since the ASR systems usually have relatively low
WER (e.g., <10%), a large proportion of tokens in aligned
input are consistent (i.e., with the same token) and correct. In
this way, directly predicting the ground-truth token in each
position would result in trivial copy. For example, the first
position in Figure 1 might be a trivial copy since the aligned
input tokens are consistent (i.e., all A) and the correspond-
ing target token is also A. This trivial copy issue will cause
the model outputting an extreme high probability for the in-
put token on consistent position and thus hurt the ability of
encoder on detecting errors on consistent position.

To alleviate this problem, we propose an anti-copy lan-
guage model loss to prevent learning copy only, which mod-
ifies the standard cross-entropy loss by changing its predic-
tion vocabulary and adding a regularization term. Specifi-
cally, we add a special GT token (it does not stand for any
specific ground-truth token in each position, but just a spe-
cial symbol) in the vocabulary as shown in Figure 2, and the
objective function to train the encoder is as follows.

Llm =
N∑
t=1

exp(HtWyt
)∑

i∈{V+GT} exp(HtWi)

+ λ
N∑
t=1

exp(HtWGT )∑
i∈{V \yt+GT} exp(HtWi)

,

(1)

where V represents the original token vocabulary (including
a special token ϕ to represent deletion), V +GT represents
the original token vocabulary plus GT token, and V \ yt
represents the original token vocabulary minus yt, where yt
is the ground-truth token at position t. W ∈ Rd×(|V |+1),
H ∈ RN×d, where N is the length of aligned candidates

and d is the hidden size of the encoder output. Wyt
∈ Rd

and WGT ∈ Rd represent the vector in the softmax matrix
that corresponds to token yt and GT respectively, and Ht

represents the hidden vector generated by the encoder at po-
sition t. λ is used to balance the regularization term.

The first term in Equation 1 is a cross-entropy loss to
predict the ground-truth token over the full vocabulary (in-
cluding the GT token). The second is a regularization term,
which predicts GT token over the full vocabulary without
ground-truth token (including the GT token but removing
the ground-truth token). The first term is used to encour-
age the encoder to output ground-truth token for reasonable
probability estimation, and the second term is used to allevi-
ate copying the ground-truth token.

There are two intuitions behind the anti-copy loss: 1) The
regularization (second) term of anti-copy loss aims to avoid
copy-mapping by removing ground-truth token from vocab-
ulary and train the model to predict GT over all vocabulary
except the ground-truth token; 2) Since all error tokens are
optimized to have lower probability than GT while the cor-
rect token is optimized to have higher probability than GT ,
an advantages of anti-copy loss is that the GT token can
serve as a decision boundary between correct token and er-
ror token and help better detect the error token based on the
probability of language model with anti-copy loss.

Constrained CTC Loss for Correction
As aforementioned, we obtain the constructed candidate
from the encoder with detected errors and feed it as the
input of the decoder to generate the final corrected result.
Since we know which tokens in the selected candidate are
correct or incorrect, it is unnecessary to modify all the to-
kens in the decoder, which can cause larger latency and pro-
duce new errors (e.g., a correct token is edited as an incor-
rect token). Therefore, we propose a constrained CTC loss as
shown in Figure 3. We only repeat the incorrect tokens and
keep the remaining tokens unchanged for decoder input. In-
correct tokens are repeated three times, which is a common
practice for CTC loss (Libovickỳ and Helcl 2018; Saharia
et al. 2020). The likelihood of the target sequence y is the
probability summation of all possible CTC alignment paths
after constraints:

Lctc =
∑

z∈ϕ′(y)

P (z|x), (2)
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Figure 3: Constrained CTC loss, which only allows dynamic
alignment between the output and target for the detected (re-
peated) tokens (e.g., B′′ and D′), but uses fixed alignment
for the undetected (not repeated) tokens (e.g., A, C, and E).
The nodes in green color represent all possible CTC align-
ments while the nodes connected with red arrows represent
the alignment for the decoder output (just one possible case)
shown in this figure.

where x is the decoder input (i.e., the selected candidate with
expansion on the “incorrect tokens”, just as “decoder input”
shown in Figure 3), ϕ′(y) represents all the possible align-
ment paths to generate y in our constrained CTC (different
from the standard alignments ϕ(y)), and z represents one
possible CTC path, as shown in the red arrow in Figure 3.

The main difference between our loss and standard CTC
loss is the all possible alignment paths ϕ′(y). As shown in
Figure 3, the possible CTC alignment paths ϕ′(y) lay only
on the shaded (green) nodes, in contrast to the standard CTC
where the alignment paths ϕ(y) lay on all nodes. As a re-
sult, the “correct token” is used as an anchor and cannot
be dynamically aligned (the output of anchor token must be
the anchor token itself). During the inference, we perform
softmax over the possible error tokens, select the best token
from each of those positions and then remove duplicates and
blank. With the help of the explicit error detection from en-
coder, we can skip the correction process of the decoder to
reduce the system latency if all input tokens are detected as
correct token.

Explicit error detector can possibly produce new errors
(e.g., some correct tokens are identified as errors) and prop-
agate them to the error corrector. Hence, we need the error
corrector to be more robust to the outputs of error detec-
tor. Specifically, when training corrector, we randomly select
5% correct tokens and regard them as pseudo error tokens to
simulate the mistakes from detector, so that model will not
modify these correct tokens during the optimization and can
be more robust to the outputs of detector.

Experimental Setup
In this section, we introduce the datasets and the ASR model
used for correction, and some previous error correction sys-
tems for comparison.

Datasets and ASR Model
We conduct experiments on two Mandarin ASR datasets,
AISHELL-1 (Bu et al. 2017) and Aidatatang 200zh, referred

to as Aidatatang for short. AISHELL-1 contains 150/10/5-
hour speech data for train/ development/test, while Ai-
datatang contains 140/20/40-hour speech data for train/de-
velopment/test, respectively.

The ASR model used in our experiments is a state-of-the-
art model with Conformer architecture (Gulati et al. 2020),
enhanced with SpecAugment (Park et al. 2019) and speed
perturbation for data augmentation, and a language model
for joint decoding. The hyper-parameters of this ASR model
follow the ESPnet codebase (Watanabe et al. 2018)12.

The training, development, and test data for correction
models are obtained by using the ASR model to transcribe
the corresponding datasets in AISHELL-1 and Aidatatang.
Following the common practice in ASR correction (Leng
et al. 2021b,a; Du et al. 2022; Zhu et al. 2021), we use 400M
unpaired text data to construct a pseudo pretraining dataset
for both SoftCorrect and baseline systems.

Baseline Systems
We compare SoftCorrect with the several error correction
baselines, including systems using implicit and explicit error
detection.

For baselines with implicit error detection, we use: 1) AR
Correct. A standard autoregressive (AR) encoder-decoder
model based on Transformer (Vaswani et al. 2017). 2) AR
N-Best. Following Zhu et al. (2021), we train an AR Trans-
former model by taking the aligned multiple candidates from
ASR beam search as input and generating correction result.

For baselines with explicit error detection, we use: 1)
FastCorrect. FastCorrect (Leng et al. 2021b) is a non-
autoregressive model for ASR correction, which utilizes to-
ken duration to adjust input sentence length to enable par-
allel decoding. 2) FastCorrect 2. Leng et al. (2021a) intro-
duce multiple candidates into non-autoregressive FastCor-
rect model and achieve state-of-the-art correction accuracy.

Considering SoftCorrect leverages multiple candidates,
we also take rescoring method for comparison. The rescor-
ing model is a 12-layer Transformer decoder model and the
details of rescoring follow Huang and Peng (2019). Besides,
we also combine non-autoregressive correction with rescor-
ing together to construct another two baselines. One is FC
+ Rescore where the outputs of ASR are first corrected by
FastCorrect (FC for short) and then rescored, the other is
Rescore + FC where the ASR outputs are first rescored and
then corrected.

Results
In this section, we first compare the character error rate re-
duction (CERR) and latency of SoftCorrect with baselines,
and then conduct ablation studies to verify the effectiveness
of several designs in SoftCorrect, including anti-copy lan-
guage model loss and constrained CTC loss. Besides, we
conduct some analyses to show the advantages of SoftCor-
rect on the ability of error detection and error correction over
baseline systems.

1github.com/espnet/espnet/tree/master/egs/aishell
2github.com/espnet/espnet/tree/master/egs/aidatatang 200zh
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Model
AISHELL-1 Aidatatang Latency

(ms/sent)Test Dev Test Dev

CER CERR CER CERR CER CERR CER CERR GPU CPU

No Correction 4.83 - 4.46 - 4.47 - 3.82 - - -

Implicit error detection baselines

AR Correct 4.07 15.73 3.79 15.02 4.39 1.79 3.74 2.09 119.0 (1.0×) 485.5 (1.0×)
AR N-Best 3.94 18.43 3.68 17.49 4.70 -5.15 4.06 -6.28 121.6 (1.0×) 495.8 (1.0×)

Explicit error detection baselines

FastCorrect 4.16 13.87 3.89 12.78 4.47 0.00 3.82 0.00 16.2 (7.2×) 92.1 (5.3×)
FastCorrect 2 4.11 14.91 3.78 15.25 4.59 -2.68 4.02 -5.24 23.1 (5.2×) 114.6 (4.2×)

Other baselines

Rescore 4.02 16.77 3.74 16.14 4.29 4.03 3.64 4.71 48.8 (2.4×) 256.0 (1.9×)
Rescore + FC 3.69 23.60 3.48 21.97 4.33 3.13 3.68 3.66 65.0 (1.8×) 348.1 (1.4×)
FC + Rescore 3.58 25.88 3.40 23.77 4.29 4.03 3.63 4.97 113.6 (1.0×) 624.4 (0.8×)

SoftCorrect 3.57 26.09 3.40 23.77 4.05 9.40 3.44 9.95 17.0 (7.0×) 97.4 (5.0×)

Table 1: The correction accuracy and inference latency of different systems. We report the character error rate (CER) and char-
acter error rate reduction (CERR) on test and development sets of the two datasets, and report the inference latency measured
on NVIDIA V100 GPU or ”Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz” CPU on the test set of AISHELL-1. “FC”
stands for FastCorrect in other baselines.

Accuracy and Latency
We report the correction accuracy and inference latency of
different systems in Table 1. We have several observations:

1) Compared with non-autoregressive baselines FastCor-
rect and FastCorrect 2 with explicit error detection, Soft-
Correct achieves larger CERR while still enjoying low la-
tency, which demonstrates the effectiveness of SoftCorrect
with soft error detection.

2) Compared with autoregressive baselines AR and AR
N-Best with implicit error detection, SoftCorrect is the
first non-autoregressive system achieving larger CERR than
them.

3) Compared with combined systems (Rescore+FC and
FC+Rescore), SoftCorrect achieves slightly better CERR
but much faster inference speed (7x speedup over FC +
Rescore in terms of latency).

4) On Aidatatang dataset, the errors are hard to de-
tect and some previous correction baselines fail to reduce
CER, while SoftCorrect still achieves more than 9% CERR,
demonstrating the advantage of our soft detection mecha-
nism by first detecting error tokens and then focusing on
correcting errors tokens. Since ASR results have few error
tokens, accurate error detection is necessary to avoid mis-
taking originally correct tokens or missing originally incor-
rect tokens. As a result, our design of soft error detection
achieves good results for ASR correction.

Ablation Studies
We conduct ablation studies to verify the effectiveness of our
soft detection with encoder for error detection and decoder
for focused correction, as shown in Table 2. We introduce
these studies as follows:

• We first remove our anti-copy language model loss and
simply use standard cross-entropy loss to train the encoder
(Setting ID 2), resulting in an inferior accuracy due to the
model may learn to copy the ground-truth token, hurting
the error detection ability.

• Since there are some popular methods to model token-
level probability such as BERT (Devlin et al. 2019) and
GPT (Brown et al. 2020), we apply BERT-style and GPT-
style training loss on the encoder to detect errors in the
aligned multiple candidates, as shown in ID 3 and 4.
Moreover, we also train the encoder to perform detection
on each token of each candidate with a binary classifi-
cation loss (ID 5). The poor results of GPT-style train-
ing shows that bi-directional information is necessary for
error-detection. The BERT-style training or binary classi-
fication achieves lower accuracy than SoftCorrect, show-
ing the effectiveness of our anti-copy language model loss.

• When removing the constraint on the CTC loss (ID 6),
the correction accuracy is lower, which demonstrates the
advantage of only focusing on correcting the detected er-
ror tokens. The results also show that the error detector
is reliable because the attempt on modifying tokens that
are detected to be right (Setting ID 6) only leads to worse
accuracy.

Method Analyses
We compare the error detection and correction abil-
ity of SoftCorrect with previous autoregressive and non-
autoregressive baselines. We measure the error detection
ability using the precision (Pdet) and recall (Rdet) of that
an error token is detected as error, and measure the error
correction ability using the precision (Pcor) of that an error
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ID Setting
AISHELL-1 Aidatatang

Test Dev Test Dev

CER ↓ CERR ↑ CER ↓ CERR ↑ CER↓ CERR ↑ CER↓ CERR ↑
1 SoftCorrect 3.57 26.09 3.40 23.77 4.05 9.40 3.44 9.95

2

Encoder

CE loss 3.77 21.94 3.60 19.28 4.21 5.82 3.56 6.81
3 BERT-style 3.93 18.63 3.73 16.37 4.14 7.38 3.52 7.85
4 GPT-style 4.76 1.45 4.36 2.24 4.41 1.34 3.78 1.05
5 Binary 3.98 17.60 3.75 15.92 4.26 4.70 3.62 5.24

6 Decoder - Constraint 3.95 18.22 3.69 17.26 4.14 7.38 3.52 7.85

7 No Correction 4.83 - 4.46 - 4.47 - 3.82 -

Table 2: Ablation studies on the designs in SoftCorrect, including some variants of the anti-copy language model loss for
encoder and the constrained CTC loss for decoder. “CE loss” means using standard cross-entropy loss to predict ground truth,
“BERT-style” refers to using BERT model to estimate the probability of each token via N-pass (Salazar et al. 2020). “GPT-
style” refers to using left-to-right language model to estimate the probability of each token and “Binary” refers to using binary
classification to detect errors.

Model AISHELL-1 Aidatatang

Pdet Rdet F1det Pcor CERR Pdet Rdet F1det Pcor CERR

Implicit error detection baselines

AR Correct 84.56 33.00 54.73 64.73 15.73 73.55 14.32 35.34 48.05 1.79
AR N-Best 76.03 45.13 54.96 72.29 18.43 57.98 32.18 32.78 56.55 -5.15

Explicit error detection baselines

FastCorrect 83.72 34.54 50.10 59.84 13.87 69.78 9.78 29.78 42.68 0.0
FastCorrect 2 80.58 32.54 56.51 70.13 14.91 60.50 23.40 32.35 53.48 -2.68

SoftCorrect 84.06 49.71 59.94 71.30 26.09 80.52 25.29 49.32 61.25 9.40

Table 3: Comparison of different systems in terms of error detection and correction ability. Pdet, Rdet, and F1det represent the
precision, recall, and F1 score of error detection. Pcor represents the precision of correction on error tokens. The character error
rate reduction (CERR) is also shown.

token is corrected to its corresponding ground-truth token.
For autoregressive models that use implicit error detection,
we assume a model detect a source token as error token if
the model edits that token to another token.

As shown in Table 3, we can observe that: 1) on both
datasets, SoftCorrect achieves better Pdet, Rdet, and Pcor

than non-autoregressive baselines with explicit error detec-
tion, which shows SoftCorrect has a stronger ability on error
detection and correction; 2) Compared with autoregressive
baselines using implicit error detection, SoftCorrect per-
forms better on balancing the precision and recall of error
detection (higher F1det), which verifies the necessity of soft
error detection. 3) The errors in Aidatatang dataset is hard to
detect, which cannot be handled with implicit error detection
or duration-based explicit error detection. On this dataset,
previous method may mistake a correct token which intro-
duces new error, or miss an incorrect token. In contrast, the
precision or recall of the detection in SoftCorrect is higher,
demonstrating the advantage of soft error detection. More-
over, with high-accurate error detection, constrained CTC
loss makes the error correction more focused and thus eas-

ier, resulting in the higher Pcor of SoftCorrect.

Conclusion

In this paper, we design a soft error detection mechanism for
ASR error correction, which consists of an encoder for error
detection and a decoder for focused error correction. Con-
sidering error detection is important for ASR error correc-
tion and previous works using either explicit or implicit er-
ror detection suffer from some limitations, we propose Soft-
Correct with a soft error detection mechanism. Specifically,
we design an anti-copy language model loss to enable the
encoder to select a better candidate from multiple input can-
didates and detect errors in the selected candidate, and de-
sign a constrained CTC loss to help decoder focus on cor-
recting detected error tokens while keeping undetected to-
kens unchanged. Experimental results show that SoftCorrect
achieves much larger CER reduction compared with previ-
ous explicit and implicit error detection methods in ASR er-
ror correction, while still enjoying fast inference speed.
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