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Abstract

Although multilingual pretrained models (mPLMs) enabled
support of various natural language processing in diverse lan-
guages, its limited coverage of 100+ languages lets 6500+
languages remain ‘unseen’. One common approach for an
unseen language is specializing the model for it as target,
by performing additional masked language modeling (MLM)
with the target language corpus. However, we argue that,
due to the discrepancy from multilingual MLM pretraining,
a naı̈ve specialization as such can be suboptimal. Specifi-
cally, we pose three discrepancies to overcome. Script and
linguistic discrepancy of the target language from the re-
lated seen languages, hinder a positive transfer, for which we
propose to maximize representation similarity, unlike exist-
ing approaches maximizing overlaps. In addition, label space
for MLM prediction can vary across languages, for which we
propose to reinitialize top layers for a more effective adapta-
tion. Experiments over four different language families and
three tasks shows that our method improves the task perfor-
mance of unseen languages with statistical significance, while
previous approach fails to.

1. Introduction
Recently, multilingual pretrained language models
(mPLMs), such as mBERT (Devlin et al. 2019) or
XLM-R (Conneau et al. 2020a), became a de-facto standard
to support natural language processing (NLP) over diverse
languages. These models are pretrained by masked language
modeling (MLM) with multilingual corpora of 100+ lan-
guages and shared parameters, mapping diverse languages
to a shared feature space. However, the majority of 6500+
languages inevitably remain ‘unseen’ by existing mPLMs,
calling for approaches to prepare models supporting them.

Meanwhile, training a new mPLM or monolingual PLM
is inappropriate. While training a new mPLM to include
a new language seems to be attractive, capacity conflict
among multiple languages–known as the curse of multilin-
guality (Conneau et al. 2020a)–makes this solution impracti-
cal. Training a monolingual PLM for such low-resource lan-
guages is even less practical: Its task performance is report-
edly inferior to mPLM (Wu and Dredze 2020).
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Therefore, specialization1 of mPLM to the target un-
seen language has been proposed as a promising alterna-
tive. One common technique is performing adaptive pre-
training (Gururangan et al. 2020) using a corpus of the new
language (Chau, Lin, and Smith 2020).

Although it was effective for some cases, Muller et al.
(2021a) inspected some languages that struggle to improve,
and attributed the reason to ‘script discrepancy’ (e.g. Latin
vs Arabic script) with their related languages2 in the mPLM.
Due to the script difference, they do not share tokens, thus
the target language could not fully benefit from related
languages via knowledge transfer. A naı̈ve solution is to
transliterate (Muller et al. 2021a) to enforce token overlap
(Figure 1a), where the word in unseen language is replaced
by its romanization.

However, transliteration does not outperform a simple so-
lution (Figure 1b), such as vocabulary augmentation (Chau
and Smith 2021). Moreover, there may exist unexplored dis-
crepancies, impeding better specialization.

In this paper, we propose to examine three discrepancies–
Script, Linguistic, and Label–between mPLM and its spe-
cialization, and provide simple yet effective solutions for
them. For ‘script discrepancy’, we first argue that measur-
ing it with token overlap is the main problem of transliter-
ation. Sharing script via naı̈ve transliteration has a positive
effect of token overlaps, but also a negative effect of infor-
mation loss (Amrhein and Sennrich 2020), when mapping
two homophones to the same romanized word. Next, since
token overlaps, encouraging shared scripts, fail to predict
gains, we propose to measure the script discrepancy without
such requirement, by repurposing representation dissimilar-
ity (Kudugunta et al. 2019; Conneau et al. 2020b), used in
the context of cross-lingual transfer. We optimize this metric
by aligning the word in the unseen language with its translit-
eration, in the representation space, which we call ‘cross-
script alignment’ (Fig. 1 solid line). In this way, we can close
the gap between two different scripts, while avoiding the loss
from sharing.

Although we remedy script discrepancy, we observe that

1Following Chau and Smith (2021), we use word specialization
as a special case of an adaptation, in the sense of considering the
target language exclusively.

2Roughly defined as seen languages in the same family as the
target
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Figure 1: A hypothetical illustration of baselines and SL2 dealing with script or linguistic discrepancies, between related lan-
guage seen in multilingual pretraining (blue) and unseen language for specialization (orange).

discrepancy between the target language word and its se-
mantic equivalent in related languages remains, which we
call ‘linguistic discrepancy’. For example, in Figure 1, even
if the unseen word (shown in orange) benefits from cross-
script alignment (solid line), representation dissimilarity re-
mains between the word and its semantic equivalent, ‘pro-
fessor’ (dotted line). For this discrepancy, we propose to
add another type of alignment before specialization, which
we show empirically better than alignments after special-
ization (Cao, Kitaev, and Klein 2020; Khemchandani et al.
2021) proposed for a different goal of cross-lingual transfer
learning.

After overcoming the above two discrepancies in the in-
put representation space, we move on to examine discrepan-
cies in output labels, which we name as ‘label discrepancy’.
When mPLM is naı̈vely specialized to u, model parameters
of mPLM are accustomed to the label prediction task of seen
languages, such that mPLM would assign only a small prob-
ability to predict tokens of u (as some such tokens are seen as
foreign words during training). Meanwhile, after specializa-
tion, such probability significantly increases, while the bias
often holds it low, forcing the model to predict tokens from
seen languages more frequently. We explore transfer learn-
ing techniques of preserving task-generic layers, while un-
learning biases in task-specific layers.

In sum, we identify Script, Linguistic, and Label discrep-
ancies (SL2) in the view of both representations of input
data and the output labels, and provide efficient remedies
for them. Our contributions can be summarized as follows:

• We provide a different metric for previously proposed
script discrepancy, and propose a novel concept of ‘cross-
script alignment’ to mitigate it.

• We reveal two more discrepancies (linguistic and label)
and provide simple yet effective solutions for them.

• Our method significantly outperforms baselines, in four
diverse languages and three different tasks, while the pre-
vious approach to mitigate discrepancies fails to.

• Code and datasets we used are available.3

3https://github.com/thnkinbtfly/SL2

2. Proposed Method
In this section, we first review multilingual pretraining, and
specialization of mPLM. Then, regarding the inputs, we
pose script and linguistic discrepancies between them, then
illustrate remedies in the view of representation similarity
with related languages. Finally, regarding the output labels,
we pose label discrepancy, and propose a simple yet effec-
tive solution to mitigate it.

2.1. Preliminaries
Multilingual Pretraining to build mPLM For each lan-
guage l, and sentence Sl, the output of the transformer-based
language model fθ,EV

can be formulated as follows:

h0 = EV (tokV (Sl)) (1)

f i
θ,EV

(Sl) = hi = Li(hi−1) (2)

fθ,EV
(Sl) = fN

θ,EV
(Sl) (3)

where V , EV , and tokV denote the vocabulary, embedding
layer of it, and tokenization process using V . Li denotes the
ith transformer layer, N denotes the number of layers, and θ
denotes the union of parameters inside transformer layers.

For masked language modeling (MLM), some words
{wi

l}i∈m are picked from Sl and replaced to mask tokens
to generate Sm

l . Then, head layer W and a bias vector b are
added to the top to design output as follows:

o = ET
V (Wfθ,EV

(Sm
l )) + b (4)

which is consumed by cross-entropy loss with the labels
of {wi

l}i∈m. An mPLM is pretrained alternating these sen-
tences Sm

l for multiple languages l ∈ L.

Specialization of mPLM Even if we pretrain mPLM with
|L| >= 100, there exist languages not covered by such pre-
training, and the performance of those is reportedly subop-
timal (Muller et al. 2021a; Chau, Lin, and Smith 2020). A
typical procedure to overcome is specializing mPLM by per-
forming adaptive pretraining.

Let us denote the target unseen language as u /∈ L. Typ-
ically V needs to be specialized, since it lacks tokens of
u, resulting in a high ratio of unknown tokens (Chau, Lin,
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and Smith 2020; Chau and Smith 2021). Thus additional to-
kens Vu are selected from a newly trained wordpiece tok-
enizer for u, and used to augment the vocabulary of mPLM,
V ′ = V ∪Vu. E is also augmented to E′, with randomly ini-
tialized embedding for new tokens. Now equation 4 changes
as follows:

o′ = E′T
V ′(Wfθ,E′

V ′
(Sm

u )) + b (5)

2.2. Discrepancies between Multilingual
Pretraining and Specialization: Mitigation
We now describe the discrepancies between multilingual
pretraining (Eq. 4) and specialization (Eq. 5), with how to
alleviate them.

Script Discrepancy: Cross-Script Alignment First, we
describe the script discrepancy as defined in the previous
approach: to increase token overlap by transliteration. Un-
seen language u may not share the same script with re-
lated languages seen by mPLM. Previous works (Muller
et al. 2021a) conjectured that such discrepancy makes spe-
cialization harder, and transliterated them to share the script
with the related languages. However, increased token over-
lap by transliteration does not guarantee naturally higher
performance (Chau and Smith 2021), and suboptimal per-
formance of it is often attributed to an inherent characteristic
of transliteration: It is not an injective mapping, leading to
the collapse of scripts that were distinct in the original cor-
pus (Chau and Smith 2021; Amrhein and Sennrich 2020).

Meanwhile, representation dissimilarity can be used to
mitigate discrepancy without causing such a collapse. For
simplicity, let us choose a representative related language
r ∈ L. When u uses a different script from r, the majority of
tokV ′(Su) cannot be shared with tokV ′(Sr), which results in
dissimilar representations. With transliterator (Muller et al.
2021a), we convert the script of u into transliteration r̂,
which uses the same script as r. Now the tokV ′(Sr̂) are
more likely to be shared with tokV ′(Sr), resulting in simi-
lar representations. In contrast, we apply ‘cross-script align-
ment’, to align the representations of Su = {wi

u} to be
similar to the representation of Sr̂ = {wi

r̂}. To align em-
beddings of two different scripts, we optimize the following
equation, by re-interpreting an existing cross-lingual align-
ment method (Cao, Kitaev, and Klein 2020; Kulshreshtha,
Redondo Garcia, and Chang 2020):4

max
θ

∑
k∈K

∑
i

sim(fk
θ,E′

V ′
(wi

u), f
k
θ0,E′

V ′
(wi

r̂)) (6)

where sim indicates the similarity metric, and K denotes
the set of layer indices whose output is the optimization tar-
get. We let θ0 fixed with the initial parameters of mPLM,
since our goal is to shift the script embeddings of unseen
language to be similar to the script embeddings of related
languages in mPLM. Consequently, the representation of Su

would become similar to the representation of Sr̂, which is
4While Cao, Kitaev, and Klein (2020) introduces another term

for regularization, we empirically found it not beneficial in our sit-
uation, which we discuss in supplementary materials.

more likely to be similar to the representation of Sr, provid-
ing a connection between u and r.

Linguistic Discrepancy: Cross-Lingual Alignment
With our approach to measure discrepancy, we can observe
another discrepancy. Although cross-script alignment
bridges the gap between unseen language and related
languages in mPLM, representation dissimilarity between
r̂ with the related languages r still remains, which we call
linguistic discrepancy. For example, in Figure 1c, after
cross-script alignment, there is a gap remaining to improve
linguistic similarity by aligning the unseen word with its
semantic counterpart.

Thus we propose to apply cross-lingual alignment before
specialization, to further alleviate this discrepancy. Previous
works of cross-lingual alignments (Cao, Kitaev, and Klein
2020; Khemchandani et al. 2021) can be interpreted as mit-
igating language discrepancy after specialization. However,
such additional updates after language modeling confront
a trade-off between mitigation and the performance of the
language model. In contrast, we diminish this struggle, by
avoiding further updates after language modeling of u.

Given parallel sentences Su, Sr, we generate unsuper-
vised word alignment a = {(i, j)}, which indicates wi

u
and wj

r correspond each other semantically. Now equation
6 changes as follows:

max
θ

∑
k∈K

∑
i,j∈a

sim(fk
θ,E′

V ′
(wi

u), f
k
θ0,E′

V ′
(wj

r)) (7)

which would bridge the gap between u and r. Note that
while this shares a similar goal with cross-script alignment,
both two alignments complement to improve the perfor-
mance, as we discuss in Section 3.

Label Discrepancy: Reinitialization of Head Finally, re-
garding output labels, label discrepancy may exist: Multi-
lingual pretraining with |L| languages, when u /∈ L, rarely
predicts u as output, as it is very rarely seen as a foreign to-
ken during training. However, after specialization to u, such
probability should significantly increase, while the tendency
to rarely predict u may remain, which would impede lan-
guage modeling for u.

To mitigate, we propose to unlearn such a tendency by
reinitializing W and b in equation 5, before performing spe-
cialization. As the latter layers are reported to be more task-
specific (Zeiler and Fergus 2014; Muller et al. 2021b), reini-
tializing the latter layers would preserve general features in
the former layers, while successfully unlearning the bias.
We empirically found reinitialization of W and b, compared
with Lis, is sufficient for this purpose, as we discuss in the
next section.

3. Experiments
In this section, we describe experimental settings and con-
duct experiments to answer the following research ques-
tions:

• RQ1: Does SL2 outperform baselines?
• RQ2: Is mitigation of each discrepancy essential?
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Language (iso code) Script Family Dominant Script wiki size (MB) word pairs (M)
Maltese (mt) Latin Afro-Asiatic Arabic 8.89 0.350
Uyghur (ug) Arabic Turkic Latin,Cyrillic 28.55 1.471
Erzya (myv) Cyrillic Uralic Latin 4.59 0.002
Central Kurdish (ckb) Arabic Indo-European Latin 43.36 0.091

Table 1: Languages considered in experiments

ckb mt ug myv
NER POS DEP POS DEP POS DEP

mBERT 77.92% 94.22% 76.46% 77.92% 47.70% 90.33% 67.06%
TL 87.80% 74.17% 44.84% 92.98% 69.64% 80.37% 56.29%
VA 88.52% 96.86% 82.84% 93.05% 69.70% 91.71% 72.19%

SL2 (ours) 89.49% 96.98% 83.35% 93.18% 70.54% 91.50% 73.21%

Table 2: Comparison between proposed method and baselines. We report the average of F1 for NER, accuracy for POS, LAS
for DEP. Statistically significant best results are bolded, while insignificant best results are underlined with the second best
result (1-sided paired t-test, p < 0.05). Previous approach for discrepancies (TL) does not outperform a simpler approach with
no mitigation (VA), while SL2 successfully outperforms VA.

• RQ3: What if we mitigate linguistic discrepancy after
specialization?

• RQ4: How should we select the number of layers to reini-
tialize in mitigation of label discrepancy?

• RQ5: Does the gain of SL2 simply come from increase
of data?

• RQ6: Is SL2 effective on cross-lingual transfer?

3.1. Experimental Settings
We conduct experiments with mBERT pretrained using 104
largest Wikipedias (Devlin et al. 2019) as the representative
mPLM, to be consistent with previous works (Muller et al.
2021a; Chau and Smith 2021).

Tasks and Labeled Datasets While tasks supporting low-
resource languages are rare (Ahuja et al. 2022), tasks sup-
porting unseen languages not covered by mPLMs are much
scarcer. Following previous works covering unseen lan-
guages (Muller et al. 2021a; Chau and Smith 2021), we eval-
uate our method on three tasks, named-entity recognition
(NER), part-of-speech tagging (POS), and dependency pars-
ing (DEP). For NER, we utilize WikiAnn (Pan et al. 2017)
with a balanced split (Rahimi, Li, and Cohn 2019). We use
Universal Dependencies (Nivre et al. 2020) version 2.5 (Ze-
man et al. 2019) for POS and DEP. When there is only a test
dataset available for our target language, we perform an 8-
fold cross-validation with an isolated fold for the validation
set, following Muller et al. (2021a).

Unlabeled Datasets for Specialization To be consistent
with previous works (Chau and Smith 2021; Chau, Lin,
and Smith 2020), we perform adaptive pretraining with
Wikipedia articles extracted by WIKIEXTRACTOR,5 using
80% of them only. Our split is provided with our code.

5https://github.com/attardi/wikiextractor

Languages To show the effectiveness of our mitigation of
three discrepancies, we select unseen languages which use
a different script from the majority of its related languages.
For a more reliable evaluation, we only consider language
covered by datasets with sufficient test examples,6 which
results in four languages to probe with: Central Kurdish
(Indo-European), Uyghur (Turkic), Erzya (Uralic), and Mal-
tese (Afro-Asiatic). We identify language family in Glot-
tolog (Hammarström et al. 2021), and scripts used by each
language in Wiktionary.7 We describe these languages in Ta-
ble 1.

Transliterators for Script-Discrepancy We choose the
dominant script for each language family based on the num-
ber of Wikipedia articles, which is described in Table 1.
We transliterate the original scripts to the dominant scripts.
As a baseline transliterator, we use the Buckwalter Latin
to Arabic transliteration module (Buckwalter 2002) using
camel-tools (Obeid et al. 2020), for Maltese. For other lan-
guages, we follow Muller et al. (2021a) for translitera-
tion. We transliterate Central Kurdish and Uyghur, with the
transliterator from Muller et al. (2021a). For Erzya, we use
the Russian transliteration module from TRANSLITERATE8

to convert Cyrillic script to Latin.

Parallel Datasets for Language-Discrepancy To select
r, we followed Muller et al. (2021a) for Uyghur and Cen-
tral Kurdish, and we selected the language with the largest
number of Wikipedia articles based on Wikimedia,9 for
other languages. We probed OPUS (Tiedemann 2012) to
obtain the highest resource corpus of each language pair
u-r. We use Tanzil for Uyghur-Turkish (Turkic), Mozilla-

6We selected 500 test examples as a criterion. The majority of
our candidate language families had at least one language with such
a dataset.

7https://www.wiktionary.org
8https://pypi.org/project/transliterate
9https://meta.wikimedia.org/wiki/List of Wikipedias
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mitigate discrepancies ckb mt ug myv
script language label NER POS DEP POS DEP POS DEP

✓ ✓ ✓ 89.49% 96.98% 83.35% 93.18% 70.54% 91.50% 73.21%
✗ ✓ ✓ 88.79% 96.76% 83.58% 93.18% 69.92% 91.39% 72.82%
✓ ✗ ✓ 89.31% 96.76% 83.20% 93.12% 70.62% 91.55% 72.59%
✓ ✗ ✗ 88.81% 96.74% 82.91% 93.16% 70.07% 91.58% 72.29%

Table 3: Ablation study of removing each technique for mitigating discrepancies between multilingual pretraining and special-
ization.

l10n for Erzya-Finnish (Uralic), TICO-19 (Anastasopoulos
et al. 2020) for Central Kurdish-Kurmanji Kurdish (Indo-
European), and QED (Abdelali et al. 2014) for Maltese-
Arabic (Afro-Asiatic).

Implementation Details For Vu, we follow Chau and
Smith (2021) to train wordpiece with 5000 tokens and se-
lect tokens based on how much each token contributes to re-
ducing unknown tokens. We introduce 3275 new tokens for
Uyghur, 2901 for Central Kurdish, 2044 for Maltese, and
201 for Erzya, since adding more tokens did not improve
the ratio of unknown tokens. We select K as the last four
layers, sim as l2-norm, generate word alignments a utiliz-
ing FAST ALIGN (Dyer, Chahuneau, and Smith 2013), and
perform alignment for 1 epoch, following a previous suc-
cessful cross-lingual alignment method (Kulshreshtha, Re-
dondo Garcia, and Chang 2020). The number of generated
word alignments is depicted in Table 1. We consume 8 sen-
tences per batch.

Then, we perform specialization via adaptive pretraining
for 20 epochs, with a batch size of 16, learning rate of 2e-5,
warmup of 1000 steps, only using masked language model-
ing (MLM) loss, following Chau and Smith (2021). Adap-
tive pretraining is performed on TPUv2-8.

Finally, the fine-tuning settings are similar to those in
Chau and Smith (2021): We compute the output of mPLM as
a weighted sum of each activation his. We add a CRF layer
for NER, linear projection for POS, biaffine attention (Dozat
and Manning 2017) for DEP, atop the output. We use layer-
wise gradual unfreezing, discriminative fine-tuning, inverse
square-root learning rate decay with linear warmup. Fine-
tuning is performed up to 200 epochs, with early stop based
on validation performance. The implementation is based on
AllenNLP (Gardner et al. 2018). We report F1 for NER,
accuracy for POS, and LAS for DEP, following Chau and
Smith (2021). All experiments are run 5 times and the aver-
age score is revealed, except for 8-fold experiments, where
we run once per each fold and take the average.

3.2. Experimental Results
RQ1: Ours vs baselines We conduct experiments with the
following three baselines:

• mBERT: Direct fine-tuning of mPLM, without any spe-
cialization.

• Vocabulary Augmentation (VA): Following Chau, Lin,
and Smith (2020)10, we augment vocabulary with tokens

10We do not apply another variant of using a larger learning

of unseen language, then perform adaptive pretraining, as
we described in the previous section.

• Transliteration (TL): Following Muller et al. (2021a), we
transliterate the corpus and task dataset, before applying
adaptive pretraining. Transliteration is the only existing
method dealing with discrepancies between multilingual
pretraining and specialization, to the best of our knowl-
edge.

Table 2 shows the result. First, we can observe that
transliterator alone (TL) cannot outperform VA, for these
four languages. This is also true for Uyghur (ug) and Cen-
tral Kurdish (ckb), where transliteration was claimed to be
effective (Muller et al. 2021a). This indicates that previous
approaches to tackle the discrepancy between multilingual
pretraining and specialization cannot be applied effectively.

In contrast, our method improves the performance with
statistical significance (p < 0.05), even with these hard lan-
guages where TL suffers. The improvement is more signifi-
cant among the tasks with a larger room for an increase. This
clearly reveals that our method successfully mitigates the
discrepancies, as intended, while previous approaches fail
to do so.

RQ2: Effectiveness of Each Mitigation We now revisit
gains from RQ1, by ablation study of each mitigation. We
demonstrate that each mitigation of 1) script discrepancy, 2)
linguistic discrepancy, and 3) label discrepancy is indispens-
able to achieve our performance.

First, by comparing the first and second rows in Table 3,
we observe that ‘cross-script alignment’ to mitigate script
discrepancy is essential. For example, when ablated, Cen-
tral Kurdish loses 0.7% of F1, which is significant consider-
ing the gain from VA was 1%. Recalling that naı̈ve translit-
eration (TL), the previous baseline to mitigate script dis-
crepancy, was inferior to VA (Table 2), this indicates that
cross-script alignment is an effective method to overcome
script discrepancy. Moreover, these two rows justify that
cross-lingual alignment alone cannot close the gap between
unseen language and related language, demonstrating that
cross-script alignment has a unique role. One exceptional
case of performance degradation is the DEP performance
of Maltese (mt). This is due to the significantly poor perfor-
mance of transliteration as shown in Table 2, which we leave
as future work to improve such a baseline.

rate to newly initialized embeddings, since it shows inferior per-
formance in our case, which is described in the supplementary ma-
terials.

13008



ckb mt ug myv
mitigate NER POS DEP POS DEP POS DEP

after 89.23% 96.78% 83.27% 93.19% 70.47% 91.51% 72.44%
before (ours) 89.49% 96.98% 83.35% 93.18% 70.54% 91.50% 73.21%

Table 4: Comparison between mitigating language discrepancy before and after specialization.

ckb mt ug myv
reinit layers NER POS DEP POS DEP POS DEP

L9,L10,L11,L12,head 90.34% 97.04% 93.35% 92.19% 64.75% 84.50% 69.32%
L10,L11,L12,head 90.13% 96.97% 93.24% 92.30% 64.73% 84.74% 70.22%

L11,L12,head 90.25% 97.05% 93.45% 92.23% 65.03% 84.86% 70.19%
L12,head 90.25% 97.14% 93.42% 92.23% 65.11% 84.92% 70.90%

head 90.53% 97.11% 93.54% 92.32% 65.21% 84.96% 70.77%

Table 5: Comparison between reinitializing head only or more layers. We report the average of validation score. Best score is
emphasized with bold.

VA (data+) SL2

ckb NER 88.32% 89.49%

mt POS 96.30% 96.98%
DEP 81.83% 83.35%

ug POS 93.13% 93.18%
DEP 69.52% 70.54%

myv POS 91.18% 91.50%
DEP 70.42% 73.21%

Table 6: Comparison when we allow the same data as we
used for SL2 to the best baseline. Best score is emphasized
with bold.

Second, when we analyze the first and third rows in Table
3, we can observe that cross-lingual alignment is playing an-
other role. For example, we observe that POS and DEP per-
formance in Maltese is decreased when cross-lingual align-
ment is ablated.

Finally, the third and last rows in Table 3 show that tack-
ling label discrepancy with reinitialization of the head layer
is effective. For example, the DEP performance of Uyghur
or NER performance of Central Kurdish decreases notably,
when we remove this mitigation.

In sum, we conclude that all three techniques are con-
tributing to the performance of our proposed method.

RQ3: Language Discrepancy Before vs After Specializa-
tion While we align, before specialization, previous works
of cross-lingual alignment (Cao, Kitaev, and Klein 2020;
Khemchandani et al. 2021) apply it after specialization. To
support our choice, we compare with SL2 aligning after spe-
cialization. We adopt the equation from Cao, Kitaev, and
Klein (2020) instead of equation 7, since it was empirically
better, while keeping all other settings.

Table 4 shows SL2 aligning before specialization shows
superior performance. As we explained in Section 2, we at-
tribute the inferiority of mitigating ‘after’ specialization to
changes of parameters for mitigation updates (negatively af-
fecting language model). In contrast, SL2 avoids such nega-

VA SL2

ckb NER 75.61% 75.70%

mt POS 77.31% 78.28%
DEP 55.21% 57.42%

ug POS 69.33% 70.78%
DEP 31.41% 33.25%

myv POS 71.56% 73.60%
DEP 41.26% 43.52%

Table 7: Cross-lingual transfer performance comparison be-
tween SL2 and the best baseline. Best score is emphasized
with bold.

tive effect, by optimizing for language model after the miti-
gation.

RQ4: Why Reinitialize the Head Only? While we pro-
posed to reinitialize the head only, or reinitializing W and
b in equation 5, we probe whether an alternative strategy of
reinitializing more layers would be beneficial.

Table 5 shows that reinitializing more layers generally
cannot improve performance. This indicates that the former
layers successfully capture more general features for masked
language modeling, while the head layer is more dedicated
to predicting tokens of each language. We thus reside with
our choice of the reinitializing head only.

RQ5: Does the Gain Come from Increase of Data? One
may question whether the gain of SL2 simply comes from
the increase of the data. To find out, we allow the same
data to VA, the best baseline from Table 2, by continually
pretraining on the concatenation of original data, transliter-
ations, and the parallel data. We use the same number of
update steps as before. Table 6 shows that, even though we
allow the same data, it is outperformed by SL2. This indi-
cates that the gain of SL2 is not easily achievable by the
simple increase of data.

RQ6: SL2 for Cross-lingual Transfer While our main
goal is in-language task performance, the improved target

13009



language performance may also benefit cross-lingual trans-
fer performance. To evaluate, we train the model with En-
glish data only, and select the best model based on the de-
velopment set of the target language, following Keung et al.
(2020). Table 7 shows that SL2 is effective on cross-lingual
transfer also.

w/o SL2

w/ SL2

specialization

specialization

Figure 2: PCA visualization of sentence representations
of Uyghur and its related language Turkish. Without our
mitigations, Uyghur and Turkish seem to be dissimilar to
mBERT, and the Hausdorff distance between the two lan-
guages was 0.54. With our method, mBERT successfully
recognizes Uyghur as similar to Turkish throughout the spe-
cialization, and Hausdorff distance drops to 0.13.

3.3. In-Depth Analysis of Effectiveness of Our
Mitigations: A Case Study with Uyghur
In this section, we present a deeper analysis of our proposed
method. To show the benefit of SL2 clearer, we take Uyghur
as an unseen representative language, with a high-quality
transliterator and large parallel resources available.

Representation Similarity We conjecture that our pro-
posed techniques would improve the representation similar-
ity between the two languages. To verify the conjecture, we
conducted a PCA visualization of sentence representations
with randomly sampled 5,000 Uyghur-Turkish parallel sen-
tences. Moreover, we calculated the Hausdorff distance of
sentence representations between two languages, following
Xia et al. (2021). We consider [CLS] tokens as sentence rep-
resentations, following previous works to compare sentence
representations (Xia et al. 2021; Qin et al. 2020).

SL2 shifts Uyghur to be similar to its highly-related lan-
guage, Turkish (left of Figure 2). Moreover, this is true even
after specialization (right of Figure 2). Hausdorff distance
reverifies this argument. Without our mitigation, Hausdorff
distance between [CLS] tokens of two languages remains
at 0.54 after specialization. SL2 drops this distance to 0.13.
Note that we did not align special tokens such as [CLS]; We
aligned corresponding words only, as described in the pro-
posed method.

These imply SL2 helps mPLM perceive Uyghur as simi-
lar to Turkish throughout the specialization stage, enhancing
transfer from related languages, which is supported by im-
proved performance in the experimental results.

Label Discrepancy Though the ablation study in Table 3
shows the performance gain from reinitialization, it is still
unclear whether such gain comes from better language mod-
eling for unseen language u. We thus further explore to con-
firm if (a) perplexity for u decreases, (b) token prediction
from u increases, and (c) tokens unseen from u are less
likely to be generated.

First, we compared the perplexity of specialized mPLM
with and without our reinitialization, from the valid cor-
pus of Chau and Smith (2021). Applying the reinitialization
reduces the perplexity from 12.59 to 10.87, which shows
that the reinitialized mPLM assigns higher probabilities to
Uyghur tokens.

Second, we investigated the tendency to predict tokens
that are more frequent in Uyghur. We collected tokens pre-
dicted differently by two models, from the same valid cor-
pus. Then we calculated the average frequency of the tokens
in the whole Uyghur corpus, containing train and test cor-
pus from the same work. Reinitialization enhances the aver-
age frequency by 24.7%, indicating it helps the model output
frequent tokens in Uyghur.

Finally, we analyzed the predictions of tokens that never
occur in the whole Uyghur corpus. With reinitialization, the
number of such predictions plummets to be 25 times lower.

These indicate that the original mPLM has a bias to pre-
dict tokens seen in the multilingual pretraining stage, and
our solution to reinitialize successfully alleviates it.

4. Related Work
This section overviews the motivation and distinction from
existing methods.

4.1. Why: Multilingual Pretraining Is
Inappropriate to Cover All Languages
mPLMs are pretrained by MLM across the corpus of 100+
languages (Devlin et al. 2019; Conneau and Lample 2019;
Conneau et al. 2020a). This maps these languages to a
shared feature space, and the transfer of the features between
related languages is prominent (Pires, Schlinger, and Gar-
rette 2019; Wu and Dredze 2019).

However, mPLMs could not cover all of the 6500+ lan-
guages: Task performance of such ‘unseen’ languages is
reportedly suboptimal (Muller et al. 2021a; Pfeiffer et al.
2020; Chau and Smith 2021). Moreover, building another
mPLM supporting more languages is inappropriate. Curse of
multilinguality (Conneau et al. 2020a) claimed that as more
languages are trained with a fixed capacity, the performance
of each language degrades, requiring even larger models.
Wu and Dredze (2020) also argued that the performance of
low-resource languages lags behind in mPLM. These call
for an alternative direction to support unseen languages.

4.2. How: Specialization of mPLM to Unseen
Language
Therefore, specializing mPLM has been proposed as a
promising alternative (Chau, Lin, and Smith 2020). They
continually pretrain mPLM with the corpus of unseen lan-
guage in an unsupervised manner, often augmenting its vo-
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cabulary beforehand (Wang et al. 2020; Chau and Smith
2021; Chau, Lin, and Smith 2020). We take this approach
as our baseline. Adapters (Houlsby et al. 2019; Pfeiffer et al.
2020), adding a few parameters for specialization and train-
ing them only, can be used additionally. Following Muller
et al. (2021a), we do not consider adapters as our baseline
methods, since they do not show significant performance im-
provement over simply using mPLM.

However they do not deal with discrepancies from mul-
tilingual pretraining, and we argue substantial improvement
can be achieved when we consider them.

4.3. Distinction: Discrepancy between Multilingual
Pretraining and Specialization
Overcoming discrepancies between pretrain-finetune dis-
crepancy is important: Zhang et al. (2021) reinitialized the
later layers in BERT, for example.

Similarly, overcoming script discrepancy between multi-
lingual pretraining and specialization has attracted research
interest. Muller et al. (2021a) inspected some languages
struggle to improve performance by specialization, and at-
tributed the reason to the script difference between the target
language and related languages. They suggested converting
the script to be the same as related languages by transliter-
ation. RelateLM (Khemchandani et al. 2021) further aligns
words between transliterated language and high-resource re-
lated language, after specialization finishes.

However, we argue that the previous solution for script
discrepancy is suboptimal, and propose representation dis-
similarity as a new metric to measure script discrepancy. We
mitigate it with our novel technique ‘cross-script alignment’.
Moreover, we reveal that linguistic discrepancy remains, and
further enhance similarity by mitigating it. Finally, we ad-
dress label discrepancy as well, and provide a simple and
effective solution of reinitializing the task-specific layer.

5. Conclusion
We studied the problem of low-resource language special-
ization, by identifying script, language, and label discrep-
ancies as three main obstacles. We showed the limitation
of existing solutions for minimizing discrepancies, such as
transliteration aiming to deal with script overlaps, and pro-
posed to maximize representation similarity in the script
and language spaces, while preserving scripts. Our pro-
posed solution, by maximizing new metrics, for script and
language alignments, maximizes the transferability from
mPLM, while unlearning its bias towards output labels seen
in the training. We empirically validated the effectiveness of
our approach, and showed each discrepancy counts toward
such gains.
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S.; Salomoni, A.; Samardžić, T.; Samson, S.; Sanguinetti,
M.; Särg, D.; Saulı̄te, B.; Sawanakunanon, Y.; Schneider, N.;
Schuster, S.; Seddah, D.; Seeker, W.; Seraji, M.; Shen, M.;
Shimada, A.; Shirasu, H.; Shohibussirri, M.; Sichinava, D.;
Silveira, A.; Silveira, N.; Simi, M.; Simionescu, R.; Simkó,
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