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Abstract

Conventional text-to-SQL studies are limited to a single task
with a fixed-size training and test set. When confronted with
a stream of tasks common in real-world applications, existing
methods struggle with the problems of insufficient supervised
data and high retraining costs. The former tends to cause over-
fitting on unseen databases for the new task, while the latter
makes a full review of instances from past tasks impractical
for the model, resulting in forgetting of learned SQL struc-
tures and database schemas. To address the problems, this
paper proposes integrating semi-supervised learning (SSL)
and continual learning (CL) in a stream of text-to-SQL tasks
and offers two promising solutions in turn. The first solution
VANILLA is to perform self-training, augmenting the super-
vised training data with predicted pseudo-labeled instances
of the current task, while replacing the full volume retrain-
ing with episodic memory replay to balance the training effi-
ciency with the performance of previous tasks. The improved
solution SFNET takes advantage of the intrinsic connection
between CL and SSL. It uses in-memory past information
to help current SSL, while adding high-quality pseudo in-
stances in memory to improve future replay. The experiments
on two datasets shows that SFNET outperforms the widely-
used SSL-only and CL-only baselines on multiple metrics.

Introduction
Relational databases (RDs) store a vast amount of today’s
information and provide the foundation for applications
such as customer relationship management (Anshari et al.
2019), financial markets (Lewis et al. 2017), and medical
records (Wang, Shi, and Reddy 2020). Text-to-SQL technol-
ogy trains a parser to translate natural language problems
into machine-readable SQL programs, providing an ideal
way for non-technical users to easily interact with their data
stored in RDs. Current research on text-to-SQL has cov-
ered single-table (Zhong, Xiong, and Socher 2017), multi-
table (Yu et al. 2018), and conversation (Yu et al. 2019a) sce-
narios, with a common assumption that the size of training
and testing data does not change over time. Unfortunately, in
real-world applications, new databases are always emerging
to adapt to changing circumstances (e.g., new diseases, ad-
justed financial policies), thus continuously generating new
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tasks for the parser. Although machine learning-based text-
to-SQL methods have achieved state-of-the-art (SOTA) per-
formance, they suffer from the following two challenges in
the face of rapidly growing tasks.

1) Limited supervised data. For a new text-to-SQL task
against unseen databases, it is often impractical to annotate
sufficient SQL labels for training in a short period of time,
resulting in parsers that are prone to overfitting. 2) Costly
full volume retraining. Considering a new task, an intuitive
idea is to train the model from scratch on all seen tasks. Un-
fortunately, the computational cost of such retraining is un-
affordable due to the increasing size of pre-trained models,
even with limited training data (Wu et al. 2022). Assuming
that there are K tasks and the average training time of one
task is Tavg, the total time of full volume retraining on these
K tasks is T = K(K + 1)Tavg/2. When K is large, the
squared relationship makes T intolerable.

Existing works provide ideas to address the challenges
separately. First, semi-supervised learning (SSL) (Guo et al.
2022) can compensate for the lack of supervised data
by mining the potential value of NLQs without SQL la-
bels. Second, continuous learning (CL) (Li, Qu, and Haf-
fari 2021) provides an alternative cost-effective training
paradigm without using all instances of previous tasks.
However, both of them focuses on one of the challenges but
ignores the impact of the other. It remains a pressing issue
to address both challenges simultaneously.

In this paper, we propose to integrate SSL and CL to
solve the supervision-limited text-to-SQL task stream. We
first give a VANILLA solution in which the parser applies
self-training to predict pseudo-labeled instances to improve
generalization to the current task (SSL) while replaying
small portions of past instances stored in memory to alle-
viate forgetting of previous tasks (CL). Despite its simplic-
ity, VANILLA has experimentally proven to be sufficient to
outperform most SSL-only and CL-only methods in text-to-
SQL task streams. Thereafter, we further hypothesize that
SSL and CL can boost each other. On the one hand, some
instances in previous tasks can supply valuable information
to SSL for predicting pseudo-labels of unlabeled instances.
As shown in Figure 1(a), although instances A and B are
associated with different databases, Perpetrator and
Race track, respectively, the target SQL of A is similar
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Figure 1: Mutual promotion of SSL and CL. Sup denotes labeled data, Unsup denotes unlabeled data, green cylindrical denotes
the database against the task.

to that of B. The parser might learn from A on how to pre-
dict the pseudo-label of B. On the other hand, high-quality
pseudo-labeled instances can also enrich the memory of past
tasks. In the three tasks shown in Figure 1(b), the pseudo
instances can supplement the supervised-only memories in
terms of both RD schemas and SQL keywords. Motivated
by this, we propose the soft fusion network (SFNET), which
applies a teacher-student framework to separately cope with
SSL and CL processes. Specifically, TEACHER is committed
to the optimum on each single task via self-training, while
STUDENT learns the pseudo labels predicted by TEACHER
on all seen tasks via replaying to achieve the optimum on
the entire task stream. To utilize the mutual promotion of
CL and SSL, SFNET performs dual sampling: when train-
ing TEACHER, past instances relevant to the current task are
used to prompt the SSL process; when training STUDENT,
both labeled and unlabeled instances of previous tasks are
sampled to guarantee complete memory for replay. Compre-
hensive experiments on two text-to-SQL benchmarks show
that our SFNet further improves on the VANILLA solution,
achieving SOTA results on multiple metrics.

Preliminaries
A Base Text-to-SQL Parser
Given an NLQ q and a schema S = (C, T ) for an RD, con-
ventional text-to-SQL aims to generate a SQL program y by

y = Fθ(q,S), (1)

where S consists of columns C = {c1, ..., c|C|}, tables
T = {t1, ...t|T |}, and Fθ denotes a parser with parameters
θ. Most SOTA text-to-SQL parsers for the single task (Guo
et al. 2019; Wang et al. 2020a; Cao et al. 2021) represent the
desired y as an abstract syntax tree (AST) Zy via a context-
free grammar and adopt a sequence-to-sequence architec-
ture (Luong, Pham, and Manning 2015) to synthesize Zy .
To make a fair comparison between different learning algo-
rithms, we built a robust parser Fθ along their lines.

Encoder An strong table pre-trained model GRAPPA (Yu
et al. 2021) is employed to encode q and S into a sequence of

contextual word representations, q and S. It was pre-trained
on an 866.5k table-text corpus, being injected with structural
properties common to the semantic parsing of tables.

Decoder A long short-term memory (LSTM) network is
used as a decoder to synthesize Zy by generating a sequence
of actions Z(y) = {z1, z2...z|Z(y)|}. These actions deter-
mine the SQL skeleton and the used schemas according to a
top-down grammar, SEMQL (Guo et al. 2019). In particular,
the probability of Zy is estimated by

P (Zy|q,S, θ) =
|Z(y)|∏
j=1

P (zj |q,S, z<j , θ), (2)

where zj is the j-th action. P (zj |q,S, z<j) denotes the pre-
dicted probability of zj , determined by the normalized inner
product of the hidden state hj of the LSTM and the embed-
dings of candidate actions.

Problem Formulation
In our scenarios, Fθ is trained continually by a sequence
of K distinct tasks {D1,D2, ...,DK}. Each task Di con-
sists of a labeled training set Ai = {ai1..., ai|Ai|}, a vali-
dation set Divalid, and a test set Ditest, where each training
instance aik = (qik,Sik, ỹik) has a gold SQL program ỹik as
the label. Considering the limited supervision, we let |Ai|
far smaller than the size of the general text-to-SQL datasets.
In addition, we also assume that there is an unlabeled set
U i = {ui1..., ui|Ui|} for Di, where uik = (qik,Sik) does not
have gold SQL labels. Different tasks depend on different
RDs, i.e., for ∀Di, ∀Dj , if i ̸= j, then S(Di) ∩ S(Dj) = ∅,
where S(Di) denotes the set of corresponding RDs. Our fi-
nal goal is to make Fθ achieve a good SQL generation accu-
racy on each Ditest after the training of all K tasks.

A Vanilla Solution
We start with a VANILLA solution to overcome the chal-
lenges of training Fθ on {D1,D2, ...,DK}, consisting of
in-task self-training and cross-task episodic memory replay.
Figure 2 shows its entire architecture.
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Figure 2: Architecture of our proposed VANILLA solution.

In-Task Self-Training
As a classical SSL method, self-training (ST) uses the
model’s predictions to product pseudo-labeled data to aug-
ment the limited supervision (the first challenge). Inspired
by this, during the learning of task Di, we adopt a two-stage
strategy to improve the generalization capability of Fθ.

Warm Start In the first stage, F iθ is trained on labeled set
Ai for multiple epochs to fully understand Di, thus guar-
anteeing the quality of the first batch of pseudo labels pre-
dicted by F iθ. Specifically, for each labeled instance aik =
(qik,Sik, ỹik) ∈ Ai, the loss is calculated by a log-likelihood,

L(aik; θi) = −
|Z|∑
j=1

logP (z̃j |qik,Sik, zi<j , θi). (3)

Self-updating In the second stage, F iθ is trained on Ai ∪
U i. At each epoch, it first predicts a SQL program ŷk for
each unlabeled instance uik ∈ U i to a pseudo-labeled in-
stance pik = (qik,Sik, ŷik). Random k instances pik are se-
lected to compose the pseudo-label setPi. Subsequently,Fθ
is updated by optimizing

LST(Ai ∪ Pi; θi) =
∑
aik∈Ai

L(aik; θi) +
∑
pik∈Pi

µkL(pik; θi),

(4)
where µk = P (Zy|q,S, θ) is the confidence score to evalu-
ate the contribution of each pik to the loss.

Cross-Task Episodic Memory Replay
Considering the second challenge, Fθ cannot be retrained
with the full set of previous instances when a new task is
encountered. This also brings up a new problem of catas-
trophic forgetting (CF), i.e., Fθ forgets the past tasks af-
ter learning the new ones. Fortunately, episodic memory re-
play (EMR) can balance the efficiency and CF by allowing
the model to review a portion of the experienced instances.
In addition, compared with other gradient-based CL meth-
ods (Kirkpatrick et al. 2016; Lopez-Paz and Ranzato 2017),
EMR is well suited for the text-to-SQL task with complex
labels Z(y) because of its simple process. Therefore, we add
the following process along with ST.

Memory Construction As a preparation, we construct a
fixed-size memory Mi = {mi

1,m
i
2, ...,m

i
|Mi|} associated

with each Di to store a small number of replay instances,
where mi

k = (qik,Sik, ỹik) is sampled by fromAi. This setup
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Figure 3: Architecture of our proposed SFNET.

is practical for text-to-SQL parsers because they have diffi-
culty recalling information from the past except for reusing
the instances stored in memory.

Replay Loss Concretely, whenever F iθ performs self-
training, LEMR, the loss of all replayed instances stored in
M1 toMi−1, is added to LST,

LEMR(Mj ; θi) =

i−1∑
j=1

∑
mj

k∈Mj

L(mj
k; θ

i). (5)

Following the common practice, at the end of the training of
Di, we randomly select a M labeled instances from Ai and
store them inMi for replay in future tasks.

Soft Fusion Network
Figure 3 shows the architecture of our proposed SFNET,
which is an improved version of VANILLA. Since SSL is
dedicated to the optimization of a single (current) task, while
CL is more concerned with the overall performance of all
tasks, SFNET applies a Teacher-Student Framework (TS) to
perform them separately. It composes of two base parsers,
TEACHER Ftea for SSL and STUDENT Fstu for CL. During
the task Di, both F itea and F istu are initialized from F i−1

stu but
with separate parameter updates during each task. To drive
the mutual promotion of SSL and CL (Figure 1), SFNET
uses dual sampling that contains two different strategies to
augment the training data of F itea and F istu, respectively.

Teacher-Student Framework
TEACHER Parser The sole goal of F itea is to offer cor-
rect pseudo labels of the current task Di via the in-task ST.
Therefore, it only focuses on Di and is allowed to forget
past tasks that is not associated with Di. In contrast, pre-
vious instances relevant to Di can be highlighted in order
to deepen F itea’s understanding of Di. To achieve this goal,
during the ST, we refer to EMR to replay the appropriate
instances having potential prompts. In particular, when ob-
serving each task Di, N labeled instances relevant to Di
are drawn from

⋃i−1
k=1Ak ∪ Pk to compose the memory

Mi
tea = {mi

1...,m
i
N}. We call this step prompt sampling

and detail it in the subsequent section. Thereafter, F itea fol-
lows VANILLA to perform in-task ST except that it replaces
LST in self-updating with the loss calculated by equation 6.
When the training converges, F itea is considered to be ap-
proaching the optimum of Di. Note that the cost here is that
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F itea may forget some key information of D1...,Di−1.

Ltea(θ
i
tea) = LST (Ai∪Pi; θitea)+

∑
mi

k∈Mi
tea

L(mi
k; θ

i
tea). (6)

STUDENT Parser Assuming that trained F itea is an expert
proficient inDi, then the task stream could theoretically pro-
vide K experts for D1...,DK . Intuitively, if a parser can in-
herit the capabilities of all these experts, then it will be over-
all optimal of the entire task stream. OurF istu aims to be such
a parser that for each task Dj (1 ≤ j ≤ i) learns from the
pseudo-labeled instances Pj generated by the trained F jtea
in addition to the original Aj . Considering the training effi-
ciency, our practice is that using cross-task EMR during the
learning of each Di. Concretely, the loss of F istu contains 1)
the task loss on Di and 2) the replay loss on D1...,Di−1,

Lstu(θ
i
stu) =

∑
xi
k∈Ai∪Pi

L(xik; θistu) + LEMR(Mj
stu; θ

i
stu), (7)

where the replayed instances Mj
stu = {mj

1...,m
j
M} (1 ≤

j ≤ i) are sampled from Aj ∪ Pj via review sampling (de-
tailed in the next section). The sampled instances are diver-
sified in both the SQL skeleton and the RD schema so that
F istu can recall complete information about past tasks.

Dual Sampling
Prompt Sampling Algorithm 1 details the process of
prompt sampling (PS). First, TOPK(R,Ω, Ñ) denotes that
selecting Ñ instances xj fromR =

⋃i−1
k=1Ak ∪ Pk to form

a temporary memory M̃tea according to the relevance score
Ω = {ω(x1), ..., ω(x|R|)}, ω(xj) = maxxl∈Ui dsch(xl, xj),

where dsch(xl, xj) =
√∑

ψ∈Ψ(v
l
ψ − vjψ)

2 denotes the dis-

tance of xl and xj on the schemas Sk and Sj . Here Ψ is
the vocabulary of schema tokens and v ∈ R|Ψ| is the hash
vector of S . Specifically, if the token ψ exists in y, then vψ
is 1, otherwise it is 0. Thereafter, M̃tea is partitioned into n
clusters with structure distance dstru to meet the diversity of
SQL skeletons. dstru is formally similar to dsch, but replacing
Ψ with the SQL keywords vocabulary Φ (including GROUP
BY, LIMIT, etc.). The reason for using hashing techniques
for dstru and dsch is to simplify the process. More complex
distance metrics are left for future work. Finally, the central
instance of each cluster is selected to compose Mtea. Note
that although our PS requires re-traversing all past instances
for each new task, its time is only a fraction of the total time
of SFNET in our experiments.

Review Sampling Review sampling (RS) is an advanced
version of the random sampling in cross-task EMR of
VANILLA. The most significant difference between them is
that RS samples pseudo-labeled instances Pi in addition to
Ai, where the labels of each p ∈ Pi is predicted by F itea
via the in-task ST. In this way, the resulting memory is aug-
mented, allowing F istu to recall the task Di more fully. Nat-
urally, we would like sampled instances to be representa-
tive of Di in terms of both SQL skeletons and RD schemas.
Thus, we define a combined distance d(x1, x2) = dstru ∗dsch

Algorithm 1: Prompt Sampling

Require: Past labeled instances set R =⋃i−1
k=1Ak ∪ Pk, current unlabeled set U i, score

Ω = {ω(x1), ..., ω(x|R|)}
1: M̃tea ← TOPK(R,Ω, Ñ),Mtea ← ∅
2: Partition M̃tea into N clusters, denoted as C, with the

SQL structure distance metric dstru
3: for cj ∈ C do
4: Mtea ←Mtea ∪{(q∗,S∗, y∗)}, where (q∗,S∗, y∗) is

closest to the center of cluster cj
5: end for
6: return Mtea

1 2 3 4 5 6 7 8 9 10

200

400

600

800

1,000

1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1,000 |Ai|
|U i|
|Di

test|
ZS number

Figure 4: Statistics of each task in WikiSQL and Spider.

and use it to partition Ai ∪ Pi into M clusters. Here we
use the product in order to balance the weights of dstru and
dsch. Consistent with PS, the resultMj

stu consists of all cen-
tral instances of the cluster, which can be considered as the
representative of Di.

Experiments
Experimental Setup
Datasets To evaluate our proposed methods, we con-
struct two task streams using the following two text-to-SQL
datasets: WikiSQL1 (Zhong, Xiong, and Socher 2017) con-
tains more than 20k tables collected from Wikipedia and
80,654 NLQ-SQL instances. Each instance corresponds to
only a single table and the structure of the target SQL is
relatively simple. Spider2 (Yu et al. 2018) contains 8,659
training instances across 146 RDs in total, and covers a wide
range of domains, including flights, geography, movies, and
more. Unlike WikiSQL, it instance corresponds to an RD
containing multiple tables, and the target SQL may have a
complex syntax. Following the problem formulation before,
we divided each dataset into 10 tasks based on the domain
of RD, and set the size ofAi for most tasks to less than 500.
To provide a stable initialization for all compared baselines,
we choose the task with the largestAi as the first task. Refer
to the practice in SSL (Guo et al. 2022), we let most U i be
larger than Ai. In addition, (Yu et al. 2018) has pointed out
that a good text-to-SQL method must have the ability to re-
solve zero-shot RDs. Thus, we guarantee that Ditest has RDs
or tables that are not seen in Ai. Detailed statistics of our
split datasets are illustrated in Figure 4.

1https://github.com/salesforce/WikiSQL
2https://yale-lily.github.io//spider
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Method
Spider WikiSQL

ACCa ACCw BWT FWT ACCa ACCw BWT FWT

FINE-TUNE 47.5 45.5 -11.3 38.4 69.8 69.2 -1.5 63.0

SELF-TRAINING (Goldwasser et al. 2011) 48.3 46.6 -10.9 40.4 70.4 69.9 -3.3 63.5
SETNET (Wang et al. 2020b) 47.8 46.1 -14.6 41.6 70.7 70.2 -2.1 61.8
MST-SQL (Guo et al. 2022) 49.6 47.3 -6.6 40.7 70.7 70.1 -1.7 61.7

EWC (Kirkpatrick et al. 2016) 48.3 47.2 -7.9 38.4 70.0 69.6 -2.0 61.4
HAT (Serrà et al. 2018) 49.4 47.7 -8.4 39.3 70.0 69.6 -1.4 61.8
EMR (Wang et al. 2019) 50.1 49.1 -3.2 40.3 71.1 70.7 -2.2 63.1
EMAR (Han et al. 2020) 50.3 49.6 -4.6 40.4 70.8 70.5 -1.5 62.7
APPER (Mi et al. 2020) 50.7 49 -7.7 40.0 70.2 69.9 -3.0 62.7
TOTAL-RECALL (Li, Qu, and Haffari 2021) 53.4 51.6 -5.1 40.3 71.5 71.1 -2.1 62.7

VANILLA 53.9 52.9 -4.0 40.6 72.2 71.9 -2.0 64.0
SFNET 56.0 53.6 -1.0 45.9 73.6 73.3 -2.3 65.6

w/o F itea 54.5 52.5 -4.0 42.9 72.0 71.6 -1.3 63.7
w/o F istu 50.4 48.2 -7.2 45.1 71.6 72.7 -2.0 63.5
Combine F itea & F istu 54.8 53.0 -3.0 43.6 71.7 71.3 -2.0 62.9
w/o PS 53.7 52.9 -1.1 41.8 70.4 70.0 -4.6 62.6
RS only using Ai 54.2 51.4 -0.9 43.1 71.4 71.0 -2.8 62.7

ORACLE (all tasks w/o Unsup.) 62.9 63.4 5.2 48.7 73.1 72.7 2.6 64.2

Table 1: Experimental results for comparison with baselines and ablation settings.

Evaluation Metrics Following previous works (Wang
et al. 2019; Li, Qu, and Haffari 2021), we adopt four
metrics to evaluate the performance of the methods: 1)
ACCa = 1

K

∑K
i=1 acci,K ; 2) ACCw = accD(1:K)

test
; 3)

k < i: BWT = 1
K−1

∑K−1
i=1 acci,K − acci,i; 4) FWT =

1
K−1

∑K
i=2 acci,i−1 − b̄i, where acci,j denotes the test ac-

curacy on Ditest after the training of Dj and b̄i denotes the
test accuracy on Ditest at random initialization. The first two
metrics mainly measure the comprehensive performance of
parsers. The BWT measures forgetting of past tasks, while
the FWT measures zero-shot performance on new tasks.

Implementation Details Our method ran on one Tesla
A100 Super GPUs. We use pre-trained GRAPPA-Large as
the encoder and K-medoids as the clustering algorithm by
default. The hyper-parameters were set as follow: (1) The
maximum sizes of memoryMi

tea andMi
stu were set to 30%

of |Ditrain|. (2) The learning rate is set to 2×10−5 for GRAPPA
and 4× 10−4 for other modules. All our datasets and codes
are publicly available3.

Baselines FINE-TUNE is an naı̈ve baseline that uses only
labeled data to fine-tune the model for the new task based on
the previous model. Self-training (Goldwasser et al. 2011),
SETNET (Wang et al. 2020b), and MST-SQL (Guo et al.
2022) composes the SSL-only baselines that also fine-tune
the model based on the previous model but utilize both un-
labeled and labeled data, where SETNET and MST-SQL
apply mean-teacher and meta-learning to improve the gen-
eralization capability, respectively. The CL-only baselines
consists of EWC (Kirkpatrick et al. 2016), HAT (Serrà

3https://github.com/Bahuia/SSCL-Text2SQL

et al. 2018), EMR (Wang et al. 2019), EMAR (Han et al.
2020), APPER (Mi et al. 2020), and TOTAL-RECALL (Li,
Qu, and Haffari 2021). EWC uses regularization to con-
strain the learning of the current task. HAT applies a task-
specific mask to guide each task. EMAR improves EMR
with the constructed prototypes to avoid overfitting to mem-
ory. ARPER adds EWC regularization to the EMR loss and
designs a priority-based sampling method. TOTAL-RECALL
performs memory replay with a sampling method that bal-
ances the distribution of parsed actions and trains the seman-
tic parser with a two-stage update strategy. Here we did not
compare with GEM (Lopez-Paz and Ranzato 2017) because
its desired GPU memory is too large to run on our device. Fi-
nally, we set an approximate upper boundary ORACLE that
uses the full volume retraining, i.e., for each task Di, the
parser is trained by the combined data of allAj (1 ≤ j ≤ i).

Overall Results
The results are shown in Table 1. The gap between FINE-
TUNE and ORACLE on WikiSQL are not as large as on Spi-
der because the multiple tables and complex SQL syntax
makes Spider more challenging. Despite the simplicity of
the VANILLA process, it outperforms all the baselines in
terms of ACCa and ACCw. More excitingly, our proposed
SFNET further improves its ACCa by 1.4% (WikiSQL) and
2.1% (Spider), and achieves SOTA performance in almost
all metrics on two datasets. Although SFNET does not per-
form best on WikiSQL in terms of BWT, it still shows the
competitiveness with other methods and brings significant
improvements on strong TOTAL-RECALL by 2.1% in ACCa.

The SSL-only methods improve the overall performance
of FINE-TUNE using the information provided by unsuper-
vised data, while they perform poorly in fighting against the
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Figure 5: ACCa, ACCw, BWT, FWT till the seen tasks on Spider after learning on each task sequentially.

Methods
Spider WikiSQL

ACCa ACCw BWT FWT ACCa ACCw BWT FWT

RANDOM 53.2 52.7 -2.2 41.3 72.2 71.8 -3.0 62.9
SCHEMA Sim. 54.3 53.2 -1.0 45.0 72.8 72.4 -2.0 63.9

RANDOM 52.3 51.4 -3.3 41.5 71.5 71.1 -1.8 64.6
FSS 52.6 51.9 -2.0 42.0 72.3 72.1 -2.0 64.7
PRIOR 52.6 51.1 -4.0 42.0 71.9 71.3 -1.5 64.1
BALANCE 52.0 49.6 -2.4 41.1 71.9 71.4 -2.8 64.3
LFS 52.4 51.2 -6.3 40.4 72.1 71.6 -2.2 63.5
DLFS 52.8 51.9 -1.5 40.5 72.2 71.9 -2.7 64.7
SCHEMA Clus. 54.9 53.3 -1.1 43.8 72.3 71.8 -2.1 64.1

Dual Sampling 55.7 54.1 -1.0 45.9 73.6 73.3 -2.3 65.6

Table 2: ACCa (A), ACCw (W), BWT (B), and FWT (F) of SFNET with different sampling strategies.

CF (-10.9% and -14.6%). MST-SQL achieves better results,
probably because of its meta-learning that captures common
features across tasks. The replay-based EMR, EMAR, and
TOTAL RECALL perform better than other CL-only meth-
ods on BWT, which proves that past instances may be more
important to overcome the CF of the text-to-SQL parser. Al-
though TOTAL RECALL benefits from its fine-grained se-
mantic parsing sampling algorithm to achieve a best results
of the baselines, its results are still limited by ignoring unsu-
pervised information. Unlike them, our SFNET deeply inte-
grates SSL and CL and leads them to reinforce each other,
thus achieving overall excellent results.

Detailed Results and Analysis
Results Till the Seen Tasks Figure 5 shows the results of
four metrics till the seen tasks on Spider after learning one
each task. We can see that our proposed SFNET (blue) is al-
ways more stable than the other baselines in all metrics and
this stability becomes more pronounced as the number of
tasks grows. In terms of BWT and FWT, the improvement
brought by SFNET is more significant, which proves the ef-
fectiveness of our fusion manner to SSL and CL, not only
alleviating forgetfulness of past tasks, but also improving
the generalization capability for zero-shot RDs. Notice that
the performance of almost all methods in BWT improves
slightly as the number of tasks increases. This may be related
to the combined generalization of text-to-SQL tasks, i.e., the
parser might resolve the few instances that were previously
incorrectly predicted with the SQL fragments learned in the
new task. Building on this foundation, our SFNET further
exacerbates this trend using PS.

Ablation Test To explore the contributions of each com-
ponent of our proposed SFNET, we compared the perfor-
mance of the following settings: 1) w/o F itea We remove F itea
and in-task ST to verify the contribution of SSL; 2) w/o F istu
We remove Fstu and cross-task EMR, and only use Ftea to
predict, to evaluate the contribution of CL; 3) Combine F itea
&F istu We mergedFtea andFstu into a single parser to assess
the necessity of the TS framework. 4) w/o PS We remove
the prompt sampling to evaluate the improvements brought
to SSL by past information. 5) RS only using Ai; We re-
view the sampling using only the labeled set Ai to assess
the improvement of CL by pseudo-supervision information.

The penultimate block of Table 1 shows the ACCa (A),
ACCw (W), BWT (B), and FWT (F) of different settings.
Our SFNET equipped with all modules performs best in
terms of ACCa and FWT. Its non-negligible improvements
in overall performance allow us to overlook the minor short-
comings in BWT. By removing F itea, ACCa decreases by
1.6% on WikiSQL and 1.5% for Spider, which proves that
the value of the unsupervised information. Discarding F istu
leads to a decrease in terms of ACCa (-2.0% & -5.4%) be-
cause of the forgetting of previous tasks. The performance
drop (-1.9% & -1.2%) brought by abandoning the TS frame-
work demonstrates the necessity of handling SSL and CL
separately. On both datasets, removing PS results in an ab-
solute decrease in all metrics. This reveals that the relevant
information from past tasks can prompt the SSL process of
current task. In particular, the drop in FWT on Spider (-
4.1%) is more significant, probably due to the fact that Spi-
der can provide information not only on the RD schema but
also on the SQL structure. The degradation in ACCa aspect
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Figure 6: Average training time of each method on one task.

when using only Ai and not Pi in the RS process reflects
that the SSL results can also contribute to the CL process.

Impact of Sampling Methods To further evaluate our
proposed PS and RS, we replace them with some other ex-
isting sampling strategies. For prompt sampling, we replace
it RANDOM and SCHEMA Sim., where the former randomly
samples training instances and the latter only selects the top-
k instances by schema similarity ω(x) without using dstru to
clustering. For review sampling, we replace it with the sam-
pling strategies widely-used in CL, including FSS (Wang
et al. 2019; Aljundi et al. 2019), LFS (Li, Qu, and Haffari
2021), PRIOR (Mi et al. 2020), and BALANCE (Jian, Yi, and
Zhang 2022), and our defined SCHEMA Clus., which per-
forms clustering only uses dsch. Here, SCHEMA Sim. and
SCHEMA Clus. are used to evaluate the contribution of the
diverse SQL structures to the performance. From Table 2
we can see that our dual sampling outperforms all other
baselines on both datasets in terms of ACCa and ACCw.
More importantly, the improvements over SCHEMA Sim.
and SCHEMA Clus. in terms of FWT reveals the fact that
for text-to-SQL, diverse SQL structures in the training data
are useful for the parser to generate unseen SQL programs.

Training Time Analysis The average training times of
different methods on each task are depicted in Figure 6.
EMR and EMAR are slower than other CL-only methods
like HAT and EWC because they need to replay the past
instances during the training. Similarly, SSL-only methods
predicts pseudo-labels on unsupervised data to augment the
training data, and thus also require longer training time.
In addition, MST-SQL is exceptionally time-consuming be-
cause it requires the construction of multiple sets of meta-
learning tasks with possible data duplication. Notably, our
SFNET contains two training process and utilizes both un-
supervised and replayed instances, while it takes only half of
the time used by ORACLE that does not uses unsupervised
data. Moreover, although our PS accesses the full amount of
past data each time, the fast hashing strategy makes it take
only about 1/6 of the total time SFNET uses.

Related Work
Text-to-SQL Research on text-to-SQL can be roughly di-
vided into three directions. The first one is the single-table

task (Zhong, Xiong, and Socher 2017; Hwang et al. 2019;
Chen et al. 2021a; Xu et al. 2022), whose target SQL pro-
grams contain only simple syntaxes. The second direction is
a cross-domain multi-table scenario (Yu et al. 2018). Its tar-
get programs cover a variety of complicated SQL syntaxes
including GROUP BY and nested queries, to better meet
the needs of real-world applications. In this scenario, most
SOTA parsers (Guo et al. 2019; Wang et al. 2020a; Cao et al.
2021) apply top-down grammar-based decoding, which is
consistent with our work. The last one is a conversational
task, such as SPARC (Yu et al. 2019b) and COSQL (Yu
et al. 2019a), forcing the parser to learn to consider the con-
text information when generating SQL in a multi-turn dia-
logue (Zhang et al. 2019; Zheng et al. 2022).
SSL in Semantic Parsing Multiple classical methods have
been applied to address the challenge of lack of annota-
tion for semantic parsing, such as SVM (Kate and Mooney
2007), self-training (Goldwasser et al. 2011), dual learn-
ing (Chen et al. 2021b), auto-encoder (Yin et al. 2018), and
mean-teacher (Wang et al. 2020b). We finally adopted self-
training in the proposed solutions for simplicity. Unlike pre-
vious methods, we propose relevance sampling to utilize the
continual scenario to boost the performance of SSL.
CL in Semantic Parsing There is relatively little work that
applies CL to semantic parsing. (Lialin et al. 2020) and (Li,
Qu, and Haffari 2021) apply EWC (Kirkpatrick et al. 2016)
and EMR (Wang et al. 2019), respectively, to handle the
task stream of traditional semantic parsing benchmarks. Dif-
ferent from them, our method focuses on text-to-SQL with
larger application scenarios and further argument the mem-
ories in the continual process using unsupervised data.
Semi-Supervised Continual Learning Recent SSCL meth-
ods (Brahma, Verma, and Rai 2021; Luo et al. 2022; Smith
et al. 2021; Wang et al. 2021) have focused on image clas-
sification tasks. They are either based on backbone mod-
els widely used in Computer Vision (e.g., generative ad-
versarial networks) or on gradient prediction which is com-
putationally expensive and therefore not suitable for Natu-
ral Language Processing tasks with large-scale pre-trained
models. In contrast, our research is dedicated to obtaining a
simple and efficient method for text-to-SQL within the al-
lowed time-space overhead.

Conclusion
In this paper, we presented two methods that integrates
semi-supervised learning (SSL) and continual learning (CL)
to address the problem of supervision-limited text-to-SQL
task stream. The first approach combines self-training and
episodic memory replay to enhance supervision while bal-
ancing training efficiency and performance of the over-
all task stream. The improved method SFNET drives the
intrinsic connection between CL and SSL by using in-
memory past information to help current SSL, while adding
high-quality pseudo instances in memory to improve fu-
ture replay. The experiments on two benchmarks shows
that indicate that our method provide a promising way for
supervision-limited text-to-SQL task stream. In future work,
we will try to introduce prompt learning into the continual
process to augment supervision and alleviate forgetting.
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ings of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July 28- Au-
gust 2, 2019, Volume 1: Long Papers, 4524–4535. Associa-
tion for Computational Linguistics.

Guo, X.; Chen, Y.; Qi, G.; Wu, T.; and Xu, H. 2022. Im-
proving Few-Shot Text-to-SQL with Meta Self-Training via
Column Specificity. In Raedt, L. D., ed., IJCAI, 4150–4156.
Han, X.; Dai, Y.; Gao, T.; Lin, Y.; Liu, Z.; Li, P.; Sun, M.;
and Zhou, J. 2020. Continual Relation Learning via Episodic
Memory Activation and Reconsolidation. In Jurafsky, D.;
Chai, J.; Schluter, N.; and Tetreault, J. R., eds., Proceed-
ings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10, 2020,
6429–6440. Association for Computational Linguistics.
Hwang, W.; Yim, J.; Park, S.; and Seo, M. 2019. A Compre-
hensive Exploration on WikiSQL with Table-Aware Word
Contextualization. CoRR, abs/1902.01069.
Jian, Y.; Yi, J.; and Zhang, L. 2022. Adaptive Feature Gener-
ation for Online Continual Learning from Imbalanced Data.
In Gama, J.; Li, T.; Yu, Y.; Chen, E.; Zheng, Y.; and Teng,
F., eds., Advances in Knowledge Discovery and Data Min-
ing - 26th Pacific-Asia Conference, PAKDD 2022, Chengdu,
China, May 16-19, 2022, Proceedings, Part I, volume 13280
of Lecture Notes in Computer Science, 276–289. Springer.
Kate, R. J.; and Mooney, R. J. 2007. Semi-Supervised
Learning for Semantic Parsing using Support Vector Ma-
chines. In Sidner, C. L.; Schultz, T.; Stone, M.; and Zhai,
C., eds., NAACL, 81–84.
Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N. C.; Veness, J.;
Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho,
T.; Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Ku-
maran, D.; and Hadsell, R. 2016. Overcoming catastrophic
forgetting in neural networks. CoRR, abs/1612.00796.
Lewis, R.; McPartland, J.; Ranjan, R.; et al. 2017.
Blockchain and financial market innovation. Economic Per-
spectives, 41(7): 1–17.
Li, Z.; Qu, L.; and Haffari, G. 2021. Total Recall: a Cus-
tomized Continual Learning Method for Neural Semantic
Parsers. In Moens, M.; Huang, X.; Specia, L.; and Yih,
S. W., eds., Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, 3816–3831. Association for Computa-
tional Linguistics.
Lialin, V.; Goel, R.; Simanovsky, A.; Rumshisky, A.; and
Shah, R. 2020. Update frequently, update fast: Retraining se-
mantic parsing systems in a fraction of time. arXiv preprint
arXiv:2010.07865.
Lopez-Paz, D.; and Ranzato, M. 2017. Gradient Episodic
Memory for Continual Learning. In Guyon, I.; von Luxburg,
U.; Bengio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan,
S. V. N.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, 6467–6476.
Luo, Y.; Wong, Y.; Kankanhalli, M. S.; and Zhao, Q. 2022.
Learning to Predict Gradients for Semi-Supervised Contin-
ual Learning. CoRR, abs/2201.09196.
Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive Approaches to Attention-based Neural Machine Trans-

12689



lation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 1412–1421.
Mi, F.; Chen, L.; Zhao, M.; Huang, M.; and Faltings, B.
2020. Continual Learning for Natural Language Genera-
tion in Task-oriented Dialog Systems. In Cohn, T.; He,
Y.; and Liu, Y., eds., Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020, volume EMNLP 2020 of Findings of ACL,
3461–3474. Association for Computational Linguistics.
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