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Abstract

The automatic synthesis of biomedical publications catalyzes
a profound research interest elicited by literature congestion.
Current sequence-to-sequence models mainly rely on the lex-
ical surface and seldom consider the deep semantic intercon-
nections between the entities mentioned in the source doc-
ument. Such superficiality translates into fabricated, poorly
informative, redundant, and near-extractive summaries that
severely restrict their real-world application in biomedicine,
where the specialized jargon and the convoluted facts fur-
ther emphasize task complexity. To fill this gap, we argue
that the summarizer should acquire semantic interpretation
over input, exploiting structured and unambiguous represen-
tations to capture and conserve the most relevant parts of
the text content. This paper presents COGITOERGOSUMM,
the first framework for biomedical abstractive summarization
equipping large pre-trained language models with rich se-
mantic graphs. Precisely, we infuse graphs from two comple-
mentary semantic parsing techniques with different goals and
granularities—Event Extraction and Abstract Meaning Rep-
resentation, also designing a reward signal to maximize in-
formation content preservation through reinforcement learn-
ing. Extensive quantitative and qualitative evaluations on the
CDSR dataset show that our solution achieves competitive
performance according to multiple metrics, despite using
2.5× fewer parameters. Results and ablation studies indi-
cate that our joint text-graph model generates more enlight-
ening, readable, and consistent summaries. Code available at:
https://github.com/disi-unibo-nlp/cogito-ergo-summ.

Introduction
Given the sheer number of biomedical publications, clini-
cians, patients, and researchers need advanced tools to skim
the literature efficiently and grasp salient contents. Hence,
automatically organizing everyday scientific discoveries or
insights into natural, concise, and informative syntheses is
essential to promote knowledge acquisition (Moradi and
Ghadiri 2019). To this end, abstractive document summa-
rization demands rephrasing and condensing long and of-
ten labyrinthine portions of text in a creative way, discard-
ing redundant and unnecessary attributes. Compared with
the open domain, performing this task in biomedicine raises
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substantial challenges and constraints (Karamanis 2007). In-
deed, (i) medical jargon and professional language are truly
hard to interpret; (ii) scientific documents convey precise do-
main information allowing for a narrow interpretation mar-
gin and non-tolerating factual mistakes; (iii) clauses are of-
ten interdependent and express complex interactions; (iv)
knowledge rapidly evolves over time.

Despite unprecedented progress made possible by pre-
trained transformer-based language models (Lin and Ng
2019), current summarizers still face issues in terms of
succinctness, non-repetitiveness, fluency, informativeness,
and faithfulness (Maynez et al. 2020). Most prior studies
only depend on superficial text organization and ignore the
deeper underlying semantic content (Bender et al. 2021),
lacking structured representations to encapsulate the convo-
luted long-range associations between the mentioned enti-
ties (e.g., proteins, diseases, drugs). By contra, we argue that
these connections are vital to document understanding and
beneficial to knowledge selection.

Biomedical documents are usually composed of a series
of events and factual evidence; understanding how to lever-
age such information in generative models is crucial. No-
tably, semantic parsing graphs normalize many lexical and
syntactic variations by providing formal meaning represen-
tations capable of decoupling concept units (what to say)
from language competencies (how to say it). Since these rep-
resentations can be defined with a panoply of formalisms
having different objectives and properties, we underline the
importance of bridging the complementary strengths of two
influential semantic parsing tasks: closed-domain Event Ex-
traction (EE) and Abstract Meaning Representation (AMR).
EE is task-driven and aims to derive n-ary and potentially
nested interactions between participants having a specific
semantic role, where event schemas (i.e., target event, en-
tity, and role types) are pre-established conforming to a ref-
erence ontology; its history is very intertwined with health
informatics (Frisoni, Moro, and Carbonaro 2021). AMR is
linguistically-grounded and is conceived to graphically cap-
ture the general meaning of any sentence as high-level se-
mantic relations between abstract concepts (Banarescu et al.
2013). Fig. 1 depicts and compares their expressive power.

A growing body of research in natural language genera-
tion (NLG) calls attention to incorporating explicit semantic
structures into the summarization process (Yu et al. 2020),
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thereby unlocking a higher level of abstraction than bags of
sentences and more accurate emulation of human interpreta-
tion, rewriting, and paraphrasing. However, existing graph-
augmented approaches have at least one of the following
weaknesses: (i) they have not been designed for or evaluated
in the biomedical domain; (ii) they employ graph-LSTMs ar-
chitectures that struggle to compete with transformers; (iii)
they are based on open-domain triplet-based extractions that
are notoriously not adequate to represent the complete bio-
logical meaning of a document; (iv) they do not include a
module to ensure document-summary consistency.

We present COGITOERGOSUMM1, the first semantics-
aware transformer-based model for single-document ab-
stractive summarization in the biomedical domain. Con-
cretely, we condense source documents into sets of unam-
biguous EE and AMR graphs, using multi-relational graph
neural networks (GNNs) to yield their dense embeddings
without imposing linearization. From this foundation, we
explore a fine-tuning recipe for merging predicted symbolic
representations into pre-trained encoder-decoder language
models. Specifically, we integrate semantic parsing graphs
via EE- and AMR-specific attention mechanisms in the de-
coder, thus aiding key content selection and semantic under-
standing. We optimize the network via reinforcement learn-
ing (RL), devising a consistency-guided reward signal based
on a soft alignment between the sets of meaning representa-
tions extractable from documents and generated summaries.

Automatic and human evaluations are carried out on
CDSR (Guo et al. 2021), a popular dataset for generating
lay language summaries of biomedical reviews. Our model
brings substantial improvements in compliance with multi-
ple quality criteria, achieving near state-of-the-art (SOTA)
performance while using 2.5x fewer parameters. Empirical
results corroborate the value of semantic graphs in helping
the model to preserve the essential global context and keep
the factual connections between the most relevant entities.

Related Work
Abstractive Summarization Sequence-to-sequence ar-
chitectures founded on self-supervised pre-trained trans-
formers have been responsible for a keen impetus in implic-
itly learning abstractive summarization procedures (Zhang
et al. 2020a), comprising multi-document (Moro et al. 2022)
and low-resource settings (Moro and Ragazzi 2022; Moro
et al. 2023). Nevertheless, modern solutions are highly prone
to hallucinating content (Cao et al. 2018; Maynez et al.
2020) or falling back on extraction (See, Liu, and Manning
2017). Gaining an understanding of semantics and context is
becoming a prerogative, but a model trained purely on form
cannot learn meaning (Bender and Koller 2020)—even with
more data and huge architectural dimensions.

Graph-enhanced Summarization Graph structures have
long been studied for implementing summarization sub-
tasks (i.e., information extraction, content selection, sur-

1Inspired by the first principle of René Descartes’s philosophy,
we coin the name Cogito Ergo Summ to emphasize the researched
neural network capacity of “thinking” about the inner semantics of
the text—via joint text-graph reasoning—before summarizing.

Figure 1: Expressiveness comparison between binary rela-
tion extraction (OpenIE 5.1), EE, and AMR on two example
biomedical sentences. Italic denotes node types.

face realization), registering distinct benefits depending on
their composition. Early techniques for extractive summa-
rization build intra- (Mihalcea and Tarau 2004) and inter-
document (Wan 2008) cosine similarity connectivity net-
works to identify salient sentences. Late hybrid neural sys-
tems mainly stand on the shoulders of run-of-the-mill GNNs
(Wu et al. 2021a), exploiting graph-based attention (Tan,
Wan, and Xiao 2017) and heterogeneous word-/sentence-
level nodes (Wang et al. 2020). As for abstractive summa-
rization, the community has attempted a medley of graphi-
cal document representations, from dependency (Wu et al.
2021b), sentiment (Moro et al. 2018), and coreference links
(Balachandran et al. 2021) to latent co-occurrences (Frisoni
and Moro 2020), discourse relations (Li et al. 2020; Chen
and Yang 2021) and citation networks (An et al. 2021).
To better contemplate entity interactions, compositions of
<subject, predicate, object> triplets from the OpenIE
framework (Angeli, Premkumar, and Manning 2015) have
turned into a cornerstone (Fan et al. 2019; Huang, Wu, and
Wang 2020; Ji and Zhao 2021; Zhu et al. 2021). On the
flip side, open-domain binary relations are inadequate for
biomedicine, risking deriving incorrect or incomplete facts
that are difficult to compare and merge with post-processing
(Frisoni, Moro, and Carbonaro 2021). Most pertinent to our
work are summarizers enhanced by AMR semantic anal-
ysis (Dohare, Gupta, and Karnick 2018; Hardy and Vla-
chos 2018; Lee et al. 2021), underexplored in bioinformat-
ics despite showcasing superior generation controllability
in general domain. Frisoni. et al. (2022) investigate EE-
augmented summarization observing that performances are
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held back by the reduced number of event graphs. Further-
more, almost all solutions nowadays reckon on graph-LSTM
architectures—that hardly compete with transformers—or
graph-to-text verbalizers—that ignore source text contribu-
tion. To our knowledge, we are the first to combine text, EE,
and AMR for transformer-based abstractive summarization,
solving their mutual limitations. Another trend is context
augmentation through external knowledge graphs, such as
UMLS for medicine (Gigioli et al. 2018). However, unlike
flexible meaning representations, these resources are known
to have limited and static coverage of real-world entities.

Reinforcement Learning for Abstractive Summarization
In a traditional encoder-decoder architecture, the network is
trained to minimize the maximum-likelihood loss for next-
token prediction but is evaluated on the not necessarily
equivalent optimization of desired automatic metrics. More-
over, the decoder knows the ground-truth sequence during
training but does not have such supervision when testing,
leading to an exposure bias (Ranzato et al. 2016). RL meth-
ods have recently been prompted to mitigate these discrep-
ancies by directly solving metric optimization problems that
are not differentiable, not requiring gold summaries, and al-
lowing global decisions rather than local (token-level) ones
at each timestep. Kryscinski et al. (2018); Paulus, Xiong,
and Socher (2018); Sharma et al. (2019) utilize ROUGE
scores to encourage novelty and relevance, ignoring entity
interactions. Scialom et al. (2019); Huang, Wu, and Wang
(2020) propose fill-in-the-blank and triplet-reconstruction
question answering rewards, needing ad-hoc models for gen-
erating artificial questions. In contrast, we reward predicted
summaries according to their key content consistency with
respect to the original document, measuring the alignment
between their semantic graphs.

COGITOERGOSUMM Framework
Problem Statement
Given a dataset C=(d1, d2, . . . , dk), each document di con-
sists of a sequence of n tokens d=(x1.x2, . . . , xn). The
semantics of di is condensed in document-level event and
AMR graphs (Ge and Ga, respectively). Formally, the
goal is to generate the target summary y=(y1, y2, . . . , ym),
m≤n, of each instance by modeling the conditional distri-
bution p(y1, y2, . . . , ym|x1, x2, . . . , xn, Ge, Ga), conceptu-
alizable as a neuro-symbolic task. We keep Ge and Ga sep-
arate to let the model realize their unique characteristics.
Fig. 2 illustrates a concrete example.

Graphs Construction
We first obtain sentence-level EE and AMR outputs, i.e.,
multi-relational directed acyclic graph structures symboliz-
ing the core concepts of each sentence from two viewpoints.
Then, we address graph fusion to build Ge and Ga, ensur-
ing to end up with single wisely-interconnected document
graphs rather than two sets of small disjoint networks.

Event Graphs In consonance with BioNLP-ST competi-
tions, events are forged from a trigger (a span that testi-
fies their occurrence, e.g., “interacts”, “regulates”), a type

(e.g., “binding”, “regularization”), and a set of arguments—
classed entities or events themselves—playing a certain role
(e.g., ”theme”, ”cause”). The specificity of the interactions
sought expectedly makes EE domain-specific. We adopt
DeepEventMine (Trieu et al. 2020), an end-to-end frame-
work holding the SOTA on seven biomedical benchmarks.
We convert output standoff .a* annotation files to heteroge-
neous event graphs following Frisoni et al. (2022). A node
indicates a trigger or an entity, while an edge acts for an
entity-trigger or trigger-trigger relation, with the second ap-
plying for nested events. Unlike AMRs, event graphs are not
available for all sentences but only for the ones expressing
desired interactions for which the model has been trained.

AMR Graphs AMR aims to produce a language-neutral
representation of meaning, abstracting away from English
and providing a layer of abstraction from words to con-
cepts (objects, attributes, etc.) in a rooted graph. It covers
≈100 widespread PropBank semantic roles; as EE, annota-
tions include entity/role identification and typing. We use a
SOTA text-to-text AMR parser (Bevilacqua, Blloshmi, and
Navigli 2021) with an 83.0 Smatch score on the AMR 3.0
(LDC2020T02) sembank. Since many EE outputs may be
empty and damage model robustness (Frisoni. et al. 2022),
AMRs supplement not always exploitable event graphs.

Graphs Merging and Rewiring Inside EE and AMR for-
malisms, an entity, trigger, or concept is canonicalized and
represented by a single graph fragment, regardless of how
many times it recurs in the sentence (semantic integrity). If
a node fulfills multiple roles, AMRs cover within-sentence
coreference edge types. On top of event and edited AMR
representations, we separately operate graph rewiring to re-
flect the document structure and enhance the information
flow. Mechanically, we introduce artificial sentence nodes,
each connected to all the event/AMR vertices that originate
from that mention. Sentence nodes are linked to each other
following their positional order and collected by a master
node. The resulting Ge and Ga graphs formulate intra- and
cross-sentence information, allowing for document traversal
by narrative order, concept association, or proximity.

Model
Motivated by the limitations of graph-empowered LSTMs
(Frisoni. et al. 2022), COGITOERGOSUMM extends a pre-
trained BART-base architecture (Lewis et al. 2020) with
the nimble ability to attend to semantic parsing graphs dur-
ing decoding and preserve the most relevant information via
RL. Fig. 3 sketches the overall architecture, built upon four
modules, namely text encoding, graph encoding, semantics-
driven multi-view decoding, and consistency rewarding.

Text Encoder We feed the input document to a text bidi-
rectional encoder Et(·) through the learnable BART encod-
ing channel. The l tokens of a record di are converted in their
contextual hidden representations:

{hti,0 , . . . , hti,l} = Et ({xi,0, . . . , xi,l}) . (1)
Graph Encoders Node Initialization. Since all nodes are
accompanied by text, we initialize their features with em-
beddings from a pre-trained BART language model En(·).
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Figure 2: Qualitative example of induced semantic parsing graphs and their assistance to high-quality summarization. Red text
indicates hallucinated facts. Token background highlights node alignments.
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Figure 3: Illustration of the COGITOERGOSUMM architecture. We dig out semantic parsing graphs from the input text by means
of event extraction and AMR. Each source document is fed to a transformer encoder; event and AMR graph embeddings are
learned by edge-aware graph attention networks. A multi-granularity decoder then generates summaries based on all infor-
mation levels: text, events, and abstract meaning representations. Document-summary semantic graph alignments are used to
optimize model consistency via reinforcement learning.

Pointedly, given a trigger/entity/concept node i with a tok-
enized text attribute tokens(i), we take the average of its
per-token embeddings contextualized on the long input doc-
ument, i.e., En([x1, x2, . . . , xn∥tokens(i)]), where [.∥.]
denotes the concatenation operator. To reduce structured
prediction noise, we set the maximum node length to 5 to-
kens. For event graphs, we also prepend the entity and trig-
ger types learned by DeepEventMine. Finally, for sentence
and master nodes, we average the token embeddings of the
sentence span and the entire document, respectively.

Edge-Aware Graph Attention Network. Through two
graph encoders EGe(·) and EGa(·), we take the multi-view
semantics modeled by Ge and Ga to learn supervised node
embeddings and tap implicit relations. Our GNN modules
lean on the graph attention groundwork (GAT) (Velickovic
et al. 2018), which induces node representations by way of
L layers of message passing (shared parameters) and multi-
head attention neighborhood aggregation. Message passing

in graphs made of cooperating nodes (Lodi, Moro, and Sar-
tori 2010; Cerroni et al. 2013) is actually an established
work mode borrowed from communication networks and
distributed algorithms. As Ge and Ga are multi-relational
graphs, we extend GAT to consider the edge type e connect-
ing two nodes. In the ℓ-th layer, we update the representation
h⃗
(ℓ)
i ∈RD of each node i by:

tkij = σ

(
a⃗k

T
[Wkh⃗i ∥ Wkh⃗j ∥ Wk

r e⃗ij ]

)
, (2)

αk
ij =

exp
(
tkij

)∑
z∈N (i) exp

(
tkiz

) , (3)

h⃗
(ℓ+1)
i =

K∥∥∥
k=1

σ

 ∑
j∈N (i)

αk
ijW

kh⃗
(ℓ)
j

 , (4)

where ∥Kk=1 denotes the concatenation of K attention heads,
αk
ij is the normalized attention weight computed by the k-
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th attention head, N (i) is the set containing the first-order
neighbors of i (including i), e⃗ij is the one-hot embedding of
the relation type2 connecting nodes i and j, Wk, Wk

r , and
a⃗k are trainable parameters, σ is a LeakyReLU nonlinearity.

Decoder Inspired by Chen and Yang (2021), we aggre-
gate different levels of encoded representations via a multi-
granularity decoder D(·), which predicts the l-th token as:

ŷ = D(y<l, Et(d), EGe
(Ge), EGa

(Ga)), (5)

P (yl|y<l, d,Ge, Ga) = softmax(Wpŷ), (6)
where Wp stands for a trainable linear projection. We sup-
plement the BART transformer decoder with two extra
cross-attentions (Event Attention and AMR Attention), con-
ducted over the node representations learned by EGe

and
EGa

in parallel. We incorporate them into each layer af-
ter the original text cross-attention. The token-, event-, and
-AMR attended vectors (at, ae, aa) are combined into a
semantics-aware representation as through a feed-forward
network. To accelerate the training of the new modules
and alleviate the negative impact of randomly initialized
graph encoders and cross-attentions at early stages, we ap-
ply ReZero (Bachlechner et al. 2021) to the residual connec-
tion after attending to semantic graphs in each decoder layer:
as = at+αas, where α is a learnable parameter modulating
updates from cross-attention over semantic graphs.

Training Objectives and Consistency Reward During
training, we seek to maximize the estimated probability of
the actual summary. We adopt the common negative log-
likelihood loss function using the teacher-forcing strategy:

Lnll = −
∑

logPθ(yl|d,Ge, Ga), (7)

with θ denoting the set of model parameters. In addition
to being syntactically correct, we would like the generated
summaries to factually preserve as much pivotal informa-
tion as possible from the original document. Drawing inspi-
ration from the success of PICO (DeYoung et al. 2021), we
believe that structured semantic representations are suitable
not only for improved text generation but also for biomed-
ical consistency evaluation. Standing on this intuition, we
design a lightweight reward function ψ to maximize the non-
differentiable degree of document-summary meaning over-
lap, which is made possible with second-stage RL training.
We refer to Smatch (F-score) (Cai and Knight 2013), metric
computing the matching triples between two AMR graphs,
benefitting from a higher correlation with human factual-
ity judgments than summary-target ROUGE (Ribeiro et al.
2022). Document-level consistency rewards are obtained via
an average pooling; each AMR graph of a predicted sum-
mary sentence is compared with all the AMR graphs of the
source sentences (one-to-many soft alignments):

ϕ =

∑
yi∈AMRs(y)

(∑
di∈AMRs(d) smatch(yi,di)

|AMRs(d)|

)
|AMRs(y)|

, (8)

2Given the non-talking nature of the AMR labels, we make use
of categorical edge features, agglomerating numbered arguments
(e.g., :op*, :quant*), except for the core ARG* ones.

where AMRs(·) stands for the sentence-level AMR graphs.
Given a starting policy π corresponding to the model

trained following Eq. 7, we see autoregressively predicted
tokens as actions and employ Proximal Policy Optimization
(Schulman et al. 2017) to maximize:

rt(θ) =
πθ(at|st)
πθold(at|st)

, (9)

Lppo = Êt[min(rt(θ)Ât, clip(rt(θ), 1−ϵ, 1+ϵ))Ât], (10)
where rt(θ) denotes the probability ratio between the ac-
tion under the policy at iteration t (i.e., the token at gen-
erated conditionally to the previous ones st) and the action
under the previous policy. Ê[. . . ] indicates the empirical av-
erage over a finite batch of samples; the clip function, com-
bined with the ϵ hyperparameter, ensures that the policy does
not change too much among iterations; Â is the advantage
function, an estimation of the relative improvement obtained
from the selected action in the current state. To compute ad-
vantages, we use the Generalized Advantage Estimation for-
mula (Schulman et al. 2016):

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (11)

where δt = ψt + γV (st+1) − V (st); λ and γ are hyperpa-
rameters and T is the length of the generated text. The value
function V is modeled using a second neural network trained
in parallel with the main model (Actor-Critic paradigm). As
proposed in (Ziegler et al. 2019), we add a penalty term to
the reward function that prevents the new policy from devi-
ating too much from the already pre-trained language model
by reducing in expectation their KL−divergence:

KL = log
πθ(at|st)
πbase(at|st)

, (12)

ψ̂(at|st) = ψ(at|st)− βKL, (13)
where πbase is the starting policy, and β is an adaptive co-
efficient (initially set via a hyperparameter) that dynami-
cally changes during training to target a specific value of
theKL−divergence (termedKLt, see (Ziegler et al. 2019)).
The final loss function is:

Lrl(θ) = Ê[Lppo(θ)− c1Lvf (θ) + c2S[πθ](st)], (14)

where Lvf is the mean square error of the value function
in charge of updating the critic network; S[πθ](st) is an en-
tropy term used to ensure enough exploration during train-
ing; c1 and c2 are hyperparameters used to tune the impor-
tance of each component in the loss.

Experimental Setup
Dataset
We train and evaluate our model on the CDSR dataset
(Guo et al. 2021), a publicly available corpus acquired
by the widely-used Cochrane Database of Systematic Re-
views3. CDSR is intended for health literacy, assessing
the automatic generation of lay language summaries from

3https://www.cochranelibrary.com/cdsr/reviews
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biomedical scientific reviews. As far as we know, it is the
only biomedical summarization benchmark with manage-
able sizes and already-known graph-augmented baselines.
CDSR comprises 6,677 high-quality pairs, where the source
is a long abstract in professional language, and the target is
a plain general-public version written by review authors or
Cochrane staff. Besides creating accurate and factual sum-
maries, this task also requires a joint style transition, im-
posing obstacles like terminology explanation and sentence
structure simplification that outline a perfect testbed for
COGITOERGOSUMM. Details are presented in Table 1.

Implementation Details
We extend the HuggingFace implementation of BART-base4

and initialize weights from a model pre-trained on PubMed5,
leaving 42 as the default training seed. We truncate input
documents and set the maximum output length to 1024. We
utilize the DeepEventMine model pre-trained on MLEE6—
the biomedical benchmark most aligned to CDSR (Frisoni.
et al. 2022). On average, extracting all the sentence-level
AMR and event graphs from a source document takes 3 and
1.2 seconds, respectively. We implement GNNs with Py-
Torch Geometric (Fey and Lenssen 2019). During RL, we
freeze the encoder parameters and train the model decoder
only; the critic network is a multilayer perceptron with one
hidden layer (hidden size 256). Hyperparameters are listed
in Appendix7. Each experiment is performed on a worksta-
tion having one Nvidia GeForce RTX3090 GPU with 24GB
of dedicated memory, 64GB of RAM, and an Intel® Core™
i9-10900X1080 CPU @ 3.70GHz. Training our best model
requires 20GB VRAM and 32 hours (19 for RL); 3.18 kg
CO2e carbon footprint, 9.83 kWh energy needed, 25.77 Υm

average carburacy (Moro, Ragazzi, and Valgimigli 2023).

Baselines
We head-to-head compare COGITOERGOSUMM to repre-
sentative extractive and abstractive summarization models.
• Oracle. It creates an extractive summary by selecting the

sentences in the document having the highest ROUGE-2
score with the target (syntactic match upper bound).

• BERT (Liu and Lapata 2019). Inter-sentence encoder
with classification head, supervised by Oracle extractive.

• Pointer generator (See, Liu, and Manning 2017).
Seq2seq model trained both to copy words from the
source and generate new ones from a fixed vocabulary.

• BART (Lewis et al. 2020). We take into account models
pre-trained on PubMed.

• EASumm (Frisoni. et al. 2022). An event-augmented
graph-LSTM architecture for abstractive summarization.

Quantitative and Qualitative Evaluation
On the trails of common practice, we automatically eval-
uate model performance in terms of ROUGE-1, ROUGE-

4https://huggingface.co/docs/transformers/model doc/bart
5https://huggingface.co/gayanin/bart-mlm-pubmed
6http://nactem.ac.uk/MLEE (from molecules to organisms)
7Supplementary material is available at https://bit.ly/cogito-

ergo-summ-appendix

Train Val Test
Source Target Source Target Source Target

# pairs 5,178 500 999
# tokens 878 437 873 434 894 444
# sentences 26 16 26 16 26 16
# words 643 348 643 347 653 352
# events 2.63 − 2.54 − 2.70 −
# nodes per
Ge/Ga

6/547 − 5/550 − 6/556 −

Table 1: CDSR dataset statistics. All values are mean except
for “# pairs”. Sentence segmentation is made with spaCy.

2, and ROUGE-L F1 scores. These recall-based metrics
evaluate informativeness by measuring unigrams, bigrams,
and longest common subsequence overlaps. A standard
ROUGE metric does not shed meaningful light on other
important dimensions like semantic coherence, abstract-
ness, and intelligibility—which are focal for our work.
To better gauge summary quality, we apply BERTScore
(Zhang et al. 2020b), FactCC (Kryscinski et al. 2020), and
report n-grams novelty8 in tandem with readability met-
rics, namely Flesch-Kincaid grade-level (Flesch 1948) and
Coleman-Liau (Coleman and Liau 1975) indices9. We uti-
lize default hyperparameters for all the metrics except for
BERTScore, where we use the IDF weighting and spec-
ify rescale with baseline=True to increase inter-
pretability and avoid small range variations. In the quest to
analyze our generated summaries qualitatively, we operate
an in-depth human evaluation study. We randomly select 30
CDSR test set instances and invite 3 annotators—proficient
English speakers with biomedical competencies—to access
our models’ outputs, along with those of BART-base (pre-
sented in random order), i.e., the skeleton model oblivious
to semantics. After reading the articles, each judge scores
summaries on a Likert scale from 1 (worst) to 5 (best) in
conformity with four independent perspectives: (i) informa-
tiveness, i.e., conveying salient content; (ii) factualness, i.e.,
being faithful to the article; (iii) fluency, i.e., being fluent,
grammatical, and coherent; (iv) succinctness, i.e., non con-
taining redundant and unnecessary information.

Results and Ablation Studies
Overall quantitative results are delighted in Table 2. Zoom-
ing out, we find that structured semantic information can
greatly help a pre-trained language model recognize salient
parts in source documents. Although our focus is on im-
proving semantic consistency, the ROUGE scores attained
by COGITOERGOSUMM are significantly higher than pre-
vious extractive and abstractive methods, except for BART-
large, for which our models are still competitive despite
having more than 2× fewer trainable parameters. Remark-
ably, we beat graph-LSTMs by 6 R-1/-L points. The per-

8Percentage of new word-level unigrams in the predicted sum-
maries compared to the source (See, Liu, and Manning 2017).

9They estimate the years of education generally required to un-
derstand the summary. We compute them using https://pypi.org/
project/textstat/. Lower scores indicate that the text is easier to read
(U.S. college-level readability belongs to the range [13-16]).
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Model #params R-1 R-2 R-L Flesch-Kincaid Coleman-Liau

ORACLE† — 53.56 25.54 49.56 14.85 16.13
BERT-base† 110M 26.60 11.11 24.59 13.44 14.40

POINTER GENERATOR† 22M 38.33 14.11 35.81 16.36 15.90
BART-base (PubMed) 139M 51.20 19.77 48.47 13.69 13.45
BART-large (PubMed)† 406M 52.66 21.73 49.97 13.30 14.28
EASUMM‡ 8M 46.30 18.73 43.78 12.42 13.06

COGITOERGOSUMM 181M 52.23 20.63 49.44 14.10 13.67
- w/o RL 180M 52.30 20.47 49.46 14.06 13.64
- w/o event and RL 155M 52.13 20.42 49.30 14.02 13.69
- w/o AMR and RL 157M 52.02 20.54 49.25 13.97 13.66

Table 2: Automated evaluation on the full test set of CDSR with ROUGE (R in short) and readability metrics. Top: extractive
models. Middle: abstractive models. Bottom: our semantics-augmented abstractive model. Bold and underline denote the best
and second best R scores. † and ‡ results are from (Guo et al. 2021) and (Frisoni. et al. 2022), respectively. Our model signifi-
cantly outperforms BART-base (Pitman’s permutation test, p<0.05).

Ablation R̃ Read. BS NN

GNN
Type

EGAT 40.74 15.17 14.88 51.55
GAT bipartite 40.67 15.16 14.76 51.18

Attn.
Comb.

Parallel 40.74 15.17 14.82 51.55
Sequential (AMR, event) 40.65 15.08 14.98 51.81
Sequential (event, AMR) 40.69 15.01 14.84 52.57

Table 3: Ablation results averaged over three runs. Eval-
uation on ROUGE-1/2/L average (R̃), Flesch-Kincaid and
Coleman-Liau average (Read.), BERTScore (BS), and aver-
age % novel n-grams w/ n ∈ [1− 4] (NN).

formance drops the most when removing graph encoders.
Even if AMRs appear more impactful than events, the best
results come from their mixture, indicating that the two
types of semantic graphs complement each other in gener-
ating sounder summaries. RL effects are not appreciable by
ROUGE, howbeit remarkable with a deeper analysis. Fig. 4
presents the human evaluation results contrasted to auto-
matic metrics on the same sample. The average Kendall co-
efficient among all evaluators’ inter-rater agreement is 0.16.
COGITOERGOSUMM ranks better on every quality dimen-
sion inspected, pronouncing the gap with BART (+12.46%
factualness, +6.69% informativeness) and reaffirming pre-
vious deductions. The plot underlines the poor correlation
between ROUGE and the desired output properties.

We validate the relative impact of our principal com-
ponents (Table 3). Firstly, we scrutiny different graph en-
coders: (i) a GAT on Levi-transformed bipartite graphs treat-
ing nodes and edges equally, and (ii) an edge-aware GAT; we
uncover that (ii) brings a substantial headroom that ascer-
tains the value of relation types in representation learning.
Secondly, we test different ways of combining event and
AMR cross-attentions, documenting slightly better scores
with a parallel strategy. Tests with different random seeds
and extra qualitative case studies are disclosed in Appendix.

Conclusion
In this paper, we introduce a framework for infusing domain-
specific and -general semantic parsing graphs—events and
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Figure 4: Human evaluation scores on Informativeness, Fac-
tualness, Fluency, Succinctness, compared to the ROUGE-
1/2/L average (R̃), BERTScore (BS), FactCC %, and aver-
age % novel n-grams w/ n ∈ [1 − 4] (NN). COGITOER-
GOSUMM (ours) achieves significantly higher ratings than
BART-base PubMed (student t-test, p=0.0305).

.

AMRs—into transformer-based models for biomedical ab-
stractive summarization. We propose new decoder cross-
attention modules and reward signals to generate high-
quality summaries conditioned on both the source docu-
ments and their formal underlying semantics. Experiments
and ablation studies on CDSR demonstrate that our frame-
work sets new marks in informativeness, factuality, and
readability, better selecting and preserving summary-worth
content. Qualitative evaluation unveils that our models sur-
pass current baselines on all metrics associated with hu-
man judgment while still being competitive on recall-based
scores (i.e., ROUGE). Our results substantiate the hypothe-
sis that semantic awareness through graph injection draws
a complementary path to architectural scaling. For future
work, we plan to use deep metric learning for efficient text-
graph retrieval (Moro, Salvatori, and Frisoni 2023).
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