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Abstract

Cross-domain named entity recognition (NER), aiming to ad-
dress the limitation of labeled resources in the target domain, is
a challenging yet important task. Most existing studies allevi-
ate the data discrepancy across different domains at the coarse
level via combing NER with language modelings or introduc-
ing domain-adaptive pre-training (DAPT). Notably, source
and target domains tend to share more fine-grained local infor-
mation within denser subsequences than global information
within the whole sequence, such that subsequence features are
easier to transfer, which has not been explored well. Besides,
compared to token-level representation, subsequence-level in-
formation can help the model distinguish different meanings
of the same word in different domains. In this paper, we pro-
pose to incorporate subsequence-level features for promoting
the cross-domain NER. In detail, we first utilize a pre-trained
encoder to extract the global information. Then, we re-express
each sentence as a group of subsequences and propose a novel
bidirectional memory recurrent unit (BMRU) to capture fea-
tures from the subsequences. Finally, an adaptive coupling unit
(ACU) is proposed to combine global information and subse-
quence features for predicting entity labels. Experimental re-
sults on several benchmark datasets illustrate the effectiveness
of our model, which achieves considerable improvements.

Introduction
Named entity recognition (NER) is a fundamental task in
text processing, which provides the necessary elements for
many downstream tasks, such as relation extraction (Liu et al.
2022b,a), knowledge graph (Fan et al. 2020), summarization
(Hu et al. 2022a), etc. Due to the lack of labeled datasets and
the expensive cost of human labeling, cross-domain NER has
attracted substantial attention over the past years. It aims to
adapt the model learned from a source domain with relatively
large data to a target domain with limited data.

Recently, many approaches have been proposed for im-
proving the cross-domain NER (Jia, Liang, and Zhang 2019;
Liu et al. 2020, 2021b; Jia and Zhang 2020). For example,
(Jia, Liang, and Zhang 2019) built a parameter generation
network to perform the cross-domain and cross-task knowl-
edge transfer, combining the language modeling and NER.
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Afterward, (Liu et al. 2021b) introduced a new cross-domain
NER dataset containing five diverse domains and provided a
domain-related corpus, which can be used to train language
models for improving NER in the target domain. Although
these efforts can reduce the domain discrepancy, they typ-
ically focus on improving the extraction of sentence-level
features that belong to the category of coarse-grained level
information and pay less attention to exploring the dense
fine-grained subsequence information. From the perspective
of data sparsity, the coarse-grained level features are more
sparse than the fine-grained level ones between two different
domains. For example, finding the same sentences in two
datasets belonging to distinct domains is almost impossible,
while identical subsequences are easier to find. Although
these subsequences belong to different domains, they tend to
share similar semantic meanings, which is why we believe
that subsequence-level features are easier to transfer between
different domains. Besides, there are also some studies fo-
cusing on single token transfer (Lin and Lu 2018). However,
some tokens usually have different meanings when they ap-
pear in different domains. For example, the token “nuclear”
from the news domain is usually attended to the “powers”
and “disarmament” with a larger probability. However, due
to limited training data in the target domain in cross-domain
NER, the high correlation between “nuclear” and “powers”
might still be preserved, which is not the case in the medi-
cal domain. Instead, “nuclear” tends to have close relation
with “factor” or “transcription”. Thus, the neighborhood of
a token (e.g., subsequence feature) is also crucial to provide
strong evidence to help the model distinguish similarities and
differences between different domains.

In this paper, we propose to incorporate subsequence-level
features to improve the feature adaptation for cross-domain
NER. Specially, we first utilize a pre-trained model to extract
coarse-level features from the sequence. Then, we split the
sequence as a group of subsequences with the same length
as the sequence, and each token in the sequence has a corre-
sponding subsequence. Afterward, we utilize a bidirectional
sliding window to extract fine-grained local features from
these subsequences. Finally, we propose an adaptive coupling
unit (ACU) to integrate fine-grained subsequence features
and coarse-grained global information to predict the NER
labels. In doing so, for one thing, denser subsequence-level
information can be more effectively transferred from the
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Figure 1: The overall architecture of the proposed model with an example input and output includes text encoder, bidirectional
memory recurrent unit (BMRU), and the adaptive coupling unit (ACU). The internal details of the BMRU and ACU are shown in
blue and green boxes on the right side of the figure, respectively.

source to the target domain. For another, our model pays
more attention to the fine-grained local semantics of each
token and thus better distinguishes the meaning of each token
between different domains, especially for those tokens that
have distinct meanings when they are in different domains.
Experiment results on several benchmark datasets illustrate
the effectiveness of our proposed model, which outperforms
all strong baselines and achieves state-of-the-art performance
on most datasets.

Method
We follow the standard sequence labeling paradigm for
this task. Specifically, given an input sequence Xd =
{x1, x2, · · · , xn} with n tokens, we annotate its correspond-
ing entity label sequence as Yd = {y1, y2, · · · , yn}, where
d ∈ {src, tgt}, src and tgt indicate the source and target
domains, respectively. An overview of our proposed model
is depicted in Figure 1. It contains three major modules, i.e.,
the text encoder for extracting the coarse-grained global fea-
tures, the bidirectional memory recurrent unit (BMRU) for
distilling the subsequence-level features, and the adaptive
coupling unit (ACU) for combining these features. Below,
we will provide more details about these components.

Text Encoder
Pre-trained models (Devlin et al. 2019) have proved their
effectiveness in various downstream natural language pro-
cessing (NLP) tasks, because of their strong ability in feature
extraction. Therefore, in our model, we also adopt the pre-
trained BERT as our text encoder to extract features from the

input sequence:

[h1,h2, · · · ,hn] = Encoder(x1, x2, · · · , xn), (1)

where Encoder refers to a pre-trained encoder, extracting a
d-dimensional feature vector hi ∈ Rd for each token xi. Ow-
ing to the characteristic of canonical point-wise dot-product
self-attention in Transformer, these vectors tend to have bet-
ter coarse-level global information and are limited in fine-
grained sensitivity (Li et al. 2019).

Bidirectional Memory Recurrent Unit
As discussed above, capturing the subsequence-level infor-
mation is inherently important and beneficial for the cross-
domain NER, which has not been exploited well. In this
section, we show how to extract such features. For each to-
ken, we utilize its surrounding tokens to extract fine-grained
local features. In detail, we construct a subsequence for each
token xi in Xd with its localized contextual feature vectors
in Eq. (1). Therefore, we can obtain a group of subsequences
X̂d, denoted as

ĥi = [hi−k, · · · ,hi, · · · ,hi+k],

X̂d = [ĥ0, · · · , ĥi, · · · , ĥn],
(2)

where k is a hyper-parameter to control the grain degree
of the local features (i.e., the length of subsequence). Note
that we pad k zero vectors at the beginning and end of the
h to keep all subsequences in X̂d have the same size. For
example, assume we set k equal 3, the subsequence for ĥ1 is
[0,h1,h2].
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Dataset TRAIN VAL TEST #Ent.T#SENT. #ENT. #AVE.E #SENT. #ENT. #AVE.E #SENT. #ENT. #AVE.E

CONLL03 15.0k 23.4k 1.56 3.5k 5.9k 1.71 3.7k 5.6k 1.53 4
POLITICS 0.2k 1.3k 6.52 0.5k 3.5k 6.44 0.7k 4.2k 6.47 9
SCIENCE 0.2k 1.1k 5.38 0.5k 2.5k 5.64 0.5k 3.1k 5.69 17
MUSIC 0.1k 0.6k 6.48 0.4k 2.7k 7.05 0.5k 3.3k 7.17 13
LITERATURE 0.1k 0.5k 5.41 0.4k 2.1k 5.25 0.4k 2.3k 5.45 12
AI 0.1k 0.5k 5.32 0.4k 1.5k 4.43 0.4k 1.8k 4.20 14
MOVIE 7.8k 23.0k 2.95 - - - 2.0k 5.7k 2.85 14
RESTAURANT 7.7k 15.4k 2.01 - - - 1.5k 3.2k 2.13 8

Table 1: The statistics of datasets, including the number of sentences (#Sent.), the number of entities (#Ent.), the averaged entity
per sentence (#Ave.E) and the number of entity types (#Ent.T).

Afterward, a BMRU is proposed to take the these sub-
sequences as the input and extract bidirectional sequential
features −→s i ∈ Rd and ←−s i ∈ Rd for each token ĥi. To be
more specific, we provide the details of a forward memory
recurrent unit (FMRU). We first obtain an overall representa-
tion of each ĥi and the most straightforward way of doing so
is to concatenate each hj in ĥi by

gi = ⊕hj∈ĥi
hj . (3)

The gi is then used to generate the current state through−→c i =
MLP(gi) ∈ Rd. In addition, to select the most information-
carrying features, we also consider previous output −→s i−1 of
the FMRU with the attention mechanism, stated as

−→ai = softmax(
−→s i−1 · ĥ⊤

i√
d

), (4)

where “·” denotes matrix multiplication, and −→ai is a 2k + 1-
dimensional probability vector over ĥi. Therefore, the for-
ward memory state −→mi ∈ Rd is calculated with

−→mi =
∑

hj∈ĥi

−→a ijhj . (5)

In order to control the flow of the memory state on the cur-
rent revised input, we utilize a multi-layer perceptron (MLP)
to construct a gate from the concatenation of −→mi and gi,
formulated as:

−→r i = σ(Wr · [−→mi,gi] + br), (6)

where Wr and br are learnable parameters and σ is the
sigmoid function. Finally, we obtain the forward localized
feature of ĥi via combining both current state ci and memory
state mi: −→s i =

−→c i +
−→r i
−→mi. (7)

Meanwhile, we obtain backward feature←−s i through the sim-
ilar way, which is computed by←−s i+1 and ĥi.

Thus, we conclude that subsequence feature extraction is
formulated as:

[−→s 1,
−→s 2, · · · ,−→s n] = FMRU(g1, · · · ,gn), (8)

[←−s 1,
←−s 2, · · · ,←−s n] = AMRU(gn, · · · ,g1), (9)

where FMRU and AMRU are the forward and backward
memory recurrent unit, respectively. Therefore, −→s i and←−s i

can be regarded as subsequence-level features, and they also
memorize previous and later subsequence information to
some extent, respectively.

Adaptive Coupling Unit
To incorporate both coarse-grained global and fine-grained
subsequence features to facilitate the label prediction, we
propose an adaptive coupling unit to dynamically combine−→s i,←−s i and hi. In detail, we concatenate these three vectors
and build three different gates:

p1 = σ(W1[
−→s i,
←−s i,hi] + b1),

p2 = σ(W2[
−→s i,
←−s i,hi] + b2),

p3 = σ(W3[
−→s i,
←−s i,hi] + b3),

(10)

where W1, W2, W3, b1, b2 and b3 are learnable parame-
ters and p1, p2 and p3 are three different gates. Each gate
can automatically select appropriate information from the
corresponding features, and then we add up all these selected
features, stated as:

ui = p1
−→s i + p2

←−s i + p3hi, (11)

where coupling vector ui ∈ Rd is the final representation of
token xi. A trainable fully connected layer is used to align its
dimension to the output space by ei = Wo · ui + bo, where
ei ∈ RC and C denotes the set of all types of named entity
(NE) labels. Then, the softmax function is applied on ei to
predict the label yi by:

yi = argmax
exp(eci )∑|C|
j=1 exp(e

j
i )
. (12)

Transfer Training Process
We employ a simple parameter initialization method to as-
sist the model in enhancing knowledge transfer. To record
the source domain information, we first fine-tune our model
on the source domain dataset by Xsrc and Ysrc. After that,
we initialize a target model with the learned parameters and
continue training the model on the target domain with the
labeled datasets Xtgt and Ytgt. In doing so, valuable infor-
mation learned from the source domain can be effectively
adapted to the target domains.

Moreover, motivated by (Liu et al. 2021b; Gururangan
et al. 2020), we continue pre-training the BERT on the target
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MODEL
CONLL03

POLITICS SCIENCE MUSIC LITERATURE AI MOVIE RESTAURANT

BILSTM-CRF 56.60 49.97 44.79 43.03 43.56 68.31 78.13
CROSS-DOMAIN LM 68.44 64.31 63.56 59.59 53.70 - -
COACH 61.50 52.09 51.66 48.35 45.15 - -
FLAIR 69.54 64.71 65.60 61.35 52.48 - -
MULTI-CELL LSTM 70.56 66.42 70.52 66.96 58.28 69.41 78.67
LST-NER 70.44 66.83 72.08 67.12 60.32 70.25 78.74
Ours 71.31 68.65 72.42 67.05 60.89 71.19 79.20

MULTI-CELL LSTM+DAPT 71.45 67.68 74.19 68.63 61.64 - -
BERT+DAPT 72.05 68.78 75.71 69.04 62.56 - -
LST-NER+DAPT 73.25 70.07 76.83 70.76 63.28 - -
OURS (DAPT) 73.82 71.17 79.28 69.22 63.79 - -

Table 2: The performance of existing studies and our proposed models with respect to F1 score. Results are averaged over three
runs with different seeds.

domain-related corpus to narrow the background discrepancy
between different domains.

Experimental Setting
Dataset
To validate the effectiveness of our proposed model, we em-
ploy the following datasets in our experiments. We regard
the Conll2003 as the source domain and other datasets as the
target domains.
• Conll2003 (Sang and De Meulder 2003) is a commonly

used NER dataset collected from Reuters News, containing
person, location, organization, and miscellaneous entity
categories.

• MIT Movie (Movie) (Liu et al. 2013b) is a movie domain
NER dataset, including award, title, opinion, year, origin,
genre, director, plot, quote, actor, soundtrack, character,
and others.

• CrossNER (Liu et al. 2021b) is collected from Wikipedia
and split into five diverse domains with Wikipedia’s cate-
gories, including politics, natural science, music, literature,
and artificial intelligence (AI). Besides, it also collects
corresponding unlabeled corpora in each domain for con-
tinuing pre-training language models.

• MIT Restaurant (Restaurant) (Liu et al. 2013a) is a dataset
for restaurant review and contains eight types of entities.

We follow the official split for these datasets, with their statis-
tics summarized in Table 1.

Baselines and Evaluation Metric
To explore the advantages of our proposed model, we com-
pare it with the following baselines. BiLSTM-CRF (Lample
et al. 2016) utilizes a bidirectional LSTM with a sequential
conditional random layer above and combines both character-
level and word-level representation to enhance NER. Cross-
domain LM (Jia, Liang, and Zhang 2019) incorporates cross-
domain language modeling as a bridge to reduce domain
discrepancy and improve knowledge transfer. Coach (Liu
et al. 2020) proposes a cross-domain slot filling framework,
which first learns slot entity patterns and then combines the

features for each slot entity and predicts the types of detected
entities. Flair (Akbik, Blythe, and Vollgraf 2018) leverages
the internal states of a character language model to produce
contextual string embedding for enhancing NER. Multi-Cell
LSTM (Jia and Zhang 2020) proposes a multi-cell composi-
tional LSTM structure for cross-domain NER, incorporating
BERT representations (Devlin et al. 2019) and entity type in-
formation. BERT+DAPT (Liu et al. 2021b) uses the domain-
related corpus to continue training the language model before
NER. LST-NER (Zheng, Chen, and Ma 2022) proposes to
learn graph structure via matching label graphs from source
to target domain for improving cross-domain NER.

For a fair comparison, we follow previous studies to use
the F1 score to evaluate model performance.

Implementation Details
In our experiments, we use the standard BIO scheme to la-
bel NEs. We utilize a pre-trained language model (i.e., bert-
base-cased) as the text encoder to extract features from input
sequence1. We follow their default model setting: we use 12
layers of self-attention with 768-dimensional embeddings.
Besides, the hidden size in BMRU is set to 768 for each
direction with its parameters initialized randomly. We use
Adam (Kingma and Ba 2015) to optimize all trainable param-
eters in the model by minimizing the negative log-likelihood,
including those in the pre-trained text encoder. k is set to 7 in
our experiments. More detailed hyperparameters are reported
in Appendix. For transfer training, we first train the model
on the source domain data with 2 epochs for Conll2003 and
then fine-tune the model to the target domain.

Results and Analyses
Overall Results
To illustrate the effectiveness of our models, we compare
our model with existing studies on the same datasets, with
all results (i.e., F1 score) reported in Table 2. There are sev-
eral observations drawn from different aspects. First, when

1https://github.com/google-research/bert.
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MODEL
CONLL03

POL. SCI. MUS. LIT. AI

BERT‡ 68.71 64.94 68.30 63.63 58.88

Subsequence-level feature extractor
GRU 69.60 67.83 70.03 63.37 60.19
LSTM 69.87 68.64 70.24 66.20 59.75
BMRU 71.31 68.65 72.42 67.05 60.89

Subsequence-level features Combination
ADD 70.25 67.23 71.62 65.36 59.79
CONCAT 71.08 68.28 71.96 66.92 60.00
ACU 71.31 68.65 72.42 67.05 60.89

Table 3: The performance of baseline and our proposed mod-
els in terms of F1 score. We compare models using different
structures to extract fine-grained local features (e.g., LSTM,
BMRU). ADD, CONCAT and ACU represent three methods
to combine fine-grained and coarse-grained features. ‡ refers
to that the result is directed cited from (Liu et al. 2021b).

comparing our model and those models that incorporate lan-
guage modeling as an auxiliary task (Jia and Zhang 2020;
Jia, Liang, and Zhang 2019), we can observe that our model
can achieve better results. This observation indicates that
denser subsequence features are effective in cross-domain
NER, which is useful to promote feature transfer and can
help the model distinguish distinct meanings of tokens in
different domains. In addition, language models usually re-
quire massive data to train, while the target domains usually
have limited training data. Second, the comparison between
the former three models (Lample et al. 2016; Jia, Liang, and
Zhang 2019; Liu et al. 2020) and the latter three ones (Jia and
Zhang (2020); Zheng, Chen, and Ma (2022) and Ours) shows
the effectiveness of the pre-trained model in domain transfer,
where the former three do not incorporate the BERT, and the
latter three utilize the features extracted from BERT. Third,
from Table 1, we know that politics, science, music, litera-
ture, and AI only have 100 or 200 sentences, and movie and
restaurant have more than 7k sentences. Therefore, the former
five datasets can be regarded as low-resource cross-domain
NER, and the latter two are for rich-resource cross-domain
settings. Our model outperforms all baselines in these two dif-
ferent settings on most datasets. This result further illustrates
the effectiveness of subsequence features, which can help
the model discriminate similarity and discrepancy between
source and target text. Fourth, our model confirms its supe-
riority of simplicity when compared to those complicated
approaches. For example, LST-NER needs to construct label
graphs in source and target spaces and then utilize GCN to
extract features from the graph, while our model achieves
better results with a rather simpler method.

Moreover, we also compare the models combined with
DAPT and the results are also shown in Table 2. We can
find that the comparisons between models without DAPT
(Jia and Zhang (2020), Liu et al. (2021b), Zheng, Chen, and
Ma (2022) and Ours) and those with DAPT (Jia and Zhang
(2020)+DAPT, Liu et al. (2021b)+DAPT, Zheng, Chen, and
Ma (2022)+DAPT, and Ours+DAPT) illustrates the effec-

Politics Science Music Litera. AI Average
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Figure 2: F1 score of models using different structures to
capture fine-grained features. MLP represents extracting
features using MLP without recurrent structure (memory
states) within the revised input sentence; FMRU is a forward
memory-based recurrent unit.

tiveness of DAPT, where models with DAPT achieve con-
siderable improvements. This illustrates that continuing pre-
training text encoder on a massive domain-related corpus also
can further reduce the background discrepancy between dif-
ferent domains and thus bring improvements for these models.
Besides, our model can achieve state-of-the-art results among
those models on most datasets, further illustrating the validity
of subsequence features.

Effect of BMRU and ACU
To further explore the effectiveness of our proposed BMRU
and ACU, we conduct experiments on the aforementioned
CrossNER datasets. We compare three different approaches
to combine subsequence features and coarse-grained global
features: direct concatenation, summation, and ACU, respec-
tively. Besides we also compare models using different struc-
tures to extract fine-grained features. All the results are re-
ported in Table 3, and there are several observations. First,
models utilizing subsequence features extractor obtain bet-
ter results than their corresponding baseline (i.e., BERT). It
indicates the effectiveness of our innovation for incorporat-
ing fine-grained subsequence features into the cross-domain
NER. The main reason might be that the subsequence feature
can enhance the transferability of the feature extractor from
source to target domain. It is noticed that BMRU achieves
higher F1 scores than LSTM and GRU, confirming that the
proposed BRMU can capture better fine-grained features.
Second, we observe that ACU achieves superior performance
to its competitors (i.e., ADD, CONCAT), suggesting the ACU
is effective in automatically balancing different features.

Furthermore, we also conduct some additional experiments
to investigate the effect of memory state (i.e.,−→mi and←−mi) and
direction in BMRU. The results are shown in Figure 2, where
the BERT+BMRU is our proposed model. By comparing
the MLP with FMRU and BMRU, we can see that capturing
sequential information between different subsequences (de-
fined in Eq.(2)) can further enhance the subsequence feature
extraction, indicating the effectiveness of the memory states.
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Moreover, although BMRU may lead to a slight decline in the
literature dataset compared to FMRU, BMRU outperforms
other baselines on most datasets. This observation illustrates
that bidirectional fine-grained local features can provide more
valuable information than the single direction in this task.

Effect of k
To explore the impact of the k, we conduct experiments with
different k (i.e., 1, 2, 3, 4, 5, 6) on the music dataset with
corresponding lengths of the subsequence 3, 5, 7, 9, 11, 13.
The results are reported in Figure 3. It is found that our pro-
posed models (i.e., Ours and Ours (DAPT)) achieve better
performance than corresponding baselines (i.e., BERT and
BERT+DAPT), regardless of which k we choose, further
demonstrating the effectiveness of incorporating fine-grained
subsequence-level features. Besides, we can observe that
when k equals 3 (i.e., subsequence length equals 7), our mod-
els obtain the best results. This result reveals that features
extracted from subsequences with seven words are appropri-
ate to help the model distinguish differences and similarities.

Fine-Grained Comparison
In this section, we further explore the effect of our proposed
model in fine-grained comparison, aiming to show how our
model achieves better results on the entity type level. The
results are reported in Table 4. It is found that our model
obtains better results on most entity types, especially for the
domain-related entity categories, such as song and album,
which achieves significant improvements. An explanation for
this observation may be that conll2003 is collected from the
Reuters news domain and contains few music-related sen-
tences, so it is difficult to transfer sentence-level information
to help music-related entity recognition. In contrast, fine-
grained subsequences tend to have more overlaps between
source and target domains, and thus they can transfer more
valuable features from source to target domains, contributing
to significant improvements in these entity types.

Effect of Target Domain Data Size
To explore the impact of the target domain data size, we
conduct experiments on different amounts of training data.

20 30 40 50 60 70 80 90 100
The Number of Target Domain Data Samples

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

F1
 sc

or
e

Ours (DAPT)
BERT+DAPT
Ours (BERT)
BERT

Figure 4: F1 scores of different models varying with the
training data size in the target domain.

We utilize the Conll2003 as the source domain and music
domain dataset as the target domain, with the number of
target domain training data gradually increasing from 20 to
100 samples, where we visualize the results in Figure 4. It is
found that our proposed model obtains better performance
than their baselines in most groups, further confirming the
effectiveness of our innovation in combining coarse-grained
global and fine-grained subsequence features for improving
NER performance in the target domain. In addition, we can
see that with the increase in data size, all these models gradu-
ally have better performance, which illustrates the importance
of data scale in cross-domain NER.

Case Study
As shown in Table 5, we also give a case study with predicted
labels from different models. We can observe that our model
can better recognize entities that are close to each other,
where both Ours and Ours (DAPT) correctly identify the last
four entities, which are almost adjacent in the sentence. This
is because our proposed BMRU can extract fine-grained local
features from subsequences. Therefore, our model will draw
more attention to neighbor words and phrases when predict-
ing the current token, which helps recognize the adjacent
entities. For example, the term “four singles” is helpful for
models to recognize the adjacent phrase “By the Way” as
a song entity, and this knowledge will further benefit other
adjacent entity recognition. Moreover, we can find that both
BERT and Ours tend to assign all the entities to the same
category. However, BERT+DAPT and Ours (DAPT) can rec-
ognize these entities into two classes, though BERT+DAPT
misclassifies some song entities as album entities(i.e., the
second “By the Way” and “The Zephyr Song ”). This is be-
cause these entities and their background information are
mentioned in the domain-related data such that DAPT can
improve model inference ability in the target domain.

In-Domain NER
We also investigate the performance of our model on gen-
eral NER, where we only utilize single domain datasets to
train the model, with the results reported in Table 6. The
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MODEL ORG. MISC. LOC. PER. COU. ALB. AWA. BAN. SON. INS. ART.

BERT 71.11 30.44 78.60 8.71 88.50 61.63 78.47 75.65 25.46 26.53 81.77
OURS 73.01 28.11 77.66 9.32 86.80 67.28 79.32 78.64 43.91 30.52 83.34

BERT+DAPT 77.50 30.92 82.78 13.55 85.98 73.23 81.17 84.85 66.94 42.96 86.89
OURS (DAPT) 77.68 29.41 83.25 12.92 86.79 78.45 82.93 86.06 77.08 44.40 87.30

Table 4: F1 scores of fine-grained comparisons on music datasets. ORG., MISC., LOC., PER., COU., ALB., AWA., BAN.,
SON., INS. and ART. denote Organization, Miscellaneous, Location, Person, Country, Album, Award, Band, Song, Musical
Instrument and Musical Artist, respectively.

Sentence By the Way was released and produced four singles; By the Way, The Zephyr Song, Can’t Stop and Universally Speaking.

BERT By the Way (Album) By the Way (Album) The Zephyr Song (Album) Can’t Stop (Album) Universally Speaking (Album)
OURS By the Way (Song) By the Way (Song) The Zephyr Song (Song) Can’t Stop (Song) Universally Speaking (Song)
DAPT By the Way (Album) By the Way (Album) The Zephyr Song (Album) Can’t Stop (Song) Universally Speaking (Song)
OURS (DAPT) By the Way (Album) By the Way (Song) The Zephyr Song (Song) Can’t Stop (Song) Universally Speaking (Song)

Table 5: Example on music test set. Entities with and without underlining represent incorrect and correct entities, respectively.

MODEL POLITICS SCIENCE MUSIC LITERATURE AI

BERT‡ 66.56 63.73 66.59 59.95 50.37
OURS 67.58 65.64 67.30 61.20 51.70

Table 6: F1 scores on general NER.

comparisons between our proposed model and its baselines
demonstrate that fine-grained features also can improve the
general NER model. The main reason could be that subse-
quence information can help the model grasp local structures
of tokens, which assists the model in obtaining a better un-
derstanding of the text. Besides, when compared between
cross-domain and in-domain NER, it is observed that the
improvements gained from cross-domain NER over BERT in
Table 3 are larger than that of in-domain NER, which reveals
that our model is better at cross-domain settings. This might
be because our proposed model can distinguish the differ-
ences and similarities between different text styles with the
help of subsequence feature transfer, while this advantage
may not be useful for in-domain NER.

Related Work
Neural networks have played dominant roles in the NER
task over the past few years (Huang, Xu, and Yu 2015; Chiu
and Nichols 2016; Liu et al. 2021a), which achieves great
improvements on this task. Recently, models (Devlin et al.
2019; Luo, Xiao, and Zhao 2020; Yang et al. 2019; Lee et al.
2020; Liu et al. 2019; Yamada et al. 2020; Hu et al. 2022b)
based on Transformer (Vaswani et al. 2017) have become the
mainstream methods to realize NER since they can provide
more effective representation with the help of the multi-head
attention mechanism. Luo, Xiao, and Zhao (2020) proposed
to utilize two-level hierarchical contextualized representation,
including sentence-level and document-level representations,
to fuse with token embedding to improve the performance.

Domain adaption in NER has been a popular topic in past
decades, and many works focus on this problem Jia, Liang,

and Zhang (2019); Zhang, Yue, and Zhuang (2020); Liu et al.
(2021b); Chen and Moschitti (2019); Hu et al. (2022c). For
example, Lin and Lu (2018) employed a lightweight transfer
learning for cross-domain NER, which uses adaptation layers
to bridge the gap between the two input spaces. Jia, Liang,
and Zhang (2019) combined language modeling and NER
tasks in source and target domains via multi-task learning to
enhance the model performance. Liu et al. (2021b) utilized
the domain-related unlabeled corpus to continue pre-training
language modeling and thus improved its domain adaptation
ability. Chen and Moschitti (2019) used a neural adapter,
which connects the target and the source models, to miti-
gate the forgetting of the learned knowledge. Most of these
approaches construct adapters or combine them with other
tasks via multi-task learning to reduce the coarse-level dif-
ference between source and target domains. However, these
methods pay less attention to leveraging fine-grained fea-
tures, which play an important role in this task since these
features are more accessible and more effective in transfer-
ring from source to target domains. Our model provides an
alternative solution to effectively combine coarse-grained and
fine-grained level features, thus reducing the data discrepancy
and robustly improving cross-domain NER.

Conclusion
In this paper, we propose to incorporate denser subsequence-
level features for improving cross-domain NER. In detail, for
each token, we generate a subsequence constructed by its
surrounding tokens, and thus for the input sequence, we can
obtain a group of subsequences. Then, we utilize BMRU to
extract fine-grained subsequence features from the groups.
Finally, we propose an ACU module to fuse coarse-grained
global information from the pre-trained encoder and fine-
grained sequence features. In doing so, dense subsequence-
level features can promote valuable information transferring
from the source to the target domain. Experimental results
on several benchmark datasets illustrate the effectiveness of
our model, which achieves considerable improvements.
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