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Abstract

In dialogue state tracking (DST), the exploitation of dia-
logue history is a crucial research direction, and the exist-
ing DST models can be divided into two categories: full-
history models and partial-history models. Since the “select
first, use later” mechanism explicitly filters the distracting in-
formation being passed to the downstream state prediction,
the partial-history models have recently achieved a perfor-
mance advantage over the full-history models. However, be-
sides the redundant information, some critical dialogue con-
text information was inevitably filtered out by the partial-
history models simultaneously. To reconcile the contextual
consideration with avoiding the introduction of redundant in-
formation, we propose DICE-DST, a model-agnostic module
widely applicable to the partial-history DST models, which
aims to strengthen the ability of context exploitation for the
encoder of each DST model. Specifically, we first construct
a teacher encoder and devise two contextual reasoning tasks
to train it to acquire extensive dialogue contextual knowl-
edge. Then we transfer the contextual knowledge from the
teacher encoder to the student encoder via a novel turn-level
attention-alignment distillation. Experimental results show
that our approach extensively improves the performance of
partial-history DST models and thereby achieves new state-
of-the-art performance on multiple mainstream datasets while
keeping high efficiency.

Introduction
Imagination is the eye of the soul.
———————————————————————–

Joseph Joubert (1754 AD - 1824 AD)

Task-Oriented Dialogue (TOD) systems have achieved
substantial progress and have penetrated our daily lives
much more than before. As an essential component of di-
alogue management, Dialogue State Tracking (DST) is in
charge of utilizing multi-turn dialogues to extract the com-
pact dialogue information which contains user goals and in-
tentions as the dialogue state. In each turn, the dialogue state
is typically in the form of a set of (slot, value) pairs. For ex-
ample, in Fig. 1, the dialogue state at turn 1 is (“restaurant-
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S1: Good morning! How can I help you?

S2: The  Alimentum is in the center of the town, how 

many people would you like to reserve?
U2: Please book me for 7 people.

U1: I want to move around downtown today, please 

help me find a Turkish restaurant.

S3: Your reservation at Alimentum for 7 people has been 

successful! 

S8: Is there anything else I can help you with?

restaurant-food: ['Turkish']

restaurant-bookpeople: ['7']

restaurant-food: ['Turikish'] restaurant-name: ['Alimentum']

restaurant-area: ['center']

······

U8: I also need to book a hotel for 7 people for 3 nights.

S9: May I suggest the Worth House? It is a cheap, 

4 star hotel in northen Cambridge.
U9: This location is a bit out of the way.

hotel-area: ['center']hotel-bookpeople: ['7']

... hotel-bookstay: ['3']

... hotel-bookstay: ['3'] hotel-bookpeople: ['7']

Figure 1: An example of DST. Utterances on the left and the
right sides are from system and user, respectively. Each red
slot value in the figure indicates that it is updated in its turn.

food”:“Turkish”). The continuously updated dialogue state
indicates the progress of the dialogue and is leveraged to de-
termine the next system action.

In dialogue state tracking, the utilization of dialogue his-
tory is a crucial research direction. The existing DST meth-
ods can generally be divided into two categories based on
the use of dialogue history: full-history methods and partial-
history methods. Full-history methods employ the current
turn dialogue concatenated to the entire historical utterances
as input to ensure the integrity of the input information (Xu
and Hu 2018; Lei et al. 2018; Goel, Paul, and Hakkani-
Tür 2019; Ren 2020; Shan et al. 2020; Rastogi et al. 2020;
Hosseini-Asl et al. 2020). Nevertheless, this type of method
usually encounters two issues: 1) The huge spatial costs
and the serious efficiency issues brought by the input of
all dialogues, and more seriously; 2) since the truly use-
ful dialogues for the state update of each turn are only a
small portion of all dialogue utterances, the input of all di-
alogues leads to the introduction of a large amount of re-
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dundant information, which may confuse the model (Yang,
Huang, and Mao 2021). On the contrary, the current turn dia-
logue concatenated to a portion of the dialogue history is fed
into the partial-history methods through either rule-based or
learning-based approaches (Chao and Lane 2019; Kim et al.
2020; Guo et al. 2021, 2022; Feng et al. 2022). Initially, such
methods appeared because the computational resources can-
not afford the burden of feeding the whole dialogue. Sub-
sequent models of this type aim to use only the part of the
dialogue that is most relevant to the state tracking at each
turn. This “select first, use later” mechanism explicitly min-
imizes the distracting information passed to the downstream
state prediction, which achieves superior performance.

However, for the existing partial-history methods, besides
the redundant information, some critical dialogue context
information was inevitably filtered out simultaneously. As
shown in Fig. 1, in the last turn of the dialogue (i.e., turn 9),
the user thinks the location of the hotel is out of the way,
but there is no explicit expression of the user’s intention to
find a hotel in the center of the city. We can observe that
the texts explicitly indicating this requirement exist in turn
1. In light of this, if turn 1 is not input to a partial-history
DST model, the mindless model can only process the con-
tents seen without any imagination, while a human can eas-
ily imagine based on experience and thereby understand the
user’s requirement. Therefore, if it is possible to enable the
model to imagine during encoding the partial dialogues, the
obtained dialogue representations for the downstream state
generation will be an essential complement to the dialogue
context while avoiding introducing additional dialogues.

To achieve this goal, we propose DICE-DST, a model-
agnostic module widely applicable to the partial-history
DST models. It aims to optimize the encoder of each DST
model from the perspective of dialogue context supplemen-
tation without introducing additional dialogues. Specifically,
we first construct a teacher encoder and devise two con-
textual reasoning tasks to train it to acquire extensive dia-
logue contextual knowledge. Then we transfer the contex-
tual knowledge from the teacher encoder to the student en-
coder via a novel turn-level attention-alignment distillation.
The training of the student encoder will be supervised by
both the distillation and the objective of dialogue state track-
ing in each DST model. In this training process, we input the
full history of each dialogue session to the teacher encoder,
while we input the dialogue turns used and unused to the
student encoder separately according to each model’s set-
tings. Then we apply the attention-alignment mechanism to
complement the missing attention values to transfer the cru-
cial dialogue contextual knowledge. In the inference stage,
the trained student encoder will be capable of supplementing
the contextual knowledge related to the input dialogues and
thereby facilitating the downstream dialogue state tracking.
To the best of our knowledge, our proposed DICE-DST is
the first work to reconcile the contextual consideration with
avoiding the introduction of redundant information.

We extensively evaluate our proposed method1, and ex-
perimental results show that our DICE-DST improves the

1Code is available at https://github.com/guojinyu88/DICE DST

performance of multiple partial-history DST models and
therefore achieves new state-of-the-art performance on the
mainstream benchmarks: MultiWOZ 2.1 (Eric et al. 2020)
and MultiWOZ 2.2 (Zang et al. 2020). In addition, DICE-
DST also achieves new state-of-the-art performance on Sim-
M and Sim-R (Shah et al. 2018) and competitive perfor-
mance on DSTC2 (Henderson, Thomson, and Williams
2014). Notably, since the full dialogue history is not fed into
the target encoder during the inference stage, our method
could show superiority in terms of performance while keep-
ing high efficiency at the same time.

In summary, our contributions are mainly three-fold:
• We propose DICE-DST which is widely applicable to the

existing partial-history DST methods, which enables the
encoder to strengthen the context of dialogue input with-
out introducing additional dialogues.

• We devise two contextual reasoning tasks to train the
teacher encoder to acquire extensive dialogue contextual
knowledge. We also propose a novel turn-level attention
alignment mechanism to interactively bridge the gap be-
tween the teacher encoder and the student encoder.

• Experiments show that our approach widely improves the
performance of partial-history DST models and achieves
new state-of-the-art performance on multiple mainstream
datasets while maintaining high efficiency.

Related Work
Traditional DST models usually determine dialogue states
by considering only utterances at the current turn (Mrkšić
et al. 2017; Zhu et al. 2020; Lee, Lee, and Kim
2019). With the prevalence of pre-trained language models
(PrLMs) (Kenton and Toutanova 2019; Radford et al. 2019;
Lan et al. 2019), some DST models employ the current turn
dialogue concatenated to the whole historical utterances as
input to ensure the integrity of the input information (Xu and
Hu 2018; Lei et al. 2018; Goel, Paul, and Hakkani-Tür 2019;
Ren 2020; Shan et al. 2020; Rastogi et al. 2020; Hosseini-
Asl et al. 2020). Recently, granularity in DST has been pro-
posed to quantify the utilization of dialogue history (Yang,
Huang, and Mao 2021). Its experimental results demonstrate
that redundant content can become distracting information
to pose a hindrance. The contrasting partial-history mod-
els recently applied the mechanism of pre-use selection to
explicitly minimizes the distracting information passed to
the downstream state prediction (Chao and Lane 2019; Kim
et al. 2020; Guo et al. 2021, 2022; Feng et al. 2022). Es-
pecially, (Guo et al. 2022) dynamically selects the relevant
dialogue contents corresponding to each slot for state updat-
ing, and thereby achieves superior performance. Neverthe-
less, all partial-history models will inevitably filter out some
critical dialogue context information simultaneously.

On the other hand, knowledge distillation (Hinton et al.
2015; Tang et al. 2019) aims to transfer knowledge from
one model to another. Recently, a great variety of knowl-
edge distillation approaches have been developed on top of
the pre-trained language models (Sun et al. 2019; Sanh et al.
2019; Sun et al. 2020; Jiao et al. 2020; Sun et al. 2023).
Some approaches compress BERT to a tiny structure with

12846



Initialized Teacher Encoder

Trained Teacher Encoder

Original Encoder

 Sentence Coherence 

Prediction
Same Source Prediction

Pre-Interaction Context Exploitation

Interactive Attention-Alignment 

Distillation

Trained Student Encoder

 Sentence Coherence Prediction

Teacher Encoder

...

(U1,Z1)

...

(Um,Zm)

...

(Un,Zn)

...

(UT,ZT)

SWAP

[CLS]

... ... ...

H[CLS]

Class 
Lable

Same Source Prediction

Teacher Encoder

...

(U1,Z1)

...

(U2,Z2)

...

(Un,Zn)

...

(UT,ZT)[CLS]

... ...

H[CLS]

Class 
Lable

From another 

dialogue sample

Missing

Missing

A 
teacher

As->s    &  AR->R 

L trans

L trans

student student

Figure 2: The architecture of the proposed DICE-DST. It consists of three stages, which are marked with dash lines respectively.
Stage I is the training process of the teacher encoder. Stage II is the training of the student encoder, which is supervised by both
the distillation and the objective of dialogue state tracking. Stage III is the inference stage.

fewer transformer layers and smaller hidden sizes by dis-
tilling the output of the teacher model. In addition to dis-
tilling the predicted logits and hidden states of the teacher
model, the relationships between these outputs can also be
captured as knowledge, which enables the student model to
have the potential to surpass its teacher model. (Li et al.
2021) asks representation-based encoders to conduct vir-
tual interactions that mimic the behaviors as interaction-
based models do, and it takes the knowledge distilled from
interaction-based encoders as supervised signals to promise
the effectiveness of virtual interactions. (Hu et al. 2018) in-
vestigates knowledge distillation in the context of machine
reading comprehension. The mechanism of attention align-
ment in our work is partially inspired by the distillation of
such attentive information.

Approach
In this section, we first introduce the encoder of a DST
model. Then we formally introduce DICE-DST, a model-
agnostic module that aims to optimize the encoder of each
partial-history DST model from the perspective of dia-
logue context supplementation. As illustrated in Fig. 2,
our approach is mainly composed of two modules: a Pre-

Interaction Context Exploitation (PICE) module and an In-
teractive Attention-Alignment Distillation (IAAD) module
to conduct a two-stage process. Where PICE first constructs
a teacher encoder and trains it with two contextual reason-
ing tasks to acquire extensive dialogue contextual knowl-
edge, then IAAD transfers the knowledge from the teacher
encoder to the student encoder via a turn-level attention-
alignment distillation. The training of the student encoder
will be supervised by both the distillation and the objec-
tive of dialogue state tracking in each DST model. Details
of each module are given respectively in the remainder of
this section.

Problem Formulation and Encoder in DST
Given a dialogue X = {(U1;Z1), (U2;Z2), . . . , (UT ;ZT )}
of T turns where Ut represents user utterance and Zt rep-
resents system response of turn T , DST is tasked to extract
dialogue states at each turn t(t ≤ T ), which is defined as
Bt. In general, the issue of DST consists of two objectives:
1) learning a dialogue utterance encoder FE : Dt → Et that
takes the dialogue utterances Dt as input and obtains the
representation for the concatenated dialogue sequence Et;
2) learning a FB : Et → Bt that takes the representation Et
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as input and predicts the dialogue state Bt at each turn t. In
this paper, DICE-DST aims to optimize the dialogue utter-
ance encoder FE from the perspective of dialogue context
supplementation, and thereby facilitate the downstream dia-
logue state prediction. For the sake of simplicity, some slots
that would be also input to the encoder in some DST models
are omitted in the next sections.

Let C = {1, 2, . . . , t} denote the set of turns of
the entire dialogue history up to turn t. As aforemen-
tioned, our approach applies to the partial-history DST
models. We use S = {s1, s2, . . . , sk} to denote the
set of turns of dialogues that are input to the encoder of
a partial-history DST model (i.e., corresponds to Dt =
{(Us1 ;Zs1), (Us2 ;Zs2), . . . , (Usk ;Zsk)} ), and its size as
k = |S|. Therefore, the set of turns that are not input to
the encoder is denoted as R = ∁CS = {r1, r2, . . . , rl}, and
its size as l = t− k.

Pre-Interaction Context Exploitation
In this stage, we first construct a teacher encoder, and then
we propose two contextual reasoning tasks as follows to
train it to acquire extensive dialogue contextual knowledge:

Sentence Coherence Prediction Sentence coherence is a
basic aspect of contextualization. Here we employ a task to
train the teacher encoder’s ability to determine whether all
dialogue turns in one dialogue session are in the correct or-
der. Specifically, we take all dialogue sessions from the cor-
responding dataset as samples. For half of these samples,
we swap the position of two turns in each dialogue session.
While for the others, we maintain the original sequence. Af-
ter this operation, we enter each dialogue session into the
teacher encoder, and then we feed the [CLS] token’s hidden
state to an MLP as a classifier to make a two-way prediction:

H̆ = Teacher(X̆), H̆ ∈ Rlen(X̆)×d (1)

P sc = softmax(MLP(H̆[CLS])) (2)

Same Source Prediction In addition to identifying the or-
der of contents in one dialogue session, we also propose a
task to enable the encoder to determine whether all dialogue
turns belong to the same dialogue session. Since only a por-
tion of each dialogue session is fed into the partial-history
DST model during the inference phase, we believe this task
will facilitate the student encoder after the knowledge has
been transferred to imagine in the correct direction in the in-
ference stage. Specifically, for half of the dialogue samples,
one turn of each dialogue session will be replaced with a turn
belonging to another dialogue session, while in the other half
of dialogue samples, the original sequence is maintained.
Similarly, we feed each dialogue session into the teacher en-
coder, and a binary classifier follows [CLS] token to predict:

H̃ = Teacher(X̃), H̃ ∈ Rlen(X̃)×d (3)

P ss = softmax(MLP(H̃[CLS])) (4)
The loss functions for both two tasks above are cross-

entropy loss as follows:

Lsc =
∑

i∈[0,1]

−ysci logP sc
i (5)

Lss =
∑

i∈[0,1]

−yssi logP ss
i (6)

The training goal is to minimize Lteacher = Lsc + Lss so
that the teacher encoder can be adapted to both two tasks.

Interactive Attention-Alignment Distillation
In this module, we take the original encoder in each partial-
history DST model as the student encoder and transfer the
contextual knowledge from the teacher encoder to the stu-
dent encoder via a proposed turn-level attention-alignment
distillation. The distillation process is performed in parallel
with the training of the model on the DST dataset. Specifi-
cally, we input the full history of each dialogue session to the
teacher encoder, while we input the dialogue turns used and
unused to the student encoder separately according to each
model’s settings. In this case, the different inputs lead to a
gap between these two encoders in their contextual represen-
tations. To bridge this gap, we first make a detailed analysis
of it through the mechanism of pre-trained language mod-
els (PrLMs). A PrLM utilizes the multi-head self-attention
(MHA) mechanism to produce each element’s representa-
tion by a weighted average of the rest of the elements, and
the attention score of each head between two elements can
be calculated as Ai→j = MHA(i, j) =

KiQ
⊤
j√

d
. In the in-

ference stage, the teacher encoder can compute contextual
representation based on the full dialogue history, and its at-
tention score can be represented as follows:

Ateacher =

A1→1 · · · A1→t

...
. . .

...
At→1 · · · At→t

 (7)

where t is the number of the current turn, Ai→j denotes the
attention map generated by the representation of turn i dia-
logue attending to the representation of turn j dialogue.

On the other hand, the student encoder can only focus on
the interactions between the turns of the input partial history
in the inference stage, which can be represented as:

Astudent =

As1→s1 · · · As1→sk
...

. . .
...

Ask→s1 · · · Ask→sk

 (8)

We observe that the interaction between the input dia-
logue turns and the unused dialogue turns AS→R, AR→S ,
as well as the interaction between the unused dialogue turns
AR→R are missing in the student encoder. We consider that
these gaps contain crucial dialogue contextual knowledge.
Based on the above analysis, we first enable the student en-
coder to mimic the interaction, and then employ the teacher
encoder to supervise it by the knowledge distillation to com-
plete the missing interactions. Specifically, the student en-
coder first encodes the set of unused dialogue turns and the
set of input dialogue turns as follows:

R = Student (Xr1⊕. . .⊕Xrl) (9)

S = Student (Xs1⊕. . .⊕Xsk) (10)
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Then the missing AS→R, AR→S and AR→R mentioned
above can be calculated as follows:

Astudent
Si→Rj

=
(wkSi)(wqRj)

⊤
√
d

(11)

Astudent
Rj→Si

=
(wkRj)(wqSi)

⊤
√
d

(12)

Astudent
Rn→Rm

=
(wkRn)(wqRm)⊤√

d
(13)

where wk and wq are the parameters of the transformer en-
coder at multi-head attention. Rj ,Rn,Rm is extracted from
R, and Si is extracted from S . As aforementioned, the exist-
ing attention score in the teacher encoder will guide the stu-
dent encoder to complete the missing attention values, which
is exactly how the teacher encoder transfers the contextual
knowledge to the student encoder. The goal is to minimize
the MSE loss across all attention scores to be completed:

Ltrans =
∑(

Ateacher −Astudent
)2

(14)

The student encoder will be trained to minimize L =
Ltrans + LDST, where LDST are different in various meth-
ods. In the inference stage, the student encoder only takes
partial history and will supplement the knowledge related to
the input without introducing additional dialogues.

In addition, our approach can be easily extended to the
RNN-based model. In PICE, when an RNN-based encoder
acts as a student, we replace the teacher encoder with an
RNN-based one as well, and we retain the same contextual
reasoning tasks. In IAAD, we feed the corpus into an RNN-
based encoder to get the hidden state and use the hidden state
as the basis for calculating the attention map as follows:

A = softmax(
HRH

⊤
S√

d
) (15)

where HR, H
⊤
S is the hidden state of the unused dialogues

and the input dialogues respectively.

Experiments
Datasets and Evaluation Measures
Our proposed method is evaluated in most of the main-
stream benchmark task-oriented dialogue challenges: Mul-
tiWOZ 2.2, MultiWOZ 2.1, Sim-R, Sim-M, and DSTC2.
MultiWOZ 2.2 and MultiWOZ 2.1 are two versions of the
most popular task-oriented dialogue dataset nowadays. It is
a fully-labeled collection of human-human written dialogues
spanning multiple domains. Compared to MultiWOZ 2.1,
MultiWOZ 2.2 is re-annotated with a different set of an-
notators and also canonicalized entity names. Sim-M and
Sim-R contain human-paraphrased simulated dialogues in
the movie and restaurant domains. The prevalence of out-of-
vocabulary (OOV) values exists in their slots. DSTC2 is in
the restaurant domain.

We exploit the widely adopted Joint Goal Accuracy
(JGA) (Wu et al. 2019) on all test sets. JGA refers to the
accuracy of the dialogue state in each turn, which is defined
as the ratio of dialogue turns for which all slot values have
been filled correctly according to the ground truth.

Experimental Settings
We employ ALBERT-large model (Lan et al. 2019) as the
backbone of the teacher encoder and student encoder. For
the teacher encoder, dialogues with more than 512 tokens
will be truncated by retaining as many turns as possible.
The truncated dialogues with more than three turns will be
considered a separate dialogue session to generate train-
ing data. We group 32 samples as a batch to jointly train
the teacher encoder. For the student encoder, we employ
a group size of 8 to batch process dialogue turns. During
training, we use ground-truth selected slots instead of the
predicted ones. We set the maximum number of turns as 16
and the maximum length of tokens as 512. We use AdamW
optimizer (Loshchilov and Hutter 2017) with β 1 = 0.9,
β 2 = 0.999, ϵ = 1e − 8 and set the warmup proportion
to 0.1. We set the learning rate of the pre-trained language
model parameters to 2e−5 and the learning rate of the other
parameters to 1e − 4. We utilize dropout (Srivastava et al.
2014) with the probability of 0.1.

Baselines and Characteristics
We take into account the different characteristics of the mod-
els when selecting the partial-history DST baselines, and we
will first introduce these characteristics as follows:

Update Strategy The selective-update methods first per-
form slot update selection, then only the slots selected are
permitted to update values, while the other slots directly in-
herit the values from the previous turn (Kim et al. 2020;
Guo et al. 2021, 2022). The equal-update methods treat all
slots equally and predict the dialogue state at every turn from
scratch. Typically, a selective-update method requires an ad-
ditional encoder for slot update selection.

Encoder This refers to the type of backbone of the
model’s encoder. Despite the current dominance of BERT-
based encoders, we still apply DICE-DST to the classical
RNN-based generative DST models to widely evaluate the
validity of DICE-DST.

Number of Dialogue Turns Involved This refers to the
number of dialogue turns input to the encoder.

Dialogue Continuity This refers to whether the dialogue
turns input to the encoder is continuous.

Based on these characteristics, we select the following
baselines, and Table 1 shows their detailed information.

BERT-DST (Chao and Lane 2019) generates language
representations suitable for scalable DST. It decodes only
the slot values of the slots mentioned in the current turn
of dialogue, and then uses a rule-based mechanism to up-
date from the previous turn state to the current turn state.
This is one of the early efforts of the BERT-based DST
model. TRADE (Wu et al. 2019) encodes the whole dia-
logue context and decodes the value for every slot using a
copy-augmented decoder. It is the first to consider knowl-
edge transfer between domains in multi-domain DST sce-
narios. SOM-DST (Kim et al. 2020) is the first previous-
based method. It takes the dialogue state as an explicit mem-
ory that can be selectively overwritten and inputs it into
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Model Update Strategy Encoder Dialogue
Continuity

No. of Dialogue
Turns Involved

BERT-DST (Chao and Lane 2019) equal update BERT Yes 1
TRADE (Wu et al. 2019)† equal update RNN Yes 2
SOM-DST (Kim et al. 2020) selective update BERT & RNN Yes 2
DSGF-NET (Feng et al. 2022) equal update BERT Yes 2
DiCoS-DST (Guo et al. 2022)‡ selective update BERT No 3

Table 1: Statistics on the characteristics of the 5 baselines in the paper. † means that the range of dialogue history used in
TRADE can be freely set. In this paper, we use the dialogue of the current turn and previous turn as input to TRADE to evaluate
the effectiveness of our approach. ‡ means that the number of dialogue turns used in DiCoS-DST can be set. In this paper,
we choose the model using 3 turns of dialogue whose performance was optimal. The subsequent main experimental results on
these two models are all based on these settings.

Model MultiWOZ 2.1 MultiWOZ 2.2 Sim-M Sim-R DSTC2
JGA (%) JGA (%) JGA (%) JGA (%) JGA (%)

BERT-DST (Chao and Lane 2019) - 47.95 80.1 89.6 69.3
BERT-DST + DICE† - 49.21 (±0.51) 81.9 (±1.2) 90.2 (±0.3) 71.5 (±0.2)
TRADE (Wu et al. 2019) 41.30 41.10 - - -
TRADE + DICE† 42.90 (±0.30) 42.60 (±0.30) - - -
SOM-DST (Kim et al. 2020) 53.68 - - - -
SOM-DST + DICE† 54.52 (±0.34) - - - -
DSGF-NET (Feng et al. 2022) 56.70 55.80 - - -
DSGF-NET + DICE‡ 57.63 (±0.36) 56.84 (±0.42) - - -
DiCoS-DST (Guo et al. 2022) 61.02 61.13 84.7 91.5 78.4
DiCoS-DST + DICE† 61.76 (±0.29) 61.98 (±0.33) 85.3 (±0.8) 91.9 (±0.2) 79.2 (±0.2)

Table 2: Accuracy (%) on the test sets of benchmark datasets. † means that we build our approach on the source code provided
by the author of the paper. ‡ means that we build the original model ourselves and apply our approach.

PrLM MultiWOZ 2.2
ALBERT (large) 61.98
ALBERT (base) 61.65 (-0.33)
BERT (large) 61.69 (-0.29)
BERT (base) 61.51 (-0.47)

Table 3: Ablation study with joint goal accuracy (%).

BERT together with the current turn dialogue. Finally, it
decodes each slot value using a pointer-generator network.
DSGF-NET (Feng et al. 2022) generates a dynamic schema
graph to explicitly fuse the prior slot-domain membership
relations and dialogue-aware dynamic slot relations. It also
employs a schema-agnostic graph attention network to share
information. DiCoS-DST (Guo et al. 2022) dynamically se-
lects the relevant dialogue contents corresponding to each
slot from a combination of three perspectives. Since only
the selected dialogue contents are fed into the state gen-
erator, this mechanism explicitly minimizes the distracting
information passed to the downstream state prediction and
thereby achieves the prior state-of-the-art performance.

Main Results
Table 2 shows the results of our approach applying to the
baselines. The application of our DICE-DST brings a con-
siderable performance improvement for each baseline. In

Method MultiWOZ 2.2
DiCoS-DST + DICE-DST 61.98
-Sentence Coherence Predication 61.65 (-0.33)
-Same Source Predication 61.53 (-0.45)
20% of the samples are processed 61.37 (-0.61)
80% of the samples are processed 61.42 (-0.56)

Table 4: Ablation study with joint goal accuracy (%).

Mechanism MultiWOZ 2.2
Astudent

Rl→Sk
and Astudent

Sk→Rl
61.98

Astudent
Rl→Sk

61.54 (-0.44)
Astudent

Sk→Rl
61.42 (-0.56)

Table 5: Ablation study with joint goal accuracy (%).

particular, DICE-DST further improves the performance of
DiCoS-DST and thereby achieves new state-of-the-art per-
formance on MultiWOZ 2.1 and MultiWOZ 2.2 with joint
goal accuracy of 61.76% and 61.98%. Besides, despite the
sparsity of experimental results on Sim-M and Sim-R, the
combination of DiCoS-DST and DICE-DST still achieves
SOTA performance on these two datasets. On DSTC2, the
performance of this combination is also competitive, which
is second only to that of Seq2seq-DU (Feng, Wang, and Li
2021). In general, DICE-DST improves the performance of
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k DiCoS-DST DiCoS-DST + DICE Difference
1 61.04 61.75 +0.71
2 61.13 61.98 +0.85
3 60.88 61.41 +0.53

Table 6: The JGA (%) of different k. k is the number of
additional dialogue turns used in addition to the current turn.

Original + DICE-DST Difference
TRADE† 45.6 45.4 -0.2
TripPy 55.29 55.16 -0.13

Table 7: Accuracy (%) on the test sets of MultiWOZ 2.1. †
means that we use the entire dialogue history as input.

BERT-based and RNN-based models to a similar degree.
About the update strategy, the performance improvement of
DICE-DST for the two selective-update models is relatively
lower than that for the other equal-update models. We con-
jecture that this is due to the slot update signal usually ex-
ists in the current turn rather than in the dialogue history,
so the effect of contextual supplementation is limited. For
the effectiveness on the different number of dialogue turns
involved, we discuss it in detail in Analysis section.

Ablation Study
To understand the effect of different proposed techniques,
we take the combination of DiCoS-DST + DICE-DST as an
example to evaluate these techniques separately.

Different PrLMs We employ different pre-trained lan-
guage models as the backbone of the teacher encoder for
training and testing on MultiWOZ 2.2. Table 3 shows that
the JGA of other PrLMs decreases in varying degrees com-
pared with ALBERT-large. We can observe that the teacher
encoder based on each PrLMs improves the performance
of DiCoS-DST by participating in distillation. This demon-
strates that our mechanism can achieve consistent perfor-
mance gain based on various representation foundations.

Effect of Contextual Reasoning Tasks We conduct an
ablation study of the proposed two contextual reasoning
tasks on MultiWOZ 2.2. As shown in Table 4, we observe
that the performance degrades by 0.33% for JGA when the
Sentence Coherence Prediction is removed. Likewise, re-
moving the Same Source Prediction brings a 0.45% perfor-
mance degradation, which is a little more than the drop from
removing the former task. In addition, we also attempt to
adjust the proportion of samples performing the operation
in both tasks. As shown in rows 4 to 5 in Table 4, perform-
ing operations on 20% or 80% of the samples reduces the
performance of the trained teacher encoder. We conjecture
that this is due to processing 50% of the samples may better
balance the positive and negative samples.

Unidirectional versus Bidirectional Interaction Given
that the goal of our approach is to supplement the context
of the used dialogues with the unused dialogues, is it pos-
sible that performing unidirectional interactions during at-

tention alignment can yield better results? To test this con-
jecture, we separately perform two unidirectional interac-
tive attention alignments (i.e., only Astudent

Rl→Sk
or Astudent

Sk→Rl
).

As reported in Table 5, the JGA of each unidirectional in-
teractive attention alignment decreases markedly compared
to the bidirectional interaction. This indicates that the bidi-
rectional attention alignment enables more adequate interac-
tion. In addition, the performance of Astudent

Rl→Sk
is better than

that of Astudent
Sk→Rl

, which is consistent with the unidirectional
complement goal of our approach.

Analysis
Effectiveness on Different Number of Turns

Intuitively, DICE-DST improves more for partial-history
DST models with fewer input dialogue turns. To verify this,
we utilize DICE-DST to optimize DiCoS-DST on different
numbers of selected dialogue turns k to compare their per-
formance gains. As shown in Table 6, the improvement from
DICE-DST is greatest when k = 2. We believe that this is
because the less input information cannot provide enough
“material” for the imagination of the module, while the ex-
cessive input narrows the imagination space and introduces
more noise simultaneously.

Break the Limitation of Partial-History?

All of the previous sections explore the effect of DICE-DST
on the partial-history DST methods. What is the effect of
DICE-DST on the full-history DST methods? To investigate
it, we take TRADE and TripPy (Heck et al. 2020) as exam-
ples and optimize them by DICE-DST to observe the per-
formance change. As reported in Table 7, the application of
DICE-DST caused a slight degradation in the performance
of both models. This experimentally shows that since the
full-history DST models have already input the complete
dialogue history information, it is difficult to have further
improvements by additional imagination, which is to some
extent consistent with intuition.

Conclusion
We introduce an effective DICE-DST that is widely applica-
ble to the partial-history DST models. It aims to optimize the
encoder of each DST model from the perspective of dialogue
context supplementation without introducing additional di-
alogues. It first constructs a teacher encoder and trains it
with two contextual reasoning tasks to acquire extensive di-
alogue contextual knowledge, then it transfers the contex-
tual knowledge from the teacher encoder to the student en-
coder via a novel turn-level attention-alignment distillation.
Experimental results show that DICE-DST widely improves
the performance of partial-history DST models and achieves
new SOTA performance on multiple mainstream datasets
while maintaining high efficiency. We believe the combina-
tion of the “select first, use later” mechanism and the distil-
lation opens a door to a promising area of long text, and we
will explore it for more than DST in the future.
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