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Abstract

Quality estimation (QE) aims to assess the quality of ma-
chine translations when reference translations are unavail-
able. QE plays a crucial role in many real-world applica-
tions of machine translation. Because labeled QE data are
usually limited in scale, recent research, such as DirectQE,
pre-trains QE models with pseudo QE data and obtains re-
markable performance. However, there tends to be inevitable
noise in the pseudo data, hindering models from learning
QE accurately. Our study shows that the noise mainly comes
from the differences between pseudo and real translation out-
puts. To handle this problem, we propose CLQE, a denoising
pre-training framework for QE based on curriculum learn-
ing. More specifically, we propose to measure the degree
of noise in the pseudo QE data with some metrics based
on statistical or distributional features. With the guidance of
these metrics, CLQE gradually pre-trains the QE model using
data from cleaner to noisier. Experiments on various bench-
marks reveal that CLQE outperforms DirectQE and other
strong baselines. We also show that with our framework,
pre-training converges faster than directly using the pseudo
data. We make our CLQE code available (https://github.com/
NJUNLP/njuqe).

Introduction
Machine translation (MT) quality estimation (QE) is the task
of estimating the quality of machine translations when refer-
ence translations are unavailable (Specia, Scarton, and Paet-
zold 2018). As shown in Table 1, QE focuses on predicting
sentence-level scores and word-level tags given the sources
and MT outputs. QE is of great practical use in real-world
scenarios including reducing post-editing effort by filter-
ing out low-quality translation results or pointing out pos-
sibly low-quality tokens (Specia 2011), improving the per-
formance of MT systems by guiding the decoding process
(Wang et al. 2020a), etc.

Despite the usefulness of QE, the collection and anno-
tation of QE data are expensive, which hinders the per-
formance of neural QE models (Kepler et al. 2019). Thus,
the pre-training and fine-tuning strategy have been widely
used to transfer bilingual knowledge from parallel corpora to
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Source the exhibit provided new homes for the zoo ’s
siamangs and pygmy marmosets .

MT

这个 (this)展览 (exhibit)为 (for)动物园 (zoo)
的 (’s)壁炉 (fireplace)和 (and)俾格米 (pygmy)
马 (horse)赛车 (car racing)提供了 (provided)
新的 (new)家园 (homes) . ∥ HTER = 0.4667

Table 1: An example from the WMT20 English-Chinese
(EN-ZH) QE dataset. For word-level tags, each token is la-
beled as ‘OK’ or ‘BAD’ (we show the ‘BAD’ tokens in bold
font with an underline), representing whether it needs to be
corrected. Sentence level score HTER (Snover et al. 2006)
measures the whole effort to correct the MT manually.

the QE task. The predictor-estimator framework (Kim et al.
2017; Fan et al. 2019) pre-trains a feature extractor called
predictor, which predicts each word in the reference given
the source sentence and the target context.

Cui et al. (2021) argued that the differences between the
predictor task and the QE task might cause problems for
bilingual knowledge transfer. As a solution, they proposed
the DirectQE framework, which generates pseudo QE data
(pseudo MT outputs and their QE labels) and uses these data
to pre-train whole QE models directly. To generate pseudo
MT outputs with controllable errors, DirectQE randomly re-
places target tokens of parallel sentences. These replaced
tokens are assigned with QE label ‘BAD’ and others with
‘OK’.

While DirectQE achieves remarkable performance, we
notice that the generated pseudo data still have some noises.
Although the pseudo labels are accurate, these pseudo MT
outputs sometimes are quite different from real ones. To be
specific, there could be more meaningless pseudo transla-
tion errors that a well-trained MT model may hardly gen-
erate. Besides, the characteristics, such as length distribu-
tion or domain, of pseudo MT outputs are different from real
MTs. From the transfer learning perspective, the difference
between the pre-trained distribution and the target distribu-
tion could result in performance degradation (negative trans-
fer) (Tan et al. 2017).

To handle this problem, we propose CLQE, a denoising
pre-training framework for QE based on curriculum learning
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Figure 1: CLQE gradually pre-trains model from the cleaner
subset Q1 to the noisier whole pseudo set Ppseudo, where PQE
is the target distribution we want to learn.

(Bengio et al. 2009). Firstly, we define several metrics for
measuring how noisy the pseudo QE data are. More specifi-
cally, we use two model-free metrics to measure noise using
statistical features, i.e., sentence length and word rarity, and
other three metrics to estimate the distribution of real QE
data using surrogate MT models.

Then, we introduce a competence-based curriculum to
mitigate the adverse effects of the noisy pseudo data. As
shown in Figure 1, CLQE starts pre-training from cleaner
data, whose sample distribution Q1 is determined by noise
metrics and expected to be closer to the real one PQE. The
curriculum gradually exposes the model to noisier data as
the model becomes more competent until the whole pre-
training dataset Ppseudo. In this way, CLQE smoothly assigns
larger weights for cleaner data and could minimize the upper
bound of the expected risk on QE task theoretically (Gong
et al. 2016).

We summarize our contributions: (1) We demonstrate that
the pseudo QE data are noisy, due to the differences be-
tween pseudo and real MT outputs. (2) We propose CLQE,
a denoising framework for pre-training on pseudo QE data,
which measures the noise and helps the model learn better
on the noisy data. (3) We achieve new SOTA on different
QE datasets, and the analysis further reveals the superiority
of CLQE.

Preliminaries
Machine Translation

We denote (X,Y ) as a parallel pair, where X is the source
sentence, and Y is the target sentence with the same mean-
ing. MT model aims to learn a mapping function f(Y |X; θ)
parameterized by θ using parallel data. Given a set of ob-
served parallel pairs D = {Xi, Y i}Ni=1, a standard training
objective is to maximize the log-likelihood:

Jmt = E(X,Y )∼D logP (Y |X; θ). (1)

After training, the translation can be decoded as Ŷ =
argmaxP (Y |X; θ). In most studies, researchers evaluate
the quality of the translation Ŷ by comparing it to annotated
references. However, the references are unavailable in most
applications of MT systems.

Quality Estimation
Machine translation quality estimation assesses the trans-
lation quality of an MT system without access to refer-
ence translations. The quality can be evaluated in different
grains, and we focus on the sentence level and the word
level in this paper. Given a source sentence X and a ma-
chine translation Ŷ = {y1, y2, . . . , y|Ŷ |} with |Ŷ | words,

the fine-grained word level labels is a sequence of |Ŷ | tags
G = {g1, g2, . . . , g|Ŷ |}, the tag gj is usually a binary la-
bel (‘OK’ or ‘BAD’) representing whether the word yj need
to be corrected. The sentence-level score h is usually a real
number in [0, 1] representing the quality of the whole trans-
lation. Human-targeted Translation Edit Rate (HTER), cal-
culated by the percentage of edits required to fix for Ŷ , has
been widely used as the sentence-level score. Formally, we
can organize QE dataset as Q = {si}ni=1, where each in-
stance si = (Xi, Ŷ i, Gi, hi). In most translation directions,
the real QE dataset is scarce and much smaller than the par-
allel dataset. Thus, a series of researches designed different
pre-training methods to exploit the bilingual knowledge in
parallel data.

DirectQE Framework
DirectQE proposes to construct pseudo QE task on the bilin-
gual corpus to facilitate more direct knowledge transfer.
Concretely, DirectQE first generates pseudo QE data using
parallel data and then pre-trains model on these pseudo QE
Data with QE objective.

Generating Pseudo QE Data. DirectQE trains a masked
language model (Devlin et al. 2019) conditioned on source
sentences as the pseudo data generator. Given parallel data,
they randomly mask some percentage of the target tokens.
The generator is trained to predict those masked tokens
given source tokens and the rest of the target tokens.

The generating process is similar to the training process.
Given a parallel pair (X,Y ), DirectQE feeds the X and the
masked Y into the trained generator. Then, DirectQE re-
places each masked token with the token sampled from the
output probability distribution of the generator. The gener-
ated sentence is regarded as pseudo MT, denoted as Ỹ . To
sample truly negative tokens efficiently, DirectQE randomly
selects the tokens from those with the top k generation prob-
ability. Empirically, DirectQE sets k = 10. Therefore, to
generate pseudo tags G̃, every changed token of Y is anno-
tated as ‘BAD’, and the others are annotated as ‘OK’. The
pseudo sentence-level scores h̃ are further defined as the ra-
tio of ‘BAD’ tokens. In this way, DirectQE can generate a
large amount of pseudo QE data Q̃ = {s̃i}Ni=1 using parallel
dataset D, where s̃i = (Xi, Ỹ i, G̃i, h̃i).

Pre-training and Fine-tuning. DirectQE pre-trains the
QE model with QE objective on pseudo QE dataset Q̃
instead of a surrogate objective. DirectQE jointly learns
sentence-level objective Jsen and word-level objective Jword
as a multi-task problem:

Jqe = Jsen + Jword. (2)
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Jsen and Jword can be regarded as a regression problem and
a sequence labeling problem, respectively:

Jsen = logP (h̃|X, Ỹ ; θ), (3)

Jword = logP (G̃|X, Ỹ ; θ). (4)

When pre-training and fine-tuning, the training instances in
Eq. 3 and Eq. 4 are sampled from pseudo QE dataset Q̃ and
real QE dataset Q respectively. Following Cui et al. (2021),
the pre-trained model is selected with the pseudo validation
set for further fine-tuning.

CLQE framework
In this section, we start with the analysis for understanding
the noise in pseudo data, then define several noise metrics
according to the analysis and finally introduce how to con-
trol the schedule of pseudo data for denoising pre-training
with curriculum learning.

The Noise1

The noise of pseudo data may have two sources: noisy labels
in pseudo QE data; the differences between pseudo transla-
tions and real MTs.

The noisy label problem in pseudo QE data generated by
DirectQE is mainly manifested as false negatives: a correct
replaced word is labeled as ‘BAD’. However, this rarely hap-
pens due to the negative sampling strategy of DirectQE. Em-
pirically, we manually check 20 random pseudo QE data,
and the word label accuracy is 0.972 (95% confidence in-
terval 0.957-0.987). Therefore, this study focuses on pseudo
translations instead of pseudo labels.

We notice that there are the following aspects that pseudo
MTs could be different from real MTs: (1) While the outputs
of most advanced MT models are autoregressive fashion2,
the DirectQE framework is fully non-autoregressive. Thus,
these pseudo MTs involve more errors due to the lack of
dependency between masked tokens, such as meaningless
repeats. The frequency of repeat in pseudo MTs is signif-
icantly higher than that of real MTs (0.560 vs. 0.012 con-
secutive repeated tokens per sentence). Besides, to sample
truly ‘BAD’ tokens, low probability tokens are preferred by
designed sample strategies. As a result of these reasons, the
pseudo MTs are less fluent than real MTs (perplexity 135.21
vs. 66.61 calculated by GPT-2 (Radford et al. 2019)). (2)
Most parallel corpus is collected from the news domain, but
the QE data are from the Wikipedia domain. This leads to
the pseudo data generated from parallel corpus differs from
real QE data in terms of statistical features, such as sentence
lengths. We plot the cumulative density function of lengths
for pseudo/real QE data in Figure 2. We can see that the
length distribution of pseudo MTs is also different from that
of real MTs.

1These analyses are conducted on the WMT20 EN-ZH QE task.
2Note that most non-autoregressive models use translations pro-

duced by autoregressive models for knowledge distillation (Bao
et al. 2021).

Figure 2: The cumulative density function of lengths for
pseudo/real data on the WMT20 EN-ZH task.

Noise Metrics3

Inspired by statistical QE methods (Specia et al. 2013), and
curriculum learning methods for MT (Platanios et al. 2019),
we propose two model-free noise metrics based on statistical
features of source sentences as follows.

Sentence length. The pseudo MTs of longer source sen-
tences could be noisier. Since more tokens need to be mod-
ified by the generator, these pseudo MTs are more likely to
involve irrelevant errors. Besides, the real MTs of longer
source sentences could contain complex translation errors,
e.g., improper sentence structures, which are difficult to sim-
ulate by the generator. Formally, we can define the noise of
a pseudo data as dlength = |X|.
Word rarity. Similar to long sentences, generating proper
pseudo MTs for source sentences with more rare words
is difficult. Moreover, rare words have fewer related
candidates for replacement. For source sentence X =
{x1, x2, . . . x|X|}, we calculate the word rarity as follows:

drarity = −
|X|∑
i=1

log P̂ (xi), (5)

where P̂ (xi) denote the frequency of the word xi given the
source corpus of the parallel dataset D.

Modeling the translation distribution is a more direct way
to measure the difference between pseudo and real MTs.
However, the target MT model to be estimated is unavailable
in the black-box setting. Thus, we propose the following al-
ternatives.

Generation probability of a surrogate MT model. Us-
ing parallel data D, we can train a surrogate model θ̃mt with
Eq. 1. We define the noise of pseudo MT Ỹ as the negative
of the generation probability parameterized by θ̃mt:

dprob = − logP (Ỹ |X; θ̃mt). (6)

3Note that negation is used in metrics based on probability be-
cause a low probability denotes a higher noise score.
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We assume that this generation probability could be similar
to the one of the target model. Moreover, it can detect trans-
lation errors due to the lack of dependency between masked
tokens.

Generation probability of a fine-tuned MT model. In
MT domain adaptation, a common strategy is fine-tuning
a general domain MT model on a small in-domain corpus
(van der Wees, Bisazza, and Monz 2017). Inspired by this
idea, we fine-tune the surrogate model θ̃mt using the sources
X ∈ Q as input and the MTs Ŷ ∈ Q as the ground
truth. It can also be seen as the knowledge distillation strat-
egy for non-autoregressive translations (Bao et al. 2021).
Please note that we aim to simulate the behavior of the target
MT model rather than improve the translation performance.
Here, we define the noise metric based on fine-tuned model
θ̂mt:

dqe prob = − logP (Ỹ |X; θ̂mt). (7)
Cross entropy difference. Cross entropy difference
(CED) (Axelrod, He, and Gao 2011) is used to measure
domain relevance of a parallel pair in Wang, Caswell,
and Chelba (2019). Following Wang, Caswell, and Chelba
(2019), we further propose the noise metric with CED:

dced = dqe prob − dprob. (8)
The CED could detect these pseudo MTs, which are more
likely generated by the target model rather than the surrogate
model.

Denoising Curriculum
The basic idea of the proposed denoising curriculum is that
QE models are gradually pre-trained from cleaner pseudo
data to noisier pseudo data. To this end, we design Algorithm
1 following the competence-based curriculum learning (Pla-
tanios et al. 2019). Specifically, we normalize the noise score
as d̂(si) ∈ [0, 1] with cumulative density function (CDF).
We assume that the model competence c(t) ∈ (0, 1] in-
creases with pre-training as follows:

clinear(t) = min(1, t
1− c0
T

+ c0), (9)

where T denotes the length of the curriculum, c0 is the initial
competence without training. With the increase of compe-
tence, noisier data that satisfies d̂(si) < c(t) will be continu-
ally added into the pre-training. For stable and efficient pre-
training, we organize the training batch according to sen-
tence length as recommended in most MT implements.

In preliminary experiments, we also test CLQE with the
square root competence function csqrt in Platanios et al.
(2019). We find that clinear works better than csqrt. The reason
may be that the competence of csqrt increases too fast while
the model has not handled the given data yet (considering
the pre-training QE task is hard).

Experiments
Setting Description
Datasets. We employ WMT19 and WMT20/WMT214 QE
dataset for English-German (EN-DE) and English-Chinese

4https://www.statmt.org/wmt##, ## can be 19, 20, 21.

Algorithm 1: Denoising pre-training for machine translation
quality estimation.

Input:Pseudo QE dataset Q̃, noise scoring function d, com-
petence function c.
Output:Pre-trained model θ.

1: Compute the noise score d(si) for each sample si =

(Xi, Ỹ i, G̃i, h̃i) ∈ Q̃
2: Normalize noise scores as d̂(si) ∈ [0, 1] with cumula-

tive density function (CDF)
3: for t = 1 . . . do
4: Compute model competence c(t)

5: Select a pre-training subset Q̃t = {si|d̂(si) <

c(t), si ∈ Q̃}
6: Shuffle Q̃t, and then sort Q̃t by sentence lengths
7: while Q̃t ̸= ∅ do
8: Pop batch B from sorted Q̃t

9: Update θ with Eq. 2 on batch B
10: end while
11: end for

(EN-ZH) direction respectively. The size of training, de-
velopment, and test sets are 13K/1K/1K, 7K/1K/1K, and
8K/1K/1K for WMT19, 20, and 21 QE tasks, respectively.
For parallel data, we randomly sample about 3M parallel
pairs provided by WMT QE Shared Task for each transla-
tion direction, which are much larger than QE dataset.

Models. Following Cui et al. (2021), we implement the
DirectQE generator using a small transformer (Vaswani
et al. 2017), whose encoder and decoder both have 6 lay-
ers with 256 hidden neurons. To achieve strong baselines,
we use the XLM-R large model (Conneau et al. 2020), a
pre-trained cross-lingual sentence encoder, as the QE model.
We input both sources and pseudo/real MTs by concatenat-
ing them. The representation of the beginning-of-sentence
token ⟨s⟩ is used to predict the HTER score. We average the
representations of sub-tokens for predicting the tag of the
whole word. We use the standard transformer base setting as
in (Vaswani et al. 2017) for surrogate MT models. EN-ZH
task is the glass-box setting so that we directly use the target
MT model instead of the fine-tuned surrogate model to score
the noise dqe prob. We learn the BPE vocabulary (Sennrich,
Haddow, and Birch 2016) with 30K steps using parallel data
for the generator and surrogate MT models.

Implementation and reproducibility. Our implementa-
tion is built on the open source toolkit Fairseq(-py) (Ott et al.
2019). We provide our implementation online.5 All experi-
ments are performed on NVIDIA V100 GPUs. We set the
initial competence c0 = 0.05 and total duration of curricu-
lum learning T = 5 epochs. Other details can be found in
supplementary materials.

Evaluation metrics. For sentence-level QE, the perfor-
mance is measured by Pearson correlation coefficient (the

5https://github.com/NJUNLP/njuqe
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Dataset Method Sent-level Test Word-level Test
Pearson↑ MAE↓ RMSE↓ MCC↑ F1-MULT↑

W
M

T
19

E
N

-D
E DirectQE(Cui et al. 2021) 55.08 11.25 16.33 - 39.71

NMT+TER 57.11 10.86 17.04 46.48 49.04
CBSQE 57.52 10.69 16.14 46.53 49.80
Rarity 57.84 10.77 16.92 47.20 49.99
Prob 58.40 10.47 16.24 47.08 50.25

QE Prob 58.72 10.63 16.11 47.19 50.43
CED 59.98 10.42 16.15 47.75 50.98

W
M

T
20

E
N

-Z
H DirectQE(Cui et al. 2021) 60.83 - - - 53.06

DirectQE (ours) 64.82 12.77 16.02 50.05 55.69
Length 64.62 12.70 16.06 50.45 55.99
Rarity 65.75 12.64 15.95 50.29 55.75
Prob 65.06 12.66 15.91 50.57 56.07

QE Prob * 66.34 12.46 15.74 51.72 57.10
CED * 65.96 12.61 15.89 50.94 56.31

W
M

T
21

E
N

-Z
H DirectQE (ours) 32.12 24.99 30.49 30.23 37.05

Length 32.72 24.53 29.60 30.39 37.19
Rarity 32.32 24.53 30.62 30.46 37.25
Prob 33.41 23.95 28.30 30.87 37.86

QE Prob * 33.91 22.66 27.74 31.76 38.24
CED * 33.13 22.77 28.50 30.98 38.04

Table 2: Main results on different QE datasets. * indicates that dqe prob is calculated by the target MT model.

primary metric for WMT19, 20, and 21), mean absolute er-
ror (MAE), and root mean square error (RMSE). For word-
level QE, the performance is measured by F1-MULT (the
primary metric for WMT19) and Matthews correlation coef-
ficient (MCC, the primary metric for WMT20 and 21). F1-
MULT is the multiplication of F1-scores for the ‘OK’ and
‘BAD’ words.

Method Pearson↑ F1-MULT↑
QE-BERT 52.60 40.61
SOURCE 54.74 -

UNBABEL 57.18 47.52
DirectQE 57.25 -

Our Single 59.98 50.98

Table 3: Ensemble results on WMT19 EN-DE dataset. The
results are collected from their original papers (Kim et al.
2019; Zhou, Zhang, and Hu 2019; Kepler et al. 2019; Cui
et al. 2021).

Method Pearson↑ MCC↑ MCC (w/ gap)↑
IST-Unbabel 65.1 38.2 57.5

HW-TSC - 42.8 58.7
NICT - 44.9 58.2

Tencent 66.4 - -
NiuTrans 67.5 48.4 61.0

Our Ensemble 67.86 52.87 62.85

Table 4: Ensemble results on WMT20 EN-ZH dataset. The
results are collected from their original papers (Moura et al.
2020; Wang et al. 2020b; Rubino 2020; Wu et al. 2020; Hu
et al. 2020).

Main Results
Table 2 shows the results on the WMT19 EN-DE and
WMT20/21 EN-ZH QE tasks. The DirectQE we reproduce
outperforms the vanilla DirectQE (Cui et al. 2021) by a large
margin because we introduce extra cross-lingual knowledge
from XLM-R and use larger models. Compared to the strong
baseline, the proposed CLQE still demonstrates superior
performance, whichever noise metrics are employed. Two
model-free noise metrics slightly increase the performance,
suggesting they are good options when there are limited
computational resources. On the WMT19 EN-DE QE task,
which is the black-box setting, the QE Prob metric outper-
forms the Prob metric, implying that fine-tuning helps imi-
tate the target MT model. CED achieves the best result on
the WMT19 EN-DE QE task and increases the Pearson by
+2.87 and the F1-MULT by +1.94. However, fine-tuning
failed on the EN-ZH QE tasks, which are the glass-box set-
ting. Fine-tuning the surrogate model on the QE training set
does not increase the performance on the QE development
set. That may be because the surrogate model is trained on
the subset of the parallel corpus provided by WMT and used
for training the target MT model. QE Prob calculated by the
target MT model achieves the best result on EN-ZH tasks.
QE Prob increases the Pearson by +1.52/+1.79 and the MCC
by +1.67/+1.53 on WMT20 and WMT21 tasks, respectively.

Ensemble Results
The ensemble method has been widely used for WMT QE
shared tasks. We also report our ensemble results in Table 3
and Table 4. Since WMT21 focused on the multilingual set-
ting, WMT21 submissions are not comparable. However, we
still provide our ensemble result of WMT21 in supplemen-
tary materials for reference. Following Kepler et al. (2019),
we learn ensemble weights of different models using the de-
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Metric Accuracy↑
Length 0.569
Rarity 0.568
Prob 0.795

QE Prob 0.948
CED 0.963

Table 5: Accuracy of discriminating the pseudo and real QE
data using different noise metrics.

(a) Pearson score. (b) F1 MULT.

Figure 3: Pre-training step vs. Pearson score (a) / F1 MULT
(b) of different models on the real WMT19 EN-DE QE test
set.

velopment set for sentence-level ensemble. For word-level
ensemble, the tag with the most votes by different models for
each word is regarded as the output. We only use the mod-
els listed in Table 2 for our ensemble systems. As shown in
Table 3, our single model achieves better performance than
other ensemble systems. That confirms we build a strong
benchmark for the single model. In Table 4, we observe that
our system outperforms the best results of the WMT20 EN-
ZH QE shared task on both sentence and word level6. Please
note that these systems use extra glass-box features for pre-
dicting. The ensemble theory in Krogh and Vedelsby (1995)
points out that the diversity of models is related to the perfor-
mance. Thus, the competitive ensemble performance implies
that different noise metrics result in different curricula.

Analysis
In this section, we further investigate the factors contributing
to the improvements and how the proposed method affects
the pre-training.

Impact of Noise Metrics
As shown in Table 2, different noise metrics result in vari-
ous performances. We are curious about how these metrics
affect performance. Assuming that real QE data should be
cleaner than pseudo data. Thus, better noise metrics should
better discriminate between real and pseudo data. We design
a discrimination task to measure the ability to detect noise
using different metrics. Specifically, we randomly sample a

6WMT20 calculated the performance of word tags and gap tags
together. Gap tags denote whether there are missing words between
every two words. Thus, different from DirectQE (Cui et al. 2021),
we also report the results with gap tags. We concatenate the repre-
sentations of every two words for predicting the gap tags.

Method Subset Pearson↑ F1-MULT↑

w/o curriculum

25% 56.63 48.82
50% 57.42 49.09
75% 58.52 49.94

100% 57.11 49.04
reverse curriculum 100% 58.08 49.64

denoising curriculum 100% 59.82 51.01

Table 6: Comparison of denoising curriculum, reverse cur-
riculum, and data filtering method on WMT19 EN-DE QE
dataset using CED metric.

pseudo instance for each instance in the WMT19 EN-DE
QE test set, and the metrics are expected to assign a lower
score for a real instance. We summary the discrimination ac-
curacy in Table 5. Length and Rarity are slightly better than
randomly guessing, while QE Prob and CED obtain signifi-
cant accuracy under the black-box setting. Interestingly, we
observe that the ranks of QE performance in Table 2 are sim-
ilar to the ranks of noise detection performance in Table 5.
The CDF of different noise metrics for pseudo/real data in
supplementary materials also shows that noise metrics can
clearly discriminate pseudo data from real data.

Impact of Denoising Curriculum

We carry out experiments on the WMT19 EN-DE task to
prove that denoising curriculum helps the QE model better
exploit the pseudo data. Specifically, we compare the de-
noising curriculum with the data filtering methods and re-
verse curriculum. For the data filtering method, we sort the
pseudo data from cleaner to nosier according to dced, and
then select the top 25%/50%/75% least noisy pseudo data.
We pre-train QE models on these subsets without curricu-
lum learning. For the reverse curriculum, the pseudo data
are presented to QE models from nosier to cleaner. The re-
sults are summarized in Table 6. With only 50% data, we
achieve a similar performance of the model pre-trained on
all pseudo data. This confirms that some pseudo data are
harmful to the downstream QE task. Although the data filter-
ing model with top 75% cleaner data outperforms the base-
line, it is still much lower than CLQE. That is because these
filtered pseudo data may contain some useful information.
For example, only part of pseudo MT are noisy. The idea
of CLQE is to reduce these noisy data’s negative impacts
instead of ignoring them. The curriculum also achieves bet-
ter results than the reverse curriculum. Intuitively, curricu-
lum improves performance when the dataset is challenging
or noisy, while the reverse curriculum works on the clean
dataset (Chang, Learned-Miller, and McCallum 2017). From
the perspective of the optimization problem, if we start the
pre-training with cleaner data, we may reach an excellent
initial point which is essential for better generalization abil-
ity (Bengio et al. 2009). Theoretically, Gong et al. (2016)
show that starting pre-training from cleaner examples guides
the learning toward the expected target distribution.
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Source 1 Once introduced , these changes should contribute to improve the capacity of the High
Commissioner to discharge her mandate .

Pseudo MT 1
如果 (if)改变 (change)一经 (once)开始 (start) ,以后 (after)使 (make)
高级专员 (High Commissioner)履行 (fulfill)完成 (discharge)家园 (home)的 (of)
能力 (capacity)进行 (to)促进作用 (enhancement)。(.) ∥ dqe prob = 6.93

Source 2 They should be clearly separated from humanitarian centres established , for example , for returning
refugees .

Pseudo MT 2
这些 (this)中心 (centres)应 (should)与 (from)诸如 (for example)为 (for)返回 (return)
家园 (home)而 (while)建立的 (established)人道主义 (humanitarian)中心 (centres)
明确地 (definitely)分开 (separated)。(.) ∥ dqe prob = 2.56

Source 3 Following those positive developments , UNHCR began to help Sierra Leonean refugees to return
home starting in early February 1997 .

Pseudo MT 3
在 (following)这些 (those)积极 (positive)发展 (developments)之后 (following) ,
难民专员办事处 (UNHCR)从 (since) 1997年 (1997) 2月 (February)开始 (began to)帮助 (help)
塞拉利昂难民 (Sierra Leonean refugees)返回 (return)家园 (home)。(.) ∥ dqe prob = 2.37

Table 7: Pseudo QE data for WMT20 EN-ZH QE task.

5.4 A Case Study511

We still take the instance in Table 1 as an example.512

For this instance, DirectQE fails to predict ‘家园513

(homes)’ as ‘OK’, while QE Prob does it right. To514

explain the possible reason, we list some related515

pseudo data in Table 7. Intuitively, the ridiculous516

translation error ‘完成 (discharge) 家园 (home)’517

in pseudo MT 1 is useless for QE and increases518

the risk of harmful inductive bias.‘返回 (return)519

家园 (home)’ in pseudo MT 2 seems to simulate520

the translation error that generated by MT model.521

Pseudo MT 3 provides the knowledge that ‘家园’522

is the correct translation for ‘home’. Our method523

successfully detects the noise with dqe prob and re-524

duces the negative impacts of pseudo MT 1 using525

curriculum learning.526

6 Related Works527

Although curriculum learning has been widely528

used for many NLP tasks such as machine transla-529

tion (Platanios et al., 2019), sequence refinement530

(Agrawal and Carpuat, 2022), the NLP commu-531

nity has not yet investigated its application to QE.532

Traditional QE methods (Specia et al., 2013), and533

curriculum learning methods for MT (Platanios534

et al., 2019) use sentence length and word rarity535

of the source sentence to quantify the complex-536

ity of translating it. In this research, we show537

that they also reflect the complexity of generating538

pseudoMTs and successfully use them for measur-539

ing the noise in pseudo data. Recently, Fomicheva540

et al. (2020) regarded the generation probabilities541

of real MTs as the uncertainty feature and directly542

used it to estimate their quality. Instead, we use543

the generation probabilities of pseudo MTs for544

measuring the difference from real MTs and use545

this feature for guiding the pre-training progress. 546

Wang et al. (2019) used CED for domain adaption, 547

where the surrogate MT model is fine-tuned on a 548

small in-domain parallel data. Our fine-tuning is 549

closer to the knowledge distillation using the tar- 550

get MT model as a teacher. 551

7 Conclusion 552

Due to the scarcity of QE data, pre-training with 553

pseudo QE data has become increasingly impor- 554

tant. In this study, we highlight that pseudo QE 555

data is noisy and discuss the noise source. We 556

present a novel framework called CLQE for de- 557

noising pre-training with pseudo QE data. We de- 558

fine how to measure noise and organize the pre- 559

senting order of pseudo QE data from noisier to 560

cleaner. Experiments and analyses demonstrate 561

the effectiveness of our method. 562

There are several potential directions for bridg- 563

ing the gap between pseudo and real MTs. For 564

example, we can use reference-based automatic 565

evaluation methods to annotate the MTs generated 566

by the surrogate MT model so that there will be 567

little difference between pseudo and real transla- 568

tions. Considering the performance of automatic 569

evaluation methods is imperfect, the pseudo la- 570

bels may not be trustworthy in this way. An- 571

other possible way is that generate real-like trans- 572

lations while maintaining negative sampling. This 573

method could significantly improve the generation 574

cost since it involves a complex decoding process. 575

We leave these studies to future research. 576

References 577

Sweta Agrawal and Marine Carpuat. 2022. An imita- 578
tion learning curriculum for text editing with non- 579

8

Table 7: Pseudo QE data for WMT20 EN-ZH QE task.

Convergence Speed
Lots of research report curriculum learning makes training
converge faster (Platanios et al. 2019). As discussed before,
real data are different from pseudo data. Thus, the pseudo
validation set could not reflect the convergence speed on
real data. To examine this property for CLQE, we save the
pre-training checkpoint every 1.6K steps and fine-tune these
checkpoints on real QE data. The sentence- and word-level
results on the real WMT19 EN-DE QE test set are shown in
Figure 3(a) and 3(b). It can be seen that the proposed CED
convergences are significantly faster on the real QE test set
than the baseline. Besides, we notice that CED achieves sim-
ilar performance in Table 2 with only 13K steps (compared
to 40K steps). Thus, monitoring the pre-training on real QE
data could be better, though this strategy requires more com-
putational and storage resources. We also provide conver-
gence speed analysis on the WMT20 EN-ZH dataset in the
appendix.

Low-Resource
Intuitively, CLQE will work better on noisier data. Fewer
parallel data results in noisier pseudo data since the gen-
erator trained with fewer data will be weaker. To confirm
that, we have performed experiments on the WMT19 EN-
DE dataset using CED scores with only 100K parallel data.
Results show that CLQE also outperforms DirectQE in the
low-resource setting (CED vs. DirectQE: Pearson 54.58 vs.
53.01, F1-MULT 48.01 vs. 47.24).

A Case Study
We still take the instance in Table 1 as an example. For this
instance, DirectQE fails to predict ‘homes’ as ‘OK’, while
QE Prob does it right. To explain the possible reason, we list
some related pseudo data in Table 7. Intuitively, the ridicu-
lous translation error ‘discharge home’ in pseudo MT 1 is
useless for QE and increases the risk of harmful inductive
bias. ‘return home’ in pseudo MT 2 seems to simulate the
translation error generated by MT model. Our method suc-
cessfully detects the noise with dqe prob and reduces the neg-
ative impacts of pseudo MT 1 using curriculum learning.

Related Works
Although curriculum learning has been widely used for
many NLP tasks such as machine translation (Platanios et al.

2019), sequence refinement (Agrawal and Carpuat 2022),
the NLP community has not yet investigated its application
to QE. Traditional QE methods (Specia et al. 2013), and cur-
riculum learning methods for MT (Platanios et al. 2019) use
sentence length and word rarity of the source sentence to
quantify the complexity of translating it. In this research,
we show that they also reflect the complexity of generating
pseudo MTs and successfully use them for measuring the
noise in pseudo data. Recently, Fomicheva et al. (2020) re-
garded the generation probabilities of real MTs as the uncer-
tainty feature and directly used it to estimate their quality. In-
stead, we use the generation probabilities of pseudo MTs for
measuring the difference from real MTs and use this feature
for guiding the pre-training progress. Wang, Caswell, and
Chelba (2019) used CED for domain adaption, where the
surrogate MT model was fine-tuned on a small in-domain
parallel data. Our fine-tuning is closer to the knowledge dis-
tillation using the target MT model as a teacher.

Conclusion
Due to the scarcity of QE data, pre-training with pseudo QE
data has become increasingly important. In this study, we
highlight that pseudo QE data are noisy and discuss the noise
source. We present a novel framework called CLQE for de-
noising pre-training with pseudo QE data. We define how to
measure noise and organize the presenting order of pseudo
QE data from cleaner to noisier. Experiments and analyses
demonstrate the effectiveness of our method.

There are several potential directions for bridging the gap
between pseudo and real MTs. For example, we can use
reference-based automatic evaluation methods to annotate
the MTs generated by the surrogate MT model so that there
will be little difference between pseudo and real translations.
Considering the performance of automatic evaluation meth-
ods is imperfect, the pseudo labels may not be trustworthy in
this way. Another possible way is to generate real-like trans-
lations while maintaining negative sampling. This method
could significantly improve the generation cost since it in-
volves a complex decoding process. We leave these studies
to future research.
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