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Abstract

Efficient Transformers have been developed for long se-
quence modeling, due to their subquadratic memory and time
complexity. Sparse Transformer is a popular approach to im-
proving the efficiency of Transformers by restricting self-
attention to locations specified by the predefined sparse pat-
terns. However, leveraging sparsity may sacrifice expressive-
ness compared to full-attention, when important token cor-
relations are multiple hops away. To combine advantages of
both the efficiency of sparse transformer and the expressive-
ness of full-attention Transformer, we propose Diffuser, a
new state-of-the-art efficient Transformer. Diffuser incorpo-
rates all token interactions within one attention layer while
maintaining low computation and memory costs. The key
idea is to expand the receptive field of sparse attention using
Attention Diffusion, which computes multi-hop token correla-
tions based on all paths between corresponding disconnected
tokens, besides attention among neighboring tokens. Theoret-
ically, we show the expressiveness of Diffuser as a universal
sequence approximator for sequence-to-sequence modeling,
and investigate its ability to approximate full-attention by an-
alyzing the graph expander property from the spectral per-
spective. Experimentally, we investigate the effectiveness of
Diffuser with extensive evaluations, including language mod-
eling, image modeling, and Long Range Arena (LRA). Eval-
uation results show that Diffuser achieves improvements by
an average of 0.94% on text classification tasks and 2.30% on
LRA, with 1.67× memory savings compared to state-of-the-
art benchmarks, which demonstrates superior performance of
Diffuser in both expressiveness and efficiency aspects.

Introduction
Transformers (Vaswani et al. 2017) designed for sequential
data have revolutionized the field of Natural Language Pro-
cessing (NLP) (Liu et al. 2019; Zhu et al. 2020; Li et al.
2022), and have recently made tremendous impact in graph
learning (Yang et al. 2021; Dwivedi and Bresson 2020) and
computer vision (Dosovitskiy et al. 2020; Huynh 2022). The
self-attention used by regular Transformer models comes
with a quadratic time and memory complexity O(n2) for in-
put sequence of length n, which prevents the application of
Transformers to longer sequences in practical settings with
limited computational resources.
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Figure 1: (a) Input token correlations follow predefined
sparse pattern (b) The neighborhood structure for the target
word completely change by rolling input tokens by 1.

Recently, many efficient Transformers that improve com-
putational efficiency have emerged. One line of works ap-
proximates the n × n matrix multiplications by imposing
a low-rank assumption on the attention structure, while the
other line of works focuses on sparsification of the atten-
tion matrix. However, the improved computation efficiency
always sacrifices expressiveness due to the following chal-
lenges:
Approximations of full-attention. The first line of works
avoid explicitly computing n × n matrix through various
approximations such as using the dot-product through ker-
nalization (Wang et al. 2020; Katharopoulos et al. 2020) or
random projections (Peng et al. 2021; Choromanski et al.
2020). However, such approximations are usually based on
strict assumptions about the underlying attention structures
such as the low-rank approximation (Shen et al. 2021; Tay
et al. 2021a). There is currently a lack of rigorous guarantees
for these assumptions to hold for potentially full-rank and
dense self-attention matrices. Therefore these methods lead
to empirically inferior results in sequence modeling tasks
(Tay et al. 2021b; Ren et al. 2021), compared to the sparse
Transformer approach.
Slow information propagation. The current state-of-the-
art uses the sparse Transformer approach to approximate
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the full self-attention (see a local pattern example in Fig-
ure 1)(Zaheer et al. 2020). However, such sparsity-based ap-
proach can be lossy or even misleading in capturing impor-
tant token correlations when they are not directly connected.
For example, as the sentence shown in Figure 1, one-hop
attention scores of every pair of neighboring tokens can be
misleading (caused by the word “can”) when the real im-
portant correlations (the word “but”, and “not”) are two or
three hops away. A sparse-attention layer only focuses on
neighboring tokens, resulting in slower information propa-
gation in the attention graph. Consequently, to model these
crucial long-range correlations, sparse Transformers require
more layers to expand the receptive field compared to full-
attentions (Child et al. 2019; Ho et al. 2019; Dai et al. 2019).
Some existing works (Ainslie et al. 2020; Beltagy, Peters,
and Cohan 2020) deal with the slow propagation by intro-
ducing global attentions for important tokens, which alle-
viates the problem of long-range interactions. However, we
cannot soly rely on global tokens for such propagation be-
cause of information loss when aggregating all tokens.
Robustness to input perturbations. Since attention graph
is built upon predefined topology pattern, the attention pro-
cess can become very different even with minor input se-
quence changes. As shown in Figure 1, being shifted by
one token, the attention structure and neighboring tokens of
the target word will completely change, leading to inconsis-
tent outputs. Compared to full-attention where every token
is attended regardless of its position, sparse Transformers
are less robust to such input perturbations. Slow information
propagation of sparse Transformers will amplify such atten-
tion inconsistency, as the inconsistency accumulates when
the attention receptive fields gradually expand.
Proposed work. To address the mentioned expressiveness
issues and further improve Transformer efficiency, we pro-
pose Diffuser, a novel sparse Transformer that achieves
state-of-the-art performance on sequence modeling with
1.67× memory savings compared to state-of-the-art efficient
Transformers. The key insight is to introduce Attention Dif-
fusion mechanism based on the designed sparse pattern for
enabling efficient full-attention and larger receptive field.
Diffuser first calculates attention scores on edges of the at-
tention graph as in most sparse Transformers, then computes
attention scores between other node pairs through the atten-
tion diffusion process. Unlike all existing sparse Transform-
ers, Diffuser can model correlations among all pairs of to-
kens in a single Transformer layer, which extends the atten-
tion receptive field to the entire sequence, with minimal run-
time overhead. We theoretically show that Diffuser can be
more efficient (requires fewer layers) universal approxima-
tors for sequence modeling compared to all existing sparse
Transformers, and has good properties to approximate the
full-attention.

We further demonstrate the performance of Diffuser with
datasets from various domains. Experiments demonstrate
Diffuser’s superior performance in expressiveness and effi-
ciency. Compared with state-of-the-art efficient Transform-
ers, Diffuser improves state-of-the-art by an average of
0.94% on text classification and 2.30% on LRA for long se-
quence modeling, with 1.67× memory savings and compa-

rable running time. Furthermore, Diffuser achieves state-of-
the-art on 2 questions answering tasks and 2 image density
estimation tasks.

Related Work
Efficient Transformers. Many works aim to optimize
Transformers for longer inputs. Notably, Bigbird (Zaheer
et al. 2020) introduced a sparse attention method that con-
siders random, windowed, and global attention, improv-
ing performance on tasks including question answering and
summarization. Similarly, Longformer (Beltagy, Peters, and
Cohan 2020) presented a combination of windowed self-
attention and global attention to sparsify the dense attention.
Sparse sinkhorn attention (Tay et al. 2020) and Reformer
(Kitaev, Kaiser, and Levskaya 2020) adopted learnable pat-
terns on the attention module. Vyas, Katharopoulos, and
Fleuret (2020) proposed clustered attention that computes
attention for only the centroids in clustered queries. Other
works focus on kernel-based and feature mapping meth-
ods, like Performer (Choromanski et al. 2021), Reformer
(Kitaev, Kaiser, and Levskaya 2020) and Linformer (Wang
et al. 2020). Such methods improve self-attention efficiency
by grouping, clustering or designing fix sparse patterns, at
the expense of expressiveness. In contrast, Diffuser approxi-
mates full-attention using attention diffusion on a new sparse
pattern, backed by a novel theoretically guaranteed graph ex-
pander perspective.
Diffusion on Graphs. In graph neural networks (GNNs),
it is possible to increase number of layers to facilitate in-
teractions with neighbors that are multiple hops away, but
such indirect communication is less effective due to GNN
aggregations and results in an increased computational cost.
Another solution is to apply diffusion in each graph layer
considering the multi-hop neighborhood (Xu et al. 2020;
Atwood and Towsley 2016). (Klicpera, Bojchevski, and
Günnemann 2019) proposed PPNP that applies personalized
PageRank to propagate node predictions. (Klicpera, Weißen-
berger, and Günnemann 2019) propose GDC to allow prop-
agation of multi-hop neighbors with generalized graph dif-
fusion. Moreover, Wang et al. (2021) proposed MAGNA,
which applies a diffusion based on the attention values in
graph attention. Diffuser is inspired by the successful prac-
tice of diffusion in the graph domain, and utilizes it to im-
prove the sparse Transformer expressiveness for general se-
quence modeling.

Diffuser: Multi-Hop Attention with Diffusion
In this section, we define the attention diffusion process and
introduce the Diffuser model by integrating the attention dif-
fusion into Transformers with sparse attention patterns.

Preliminaries
Multi-head Self-attention. Transformers and self-attention
mechanism (Vaswani et al. 2017) are proposed for model-
ing sequences. The input sequence to the l-th layer with n
tokens can be denoted as H(l−1) = [x1, x2, ..., xn], where
H(l−1) ∈ Rn×d, and each token xi is a d dimensional vec-
tor. The attention mechanism introduces matrices Q,K, V
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as queries, keys, and values, which are linear projections of
the input sequences:

Q = XWQ,K = XWK , V = XWV . (1)

The attention matrix A among tokens is then calculated
as the scaled dot-product of queries and keys, and is used to
calculate the updated token values:

Attn(X) = AV,A = softmax

(
QK⊺

√
d

)
, (2)

where softmax denotes the row-wise softmax normalization,
and we omit the bias term for simplicity. To allow a token
to attend to multiple aspects, self-attention can be further
extended to multi-head self-attention as follows:

M -Attn(X) = cat[Attn(X)1, ..., Attn(X)h]WO, (3)

where h is the number of heads in use.
Sparse attention. The runtime bottleneck of the standard
self-attention is the attention matrix A with shape n×n in
Equation 2, which has to be fully materialized in memory
and scales quadratically as input length. This is impracti-
cal for long sequences with large n. To avoid the increased
memory usage and speed up the attention calculations, we
define the sparse attention mechanism described by a di-
rected attention graph G = (V, E). In this graph, we have
tokens to be the nodes, V = {1, ..., n}, with the correspond-
ing adjacency matrix A∈{0, 1}n×n. Each edge in the graph
represents the query-key pair which we will include during
computing sparse attention, i.e., Ai,j = 1 if query i attends
to key j and is zero otherwise. Matrix A can be seen as a
mask applied to the full-attention matrix by element-wise
multiplication. The resulting sparse self-attention mecha-
nism in Equation 2 can then be rewritten in the token-wise
form as

Attn(xi) = softmax

(
QiK

⊺
Ne(i)√
d

)
VNe(i), (4)

where xi is the i-th input token to update value and Ne(i)
represents the neighbors of token i in the attention graph G.

Transformer Attention Diffusion
Similar to other sparse Transformers, the attention matrix
A is first calculated on edges of the underlying graph G
which is used to characterize the interaction strength be-
tween neighboring nodes on the graph, i.e.,

Ai,j =
exp(QiKj/

√
d)∑

j∈Ne(i) exp(QiKj/
√
d)

. (5)

Each entry of attention matrix A is the attention score be-
tween 1-hop neighbors of G. Such 1-hop correlations in
sparse Transformers cannot include all possible correlations
compared to full-attention, which leads to limitations to cap-
turing important correlations when the true dependencies are
in several-hops away and not directly connected by edges in
the graph as discussed in Figure 1.

The key idea of Diffuser is to apply the attention diffusion
mechanism to calculate the multi-hop token relationships on

the attention graph based on attention weights on edges. The
multi-hop attention scores are calculated as entries of the
graph diffusion matrix A:

A =
∞∑
k=0

θkA
k, (6)

where A is the adjacency matrix or calculated sparse at-
tention matrix, and the weighting coefficient θk satisfies∑∞

k=0 θk = 1, θk ∈ [0, 1]. The original receptive fields de-
fined by the sparse attention pattern will be gradually ex-
panded as k becomes larger. The resulting attention score
Ai,j incorporates all paths between token i and j, weighted
by the coefficient θk. We then multiply each value vector V
by the diffusion attention matrix A, which is equivalent to
the message aggregation step in GNN.

Computing the power of attention matrices in Equation 6
can be inevitably expensive for long sequences, even when
the sparsity is considered. To efficiently apply the diffusion
mechanism in Transformers, we implement the graph dif-
fusion process as Personalized PageRank (PPR) by speci-
fying θk = α(1 − α)k with teleport probability α. The re-
sulting diffusion matrix A =

∑∞
k=0 α(1 − α)kAk is the

power expansion of the solution to the recursive equation
A = αI + (1 − α)AA. We then adopt the power itera-
tion method (Page et al. 1999) to achieve linear computa-
tional complexity by approximating PPR within the the first
K diffusion steps. Each power iteration (diffusion) step is
calculated as

Z(0) = V = XWV , Z(k+1) = (1− α)AZ(k) + αV, (7)

for 0 ≤ k < K. ZK is output of the attention diffusion
process, and will converge to the real output AV as K � ∞
(shown in Appendix).

Sparse Pattern Design

(a) Longformer (b) BigBird

local
global
random

(c) Diffuser
Figure 2: Comparison of sparse patterns (1024×1024) with
different types of attentions.

Another important ingredient of Diffuser is the design of
sparse attention pattern. It should be noted that attention
diffusion is compatible with any sparse patterns. We de-
sign new sparse patterns to leverage the advantages of atten-
tion diffusion while maintaining computational efficiency.
As shown in Figure 2, we consider a combination of local
window attention, global attention, and random attention to
capture token interactions without quadratic complexity de-
pendency on the sequence length.
Local window attention. Local window attentions are con-
structed by the sliding window and are proposed to model
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the information locality among neighboring tokens, e.g., the
proximity of tokens in linguistic structure and the clustering
coefficient in the graph. Given a fixed window size w, each
token attends to 1

2w tokens on each side, and we also con-
sider the cross-window attention by overlapping 1

2w tokens,
resulting in computational complexity O(nw2) which scales
linearly with input sequence length n. The resulting recep-
tive field (keys that each query looks up to calculate self-
attention) is expanded linearly with more diffusion steps and
Transformer layers. For example, the size of the receptive
field grows as ( 12 + k)w with diffusion step k. Compared to
Longformer and BigBird, Diffuser can achieve good expres-
siveness with smaller local window and therefore sparser at-
tention, because of the fast receptive field expansion by at-
tention diffusion given the same number of attention layers.
Global attention. We introduce global attention by extend-
ing the receptive field of tokens to the entire input sequence.
Specifically, we randomly choose g tokens among input se-
quence as global tokens, such that for any global token i,
Ai,:· = 1 and A·:,i = 1, resulting in complexity O(gn).
Global tokens share the same set of weight parameters with
other types of attentions (in contrast to different weights
used in Longformer). Furthermore, compared to BigBird
which selects global attentions by grouping adjacent tokens,
Diffuser constructs global attention with the unit of individ-
ual tokens.
Random attention. We consider adding random attentions
to accelerate the information flow between any pair of nodes.
The intuition of introducing random attention is to enhance
the graph expander properties for better full-attention ap-
proximation. From the graph theory perspective, random
graph, e.g., Erdős–Rényi graph (Erdős, Rényi et al. 1960),
has been shown to have good expander properties to approx-
imate the complete graph (full-attention) spectrally (detailed
in the next section). Therefore, for each input token i, we
randomly select r tokens (r ≪ n and above the threshold
O(log(n)/n)), such that Ai,j = 1 for each selected token
j, resulting in a total number of O(rn) random attentions.
Compared to BigBird whose random attentions are based on
the unit of blocks (e.g., 64 adjacent tokens as a block), Dif-
fuser constructs random attention with the unit of individual
tokens. Given the same number of global and random atten-
tion budget, the token-wise selection leads to more uniform
attention distributions with weaker clustering, compared to
block-wise selections, which improves the expander proper-
ties and accelerates the attention flows among tokens. It is
noted that the reason BigBird adopts block-wise attentions
is to blockify lookups for efficient implementations of atten-
tion calculations. In comparison, we implement token-wise
attention using commercial graph packages with optimized
GSpMM kernels and achieve similar efficiency.

Model Architecture
We introduce the building block of Diffuser, based on the
proposed sparse pattern, regular self-attention mechanism,
and attention diffusion process, as shown in Figure 3. At
layer l − 1, input H(l−1) is mapped to queries, keys, and
values, and attention scores are calculated on edges of the
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Figure 3: The layer architecture of Diffuser.

predefined attention graph using scaled dot-product. Then,
attention diffusion procedure is calculated following Equa-
tion 7 up to K diffusion steps, which spreads the informa-
tion of tokens to its multi-hop neighbors. The residual and
feed-forward layers are then used to output H(l) for skip-
connections and value mappings.

Theoretical Expressive Power of Diffuser
In this section, we investigate the expressiveness of the pro-
posed model from two perspectives. First, we show Dif-
fuser’s capability to approximate sequence modeling by
proving that the model with sparse connections and diffu-
sion is a universal approximator to sequence-to-sequence
function, and it requires less layers to achieve the same ex-
pressivity compared with sparse attentions without diffu-
sion. Second, we show Diffuser’s capability to approximate
full-attention. From the spectral graph perspective, we show
that the proposed sparse patterns combined with diffusion
induces better graph expander properties, enabling approxi-
mations of the complete graph.

Diffuser as Universal Approximators
We follow the proof of Yun et al. (2019) and show Diffuser
can approximate arbitrary sequence-to-sequence functions
(mapping sequential input X from Rn×d to Rn×d). Given
one family of Diffuser structure Dh,m,r with h attention

Length Longformer BigBird Diffuser
tot loc glob rand

1024 62.5 55.7 24.0 18.0 4.2 1.9
2048 34.4 32.5 15.5 9.2 4.2 2.1
4096 18.0 16.9 11.2 4.6 4.3 2.2

Table 1: The percentage of attentions: tot, loc, glob, and
rand represent total, local, global, and random attentions,
respectively.
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heads of head size m and hidden layers of width r, we state
the main theorem as follows, which shows that if the sparse
pattern in use satisfies the assumptions below, there exists
Diffuser belonging to Dh,m,r that is a universal approxima-
tor of continuous sequence-to-sequence function.

Theorem 1. Consider any continuous function f ∈ F , and
the class of Diffuser Dh,m,r with sparse attention graph sat-
isfying Assumption 1. Then, for any ϵ > 0 and 1 ≤ q < ∞,
there exists a function g ∈ Dh,m,r such that

dq(f, g) :=

(∫
D
∥f(X)− g(X)∥qq dX

)1/q

≤ ϵ. (8)

Compared to other works discussing expressiveness of
sparse Transformers (Zaheer et al. 2020; Yun et al. 2020), we
show Diffuser can achieve contextual mappings using fewer
layers based on attention diffusion mechanism. Intuitively,
the improved efficiency can be understood as the expanded
attention receptive field through diffusion, which includes
more attentions without stacking attention layers. We then
specify a set of conditions on the sparse attention patterns A
of the attention graph G in study.

Assumption 1. Sparsity pattern A satisfies the following:

1. All tokens attend to themselves, i.e., for all k ∈ [n], we
have k ∈ Ne(k).

2. The graph G is connected and has a Hamiltonian path
connecting all nodes, i.e., there exists a permutation
γ : [n] → [n] such that, for all i ∈ [n − 1], γ(i) ∈
Ne(γ(i+ 1)).

The detailed proof is shown in Appendix, and the key in-
novation here is that the introduction of attention diffusion
allows sequence ID computation to involve all token values
within one attention layer.

Diffuser as Expander Graphs
Expander graphs are sparse and robust graphs with strong
connectivity, and have several nice properties to improve
the expressiveness of Diffuser while keeping the computa-
tional efficiency. In this subsection, we show the sparse at-
tention graph in Diffuser has good expander graph property,
and then highlight three advantages of constructing atten-
tion graph as an expander graph, including ensuring sparsity,
mixing diffusion rapidly, and approximating full-attention.

We consider the family of d-regular graphs G with adja-
cency matrix A, which require all vertices to have the same
degree d, and we then define the (ϵ, d)-expander:

Definition 1. A graph G is a (d, ϵ)-expander if it is d-regular
and its adjacency matrix eigenvalues satisfy |µi| ≤ ϵd for
i ≥ 2.

As the Laplacian eigenvalues of regular graph are given
by λi = d−µi, this is equivalent to |d−λi| ≤ ϵd. We show
in Appendix the equivalent definitions using expansion ra-
tio and the properties of eigenvalues of d-regular graph. One
common random graph model used to build such expander
graphs is Erdős–Rényi Gn,p model where each edge is in-
cluded in the graph with probability p, and we consider the
variant Gn,m model where m edges are randomly drawn,

further constrained to the regularity d. These two models
are very similar if p ≥ logn/n which is satisfied in the
long-sequence scenario. It can be proved that such randomly
built d-regular is an expander with high probability (Fried-
man 2008). To ensure good expander graph properties, we
follow such random models to build the random attention
graph which can be thought of as a (r, ϵ)-expander, as dis-
cussed in the previous section (additional connections from
local and global pattern will not harm expander properties).

The next theorem shows that such sparse random attention
with (r, ϵ)-expander properties can approximate the full-
attention complete graph (proved in Appendix).
Definition 2. For two graph G and H , we say G is an ϵ-
approximation to H if (1+ϵ)H ⪰ G ⪰ (1−ϵ)H , where G ⪰
H means the corresponding Laplacian matrix LG − LH is
positive-semidefinite.
Theorem 2. For every ϵ > 0, there exists d such that for all
sufficiently large n, there is a d-regular graph G which is an
ϵ approximation of the complete graph Kn.

Further we notice the nice properties from diffusion trans-
formation as low-pass filters can further enhance the ex-
pander properties. The eigenvalues µ̃i of diffusion matrix A
can be computed as µ̃i = α

∑∞
k=0(1−α)kµk

i = α
1−(1−α)µi

in the PPR case, which amplifies low Laplacian eigenvalues
while suppressing high eigenvalues (shown in Appendix).

Another essential reason for Diffuser designing expander
graphs is that they achieve rapid mixing for random walks
and diffusion, which accelerates the information propaga-
tion on the attention graph of Diffuser.
Theorem 3. Given d-regular graph with adjacency matrix
A and transition matrix Â = 1

dA of random walk, assume
the spectral gap σ is defined by σ = max(|µ2|, |µn|) ≜ βd.
Then,

||Âtv − u||1 ≤
√
nβt, (9)

where u is the stationary distribution and v is an arbitrary
initial distribution.

The theorem shows that PPR (or general random walk)
approaches its limiting probability distribution rapidly on
expander graph which has large spectral gap (proved in Ap-
pendix). The fast convergence of PPR on expander graph
indicates accelerated information propagation in Diffuser.

Experiments
We evaluate the performance of Diffuser with a rich set of
sequence modeling tasks, including language modeling, im-
age modeling and Long-Range Arena (LRA) tasks. We then
analyze expressiveness and efficiency through extensive ab-
lation studies.

Model Implementations
We implement Diffuser using the graph library DGL , which
offers optimized kernels for sparse matrix operations. We
first build the graph according to the sparse pattern, then fol-
low the message passing framework defined in DGL by cal-
culating the sparse attention as message functions, and atten-
tion diffusion as update and reduce function. The remaining
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components follow the regular Transformer architecture in
PyTorch. The detailed experimental settings, hyperparame-
ters and baseline setup are discussed in Appendix.
Efficiency. We show the GPU memory usage and runtime
comparison in Figure 4. Compared to benchmarks, Diffuser
achieves 1.67× memory savings compared to the best base-
line Performer, with comparable running time. It should be
noted that the runtime can be further improved with better
diffusion sparse operation support from hardware.
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Figure 4: Comparisons of computational efficiency: memory
usage and seconds/iteration.

Language Modeling
Pretraining. We evaluate the model on language tasks fol-
lowing the standard pretraining and finetuning pipeline (Liu
et al. 2019). Diffuser is pretrained with masked language
modeling (MLM) task, which involves predicting a random
subset of tokens that have been masked out. We pretrain the
model with three standard datasets (detailed in Appendix)
and evaluate the pretraining performance with bits per char-
acter (BPC) as in Zaheer et al. (2020). The training is con-
ducted with the maximum sequence length of 4,096 and lin-
ear warmup from the RoBERTa checkpoint. As shown in
Table 2, Diffuser achieves lower BPC compared to bench-
marks after training for 50K steps. The significant difference
between initialization and training 10K steps for Diffuser
model indicates the RoBERTa weights are not working well
because of the change of the updating rule, and the model is
learning to better utilize the attention diffusion.

Model BPC Model BPC

RoBERTa 2.02 Diffuser-init 3.52
Longformer 1.86 Diffuser-10K steps 1.96
BigBird 1.82 Diffuser-50K steps 1.68

Table 2: MLM BPC for Diffuser and baselines.

Text classification. We first evaluate Diffuser on text clas-
sification tasks with five datasets. Hyperpartisan (Kiesel
et al. 2019) and 20NewsGroups (Lang 1995) are news
datasets with different scales. IMDB (Maas et al. 2011) is
a collection of movie reviews for sentiment classification.
Moreover, we select and propose two new benchmarks with
longer documents based on an existing large-scale corpus,
Amazon product reviews (He and McAuley 2016), to con-
duct long document classification. Amazon-512 contains all
reviews that are longer than 512 words from the Electronics
category; Amazon-2048 contains 10,000 randomly sampled

HYP 20NG IMDB A-512 A-2048 Avg.
95pt. 2,030 1,229 771 1,696 5,216 -

BERT 85.7 85.3 91.3 59.2 50.3 74.36
RoBERTa 87.4 85.7 95.3 65.0 57.9 78.26
BigBird 92.2 82.3 95.2 67.4 63.6 80.14
Longformer 93.8 86.3 95.7 67.3 61.2 80.86

BigBird D 93.1 84.5 95.0 68.2 63.4 80.84
Longformer D 93.5 87.3 95.4 67.0 62.5 81.24
Diffuser 94.4 86.8 95.2 67.8 64.8 81.80

Table 3: Text classification results on five datasets: Hyper-
partisan (HYP), 20NewsGroups (20NG), IMDB, Amazon-
512 (A-512) and Amazon-2048 (A-2048). 95pt. indicates
95th percentile of token number. We report average F1
scores (Avg.). We underscore the best among baselines, and
bold the best overall models.

reviews that are longer than 2,048 words from the Books cat-
egory. We randomly split 8/1/1 as train/dev/test sets for both
datasets (statistics detailed in Appendix). We finetuned the
pretrained Diffuser on each dataset and compare the average
F1 score with benchmark models. To investigate the influ-
ence of attention diffusion, we also apply attention diffusion
to Longformer and BigBird models based on their respective
sparse patterns (BigBird D and Longformer D). As shown in
Table 3, diffusion-based methods consistently achieve better
average score, indicating the importance of attention diffu-
sion. Among them, Diffuser achieves the best average per-
formance, showing the effect of the proposed sparse pattern
on attention diffusion. Especially, Diffuser outperforms Big-
Bird by 0.4% and 1.2% on two long Amazon datasets, which
shows its stronger ability to model long sentences.
Question answering. We choose two benchmarks for ques-
tion answering: WikiHop (Welbl, Stenetorp, and Riedel
2018) and TriviaQA (Joshi et al. 2017). WikiHop is a dataset
collected based on Wikipedia articles for multi-hop ques-
tion answering across documents. TriviaQA is a large-scale
dataset of question-answer-evidence pairs for reading com-
prehension. Both datasets are in a reasonable scale and
length, as in Table 4. We follow Beltagy, Peters, and Co-
han (2020) and concatenate the question, answer, and candi-
dates into one input sequence with special tokens along the
context. Task specific projection layers are then adopted to
classify the correct answers for WikiHop and predict the an-
swer span for TriviaQA. From Table 4, we see that Diffuser
achieves the best results for TriviaQA and has comparable
performance for WikiHop.

Model WikiHop TriviaQA
Metric Acc F1 EM

RoBERTa 71.82 74.02 66.87
Longformer 75.30 74.82 67.24
BigBird 74.54 73.16 68.26

Diffuser 75.80 75.84 70.20

Table 4: Comparison of WikiHop and TriviaQA, and model
performances. We report Accuracy for WikiHop, and F1,
EM score for TriviaQA.
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Image Generative Modeling
We then evaluate the performance of Diffuser on image den-
sity modeling task with CIFAR-10 and ImageNet-64. The
sequence lengths are 3,072 and 12,288, respectively. We fol-
low the setting of (Child et al. 2019) and adopt an 8-layer
model with 512 hidden dimensions which is trained until the
validation errors stop decreasing. As shown in Table 5, Dif-
fuser achieves lower bits per dimension (BPD) on CIFAR-
10 datasets and converges to similar BPD on ImageNet64
dataset, demonstrating the effectiveness of the model in the
image domain. Similar results are obtained with different
layers and hidden dimensions.

CIFAR-10 BPD ImageNet-64 BPD
PixcelCNN 3.03 PixcelCNN 3.57
PixcelCNN+ 2.92 Parallel Multiscale 3.70
PixelSNAIL 2.85 SPN 3.52
Sparse Trans. 2.80 Sparse Trans. 3.44
Diffuser 2.78 Diffuser 3.44

Table 5: Bits per Dimension (Bits/Dim) on CIFAR-10 and
ImageNet-64. We list baseline details in Appendix.

Long-Context Sequence Modeling
Long Range Arena (LRA) (Tay et al. 2021b) is a unified
benchmark for evaluating efficient Transformer models with
five multi-class classification tasks from different domains,
including ListOps, byte-level text classification, byte-level
document retrival, image classification, and image-based
path finder. All the tasks are multi-class classification with
input sequences of different lengths. As shown in Table
6, Diffuser achieves the best results on ListOps (2K), Re-
trieval (4K), and Image (1K), improving average accuracy
by 2.30% compared to the best benchmark BigBird.

Models ListOps Retrieval Image Pathfinder Avg
Full 36.37 57.46 42.44 71.40 54.39

Local Att 15.82 53.39 41.46 66.63 46.06
Linear 16.13 53.09 42.34 75.30 50.55
Reformer 37.27 53.40 38.07 68.50 50.67
Sparse 17.07 59.59 44.24 71.71 51.24
Sinkhorn 33.67 53.83 41.23 67.45 51.48
Linformer 35.70 52.27 38.56 76.34 51.36
Performer 18.01 53.82 42.77 77.05 51.41
Synthesizer 36.99 54.67 41.61 69.45 52.88
Combiner 36.65 59.81 41.67 71.52 54.93
Longformer 35.63 56.89 42.22 69.71 53.46
BigBird 36.05 59.29 40.83 74.87 55.01

Diffuser 37.52 61.28 45.20 76.58 57.31

Table 6: Classification accuracy on LRA datasets with three
best performing benchmarks on average. Underline values
are best among baselines, while bold are the best.

Ablation Studies
We first study the influence of different mechanisms used in
Diffuser by ablating the corresponding components. Table
7 shows that the diffusion (#4) and local patterns (#1) have
the biggest influence on the performance while random (#2)
and global attentions (#3) result in similar performance drop.

Model ListOps Retrieval Image Pathfinder Avg
#0 Diffuser 37.52 61.28 45.20 76.58 57.31
#1 w/o loc. 35.28 58.05 38.07 73.25 52.65
#2 w/o rand. 36.38 60.60 43.48 73.36 55.74
#3 w/o glob. 36.52 61.07 42.35 72.47 55.19
#4 w/o diff. 33.48 58.25 39.28 71.08 52.36
#5 w uni. 37.39 61.42 44.98 76.30 57.07

Table 7: Ablation studies of each component in Diffuser.

We also notice that changing the random attention into uni-
form distribution (#5) does not substantially affect the per-
formance as the expansion properties are retained (shown
in Appendix). We then investigate the effect of the diffu-
sion parameter using A-2048 datasets as shown in Figure 5.
We observe significant improvement in performance as K
increases, and the saturated performance under K ≥ 5 indi-
cates the convergence to the stationary distribution. We also
observe the performance is significantly influenced by the
teleport parameter α, and we choose K = 5 and α = 0.1
in practice. We also show the influence of different types of
attentions in Figure 6. The performance improvements slow
down as we increase the number of attentions for all three
types of attentions, and we choose the number of attentions
considering the balance between expressiveness and effi-
ciency. We also observe that there exists an optimal ratio to
combine the random and global attentions and improve per-
formance upon random-attentions-only or global-attentions-
only scenarios. More ablation studies (e.g., input robustness
analysis) are shown in Appendix.
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Figure 5: The influence of diffusion parameters on accuracy.
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Figure 6: The influence of different attention on accuracy.

Conclusion
In this work, we proposed Diffuser, an efficient Transformer
for long sequence modeling that applies multi-hop atten-
tion diffusion. We theoretically showed that Diffuser is a
more efficient universal approximator for sequence model-
ing, with better expander properties from the graph spec-
tral perspective. Experimentally, we showed that Diffuser
achieves superior performance in language modeling, image
modeling, and other long sequence modeling tasks.
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